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Abstract 1 

Avian malaria and related haemosporidian parasites (genera Haemoproteus, Plasmodium, and 2 

Leucocytozoon) affect bird demography, species range limits, and community structure, yet they 3 

remain unsurveyed in most bird communities and populations. We conducted a community-level 4 

survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, 5 

abundance, and host associations. We focused on the breeding-bird community in the transition 6 

zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2150–2460 7 

meters). We screened 186 birds representing 49 species using both standard PCR and microscopy 8 

techniques to detect infections of all three avian haemosporidian genera. We detected infections 9 

in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus 10 

(20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA 11 

for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 12 

Plasmodium). When compared to all previously known haplotypes in the MalAvi and GenBank 13 

databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host 14 

specificity at the avian clade and species level, but this specificity was variable among parasite 15 

genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out 16 

of six), while Plasmodium occurred in all groups except non-passerines. We found striking 17 

variation in infection rate among host species, with nearly universal infection among vireos and 18 

no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian 19 

haemosporidian diversity to be 70 haplotypes (95% CI: 43–98); thus, we may have already 20 

sampled ~60% of the diversity of avian haemosporidians in New Mexico pine forests. It is 21 

possible that future studies will find higher diversity in microhabitats or host species that are 22 

under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via 23 
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voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in 24 

open-access databases (MalAvi, GenBank, and ARCTOS).  25 
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Introduction 26 

Parasites are influential components of biotic communities, yet the vast majority of parasite 27 

diversity remains undescribed (Dobson et al., 2008; Poulin, 2014). A striking example is 28 

provided by the haemosporidian parasites (Protozoa: Apicomplexa: Haemosporida) that infect 29 

primates, rodents, bats, lizards, and birds. Avian malaria and related haemosporidians of the 30 

genera Haemoproteus (including Parahaemoproteus), Plasmodium, and Leucocytozoon are 31 

known to affect bird community structure (Atkinson et al., 2013; Kulma et al., 2013; Clark, Clegg 32 

& Lima, 2014), immune function (Atkinson et al., 2001; Beadell et al., 2007), telomere length 33 

and senescence (Asghar et al., 2015), survivorship (Atkinson et al., 2000), and fecundity 34 

(Knowles, Palinauskas & Sheldon, 2010). Over 200 avian haemosporidian species have been 35 

described based on morphology (Valkiknas, 2005), but mitochondrial (mtDNA) sequences have 36 

revealed that at least one order of magnitude higher diversity exists (Bensch, Hellgren & Pérez-37 

Tris, 2009; Clark, Clegg & Lima, 2014). Nearly two decades since the introduction of mtDNA 38 

‘barcode’ survey methods (Bensch et al., 2000), many geographic regions and the vast majority 39 

of avian populations remain unsurveyed for haemosporidians. New community-level surveys will 40 

be critical to understanding their diversity, biogeography, and coevolutionary dynamics. 41 

 The need for new descriptive data on avian haemosporidian communities is vital, 42 

particularly in under-sampled regions and habitats, for several reasons. Interacting bird, dipteran, 43 

and avian haemosporidian species underlie the disease transmission cycle (Valkiknas, 2005; 44 

LaPointe, Goff & Atkinson, 2010), and these species are likely to be susceptible to range shifts 45 

driven by climate warming. This situation creates the potential for novel host-parasite 46 

interactions. When naïve hosts encounter novel haemosporidian parasites, the consequences can 47 

be severe, as illustrated by the decimation of native Hawaiian honeycreepers after the 48 

introduction of Plasmodium relictum (Warner, 1968; van Riper et al., 1986; Atkinson et al., 49 
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2000). Furthermore, increased temperatures can result in multiple reproductive cycles for the 50 

dipteran definitive hosts (Robinet & Roques, 2010), potentially causing increased infection risk 51 

or parasitemia, with negative consequences for bird population growth (Scott et al., 1983; Brown 52 

et al., 2001; Garamszegi, 2011). Increased contact between hosts and parasites may also facilitate 53 

host-switching, which appears to be a common mode of diversification in this group (Ricklefs & 54 

Fallon, 2002; Galen & Witt, 2014; Ricklefs et al., 2014). Descriptions of avian haemosporidian 55 

communities will elucidate the ecological niches, host relationships, and host-switching potential 56 

of parasite lineages, providing information that will be critical for wildlife management and will 57 

provide a basis for predicting climate change impacts. 58 

 The southwestern United States, in particular, is mostly unsurveyed and is likely to harbor 59 

a distinct avian haemosporidian assemblage, in part because its arid environment imposes 60 

challenges for the dipteran definitive hosts that serve as vectors (Yohannes et al., 2005; Lachish 61 

et al., 2011). The few previous community-level surveys of avian haemosporidian parasites in 62 

western North America have been conducted in California (Martinsen et al., 2008; Walther et al., 63 

2016) and Alaska (Loiseau et al., 2012; Oakgrove et al., 2014). Here we report on the first 64 

community-level avian haemosporidian survey in New Mexico, USA. New Mexico's arid climate 65 

and broad elevation gradients provide a compelling and untapped system in which to investigate 66 

avian haemosporidian diversity and ecology. We focus specifically on the breeding-season 67 

community in the elevational zone between 2150–2460 meters, which is characterized by the 68 

transition from forests dominated by piñon pine to those dominated by ponderosa pine. Our 69 

objectives were: (1) To compare infection rates for each of the three avian haemosporidian genera 70 

(Haemoproteus, Plasmodium, and Leucocytozoon) among a suite of breeding bird species using 71 

microscopy and mtDNA; (2) To describe associations between avian haemosporidian haplotypes 72 

and their host species in a phylogenetic context; (3) To evaluate haplotype-richness (a-diversity) 73 
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of the avian haemosporidian community in a previously unsurveyed region and habitat, including 74 

the proportion of lineages that are novel (never found in previous surveys). The survey results 75 

that we report are fully extendable via voucher specimens, frozen tissues, blood smears, parasite 76 

images, and documentation in open-access databases (MalAvi, GenBank, and ARCTOS). 77 

 78 

Methods 79 

Field Sampling 80 

We conducted fieldwork during June and July 2016 at three sites in northern New Mexico within 81 

the jurisdiction of the Rio Puerco Field Office of the Bureau of Land Management (BLM), an 82 

agency within the United States Department of Interior. The three sites included: (1) Mesa 83 

Chivato (McKinley and Sandoval Counties; on the northern flank of Mt. Taylor); (2) El Malpais 84 

National Conservation Area (Cibola County; on the southern side of the Zuni Mountains); and (3) 85 

Elk Springs (Sandoval County; on the western slope of the Jemez Mountains; Fig. 1). Sampling 86 

was conducted within a narrow elevational band (2150–2460 m) at the upper elevational extent of 87 

piñon-juniper woodland, where it transitions to ponderosa pine forest. These pine-dominated 88 

habitats were interspersed with patches of grassland and occasional Gambel oak, Douglas fir, or 89 

aspen. Permanent water was scarce in the sampled habitats, consisting of a tiny, spring-fed creek 90 

in the Elk Springs site, a natural spring (Ojo de los Indios) that has been developed in Mesa 91 

Chivato, and a few widely-dispersed watering troughs and earthen tanks for cattle or wildlife in 92 

Mesa Chivato and El Malpais National Conservation Area. 93 

We focused on the breeding-season community in order to characterize locally-94 

transmitted parasites. Sampling during the breeding season may also maximize detection because 95 

breeding birds frequently exhibit relapses of latent avian malaria infections (Applegate, 1970; 96 

Valkiknas et al., 2004; Garvin & Schoech, 2006), possibly associated with increases in 97 
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glucocorticoid stress hormones (Romero, 2002). Blood smears were prepared at the time of 98 

collection and were later fixed and stained in the lab (details below). Whole avian specimens 99 

were collected by mist-net or shotgun, preserved on dry ice, and transported to the Museum of 100 

Southwestern Biology (MSB) at the University of New Mexico for specimen preparation and 101 

preservation of tissues for genetic analysis. All samples were collected under Institutional Animal 102 

Care and Use Protocol 16-200406-MC and appropriate state and federal scientific collecting 103 

permits (New Mexico Department of Game and Fish Authorization Number 3217; U.S. Fish and 104 

Wildlife Permit Number MB094297-0). Complete details on each specimen, including precise 105 

locality, collection method, and necropsy data are available in Table S1 and its embedded links to 106 

the ARCTOS database. Additionally, all novel haemosporidian haplotypes, host species infected, 107 

and occurrence sites were documented in GenBank, the MalAvi database (Bensch, Hellgren & 108 

Pérez-Tris, 2009) and in Tables S1–S2. 109 

   110 

Genetic data collection 111 

We extracted genomic DNA from frozen pectoral muscle tissue of 186 avian specimens using a 112 

QIAGEN DNeasy Blood and Tissue Kit, following the manufacturer’s protocol. To maximize 113 

detection of different parasite genera, we used three nested polymerase chain reaction (PCR) 114 

protocols to amplify a 478 base pair fragment of cytochrome b (cytb) in the haemosporidian 115 

mitochondrial genome, as described by Hellgren, Waldenström & Bensch (2004) and 116 

Waldenström et al. (2004). We used the outer primer pairs HaemNFI/HaemNR3 and 117 

HaemNF/HaemNR2 with the nested primer pair HaemF/HaemR2 to screen for Haemoproteus 118 

and Plasmodium. We used the outer primer pair HaemNFI/HaemNR3 with the nested primer pair 119 

HaemFL/HaemR2L to screen for Leucocytozoon. Each outer PCR contained 1.25 U AmpliTaq 120 
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Gold DNA Polymerase (Applied Biosystems), 1X PCR Buffer II, 2.5 mM MgCl2, 0.2 mM dNTP, 121 

0.5 µM each primer, and 20 ng template DNA in a total reaction volume of 25 µl. The thermal 122 

profile of this reaction was modified following Galen & Witt (2014) and consisted of an initial 8-123 

min denaturation step at 95°C, followed by 20 cycles of 94°C for 30 sec, 50°C for 30 sec, and 124 

72°C for 45 sec, with a final 10-min extension at 72°C. The nested PCR used the outer PCR 125 

product as the template (1 µl for Haemoproteus and Plasmodium; 2 µl for Leucocytozoon). 126 

Reaction conditions were the same for nested PCR except the number of cycles was increased to 127 

35. Negative and positive controls were included in each PCR reaction to check for 128 

contamination and to verify successful DNA amplification. All PCR reactions were visualized on 129 

2% agarose gels using SYBR Safe Gel Stain (Invitrogen) to identify positive samples and verify 130 

the presence of PCR product of the expected length. All successful amplifications were purified 131 

using ExoSap-IT (Affymetrix, Inc.) and sequenced in both directions using dye terminator cycle 132 

sequencing on an ABI 3130 sequencer at the UNM Molecular Biology Core Facility. 133 

 134 

Microscopic examination 135 

Blood smears were air dried in the field and, within six months, were fixed using absolute 136 

methanol and stained for 50 minutes with phosphate-buffered Giemsa solution (7.0 pH). We 137 

examined each blood smear for evidence of haemosporidian blood parasites using either a Leica 138 

DM5000 B or a Nikon Labophot-2 light microscope, following identification protocol described 139 

by Valkiknas (2005). We scanned at least 10,000 erythrocytes in all viable smears at 1000X 140 

magnification using an oil immersion lens. We did not attempt to identify gametocytes to 141 

morphospecies; rather, we took digital photographs to archive in the ARCTOS database. We re-142 
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screened 76 (45%) of the blood smears to confirm negative or positive identifications after an 143 

initial comparison with PCR results. 144 

 145 

Genetic data analysis 146 

Parasite sequences were edited and aligned using the default alignment algorithm in Geneious 147 

version 8.0 (Biomatters Ltd; Kearse et al., 2012). We compared our sequences to previously 148 

sequenced infections in the public databases GenBank (National Center for Biotechnology 149 

Information, U.S. National Library of Medicine) and MalAvi (Bensch, Hellgren & Pérez-Tris, 150 

2009) using the Basic Local Alignment Search Tool (BLAST). We used the closest match to 151 

determine the parasite genus for each haplotype. Studies have indicated that avian 152 

haemosporidian sequences differing by a single base pair can differ in host association and in 153 

transmission (Bensch, Hellgren & Pérez-Tris, 2009). We therefore characterized parasite 154 

haplotypes differing by one or more base pairs from existing sequences in the GenBank and 155 

MalAvi databases as novel and named them following MalAvi naming conventions (first three 156 

letters of the genus and species of the first bird host species from which the haplotype was 157 

sequenced, followed by a haplotype number for that bird species). Some authors have suggested 158 

combining haplotypes into ‘lineages’ based on a 1% divergence rule (Outlaw & Ricklefs, 2014) 159 

and considering geographic distributions and hosts infected (Svensson-Coelho et al., 2013). By 160 

these definitions, ‘lineages’ are considered to represent putative species; however, species limits 161 

are difficult to determine with the data at hand. In this study, we tentatively treat each haplotype 162 

as a unique lineage; additional sampling will be required to determine whether some of these 163 

closely related haplotype groups may represent segregating variants within single populations. 164 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2997v2 | CC BY 4.0 Open Access | rec: 23 Jul 2017, publ: 23 Jul 2017



 10 

 In addition to reporting the proportion of infected birds, we reported the combined 165 

infection rate, defined as the number of infections detected divided by the number of birds 166 

screened. The latter metric accounts for the total number of infections in a host population, 167 

including multiple infections within a single host. We defined co-infection as testing PCR 168 

positive for more than one genus of haemosporidian parasite (i.e. possessing both Leucocytozoon 169 

and Haemoproteus/Plasmodium), or testing positive for more than one haplotype within a 170 

parasite genus (i.e. two distinct Haemoproteus or Plasmodium haplotypes), either in separate 171 

nested PCR reactions or by presence of double peaks in sequence chromatograms. 172 

 We estimated the phylogenetic relationships among New Mexico haemosporidian 173 

parasites based on cytb using maximum likelihood in RAxML version 8.2 (Stamatakis, 2014). 174 

Given the modest size of the dataset, we analyzed all codon positions as a single partition. We 175 

used the GTR+G model of nucleotide substitution and conducted a rapid bootstrap analysis with 176 

1000 bootstrap replicates, after which we searched for the best-scoring maximum-likelihood tree. 177 

We did not specify an outgroup for the ML analysis and instead rooted the tree at the 178 

Leucocytozoon clade based on the relationships for Haemosporida determined using several loci 179 

and taxa (Borner et al. 2016). We generated a phylogenetic tree for the avian species sampled 180 

using BirdTree.org, which uses calibrated backbone trees of well-supported avian clades and 181 

generates trees for all bird species by partially constraining them to their respective clade 182 

(expanded methods in Jetz et al., 2012, 2014). We used the phylogeny subsets tool to download a 183 

tree including only the species we sampled from the ‘Ericson All Species’ source of trees 184 

(Ericson et al., 2006). 185 

 186 
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Estimates of lineage diversity 187 

We used EstimateS version 9.1.0 (Colwell, 2013) to generate an estimate of undiscovered lineage 188 

diversity present in northern New Mexico avian haemosporidian communities. This approach 189 

estimates species richness in a community based on rarefaction and extrapolation of reference 190 

samples (Colwell et al., 2012). We used counts for each parasite haplotype as individual-based 191 

abundance data regardless of host species identity, which should result in a conservative estimate 192 

of species richness. Rarefaction was conducted with 100 randomizations and the rarefaction curve 193 

was extrapolated with unconditional 95% confidence intervals to a total of 400 individuals, at 194 

which point the species richness curve reached an asymptote. 195 

 196 

Results 197 

Parasite abundance 198 

We collected 186 individuals from 49 species and representing 19 families of New Mexico birds 199 

(Table S1). Twenty-six species tested positive for one or more of the three genera of avian 200 

haemosporidian parasites. In total, 65 out of 186 birds (34.9%) were infected based on PCR. 201 

These include 39 birds infected with one or more lineages of Haemoproteus (20.9%), 15 birds 202 

infected with Plasmodium (8.0%), and 25 birds infected with Leucocytozoon (13.4%). Two 203 

additional individuals tested positive for either Haemoproteus or Plasmodium in the PCR 204 

screening, but we were unable to identify these lineages to genus because of poor sequence 205 

quality. Combined infection rates were variable among parasite genera, as well as among host 206 

clades and host species (Fig. 2). A total of 18 (9.7%) individuals were co-infected, including two 207 

mixed infections comprised of Leucocytozoon with Plasmodium, 12 of Leucocytozoon with 208 
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Haemoproteus, two of Haemoproteus with Haemoproteus, and one of Plasmodium with 209 

Plasmodium. 210 

We completed microscopic examination for 168 individuals (90%) that had blood smears 211 

of adequate quality. We detected evidence of positive haemosporidian infection in 43 (25.6%) of 212 

the individuals screened. The rate of detection with PCR was higher than microscopy (Table 1). 213 

In 21 cases, PCR was positive with a negative microscopy result, and in three cases, microscopy 214 

was positive with a negative PCR result. Parasitemia (defined as the proportion of red blood cells 215 

infected out of 10,000) was < 1% for the majority of slides examined. The highest level of 216 

infection was in an individual of Empidonax oberholseri (Tyrannidae) with ~2% of red blood 217 

cells infected. Combining both PCR and microscopy results, 68 of 186 (36.6%) birds were 218 

infected. 219 

 220 

Parasite diversity 221 

We identified a total of 83 positive PCR infections, and obtained unambiguous sequences from 222 

77 of them. Six sequences of poor quality were excluded from the parasite phylogeny and lineage 223 

diversity analyses because they could not be assigned to a haplotype. Four of these excluded 224 

sequences were positively identified as Leucocytozoon by the primer pair used, and two were 225 

either Haemoproteus or Plasmodium. These infections were included for the calculation of 226 

overall and Leucocytozoon infection rates. The 77 sequenced infections consisted of 43 distinct 227 

parasite haplotypes, including 25 Haemoproteus, six Plasmodium, and 12 Leucocytozoon 228 

haplotypes (Fig. 2; Table S2). Based on published sequences in the MalAvi and GenBank 229 

databases, 27 haplotypes (63%) identified were novel, which consisted of 17 novel haplotypes for 230 

Haemoproteus (meaning 68% of the haplotypes we found for the genus were novel), two for 231 
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Plasmodium (33%), and eight for Leucocytozoon (67%). Additionally, we found evidence of 232 

infection in four juvenile birds; one with Leucocytozoon and two with novel Haemoproteus 233 

lineages, providing evidence for local transmission (Table S1). Sequences generated for each 234 

haplotype in this study are available on MalAvi and GenBank (Tables S1–S2; GenBank accession 235 

numbers: MF077648–MF077690). 236 

 237 

Parasite phylogeny and host associations 238 

The parasite phylogeny indicated strong support for the sister group relationship between avian 239 

Haemoproteus and Plasmodium (bootstrap value = 100). We recovered monophyletic 240 

relationships for each genus with strong to moderate support (bootstrap values: 100 for 241 

Leucocytozoon, 85 for Haemoproteus, 67 for Plasmodium). We found evidence for associations 242 

between host clades and parasite genera. All Haemoproteus haplotypes were restricted to three 243 

avian clades: Passerides clade 1b, Corvides, and Suboscines (Fig. 2). Similarly, all 244 

Leucocytozoon haplotypes were restricted to Passerides clade 1b, Passerides clade 2, and 245 

Corvides. Plasmodium infections occurred in all avian clades or groups sampled except non-246 

passerines. We found no infections in non-passerine species, which may be due to low sample 247 

size (n = 8). Although node-support values were modest, some monophyletic Haemoproteus 248 

groups appear to be restricted to single avian clades (Fig. 2). Notably, the clade containing 249 

VIRPLU04 to VIGIL07 included 14 infections, all of which we recovered from avian hosts in the 250 

genus Vireo. 251 

 252 
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Estimates of lineage diversity 253 

A rarefaction curve generated in EstimateS using the 77 infections and 43 haplotypes identified 254 

suggested that the total haplotype richness is ~70 (95% CI: 43–98; Fig. 3). According to this 255 

method, we have identified ~60% of the lineage diversity present at these sites, and sampling a 256 

total of ~240 infections should be sufficient to capture > 95% of the lineage diversity in this avian 257 

haemosporidian community. Based on our PCR-derived infection rate of 34.9%, this projection 258 

suggests we will need to screen ~690 birds, or ~500 additional samples to adequately characterize 259 

the avian haemosporidian community of New Mexico pine forests. This estimate should be 260 

regarded as a conservative minimum estimate of the sampling needed, as explained below. 261 

 262 

Discussion 263 

Haemosporidian abundance in New Mexico pine forest breeding bird communities  264 

We detected high levels of infection in the first community-wide survey of blood parasites in 265 

New Mexico breeding birds, with over one third (36.6%) of individuals infected with at least one 266 

of the three parasite genera. This level of infection is comparable to community surveys in other 267 

parts of the U.S. including California (39.8% of 399 birds; Walther et al., 2016), Alaska (53% of 268 

903 birds; Oakgrove et al., 2014), and Missouri (38.6% of 757 birds; Ricklefs et al., 2005). 269 

Community-level surveys in other parts of the world vary widely in avian haemosporidian 270 

infection rates, from 17.4% of 2661 birds in Brazil (excludes Leucocytozoon; Fecchio et al., 271 

2017), to 79.1% of 532 birds in east Africa (Lutz et al., 2015). In our New Mexico study, 272 

Haemoproteus was the most abundant parasite genus (20.9% of birds infected), followed by 273 

Leucocytozoon (13.4%), then Plasmodium (8.0%). This generic composition was strikingly 274 

different from that found by some previous studies in western North America. For example, 275 
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Walther et al. (2016) found much higher Plasmodium infection rates compared to the other two 276 

genera in a California songbird community, and Oakgrove et al. (2014) found Leucocytozoon to 277 

be the most abundant genus in an Alaska survey. The time of year in which samples were 278 

collected may have contributed to these patterns. For example, Walther et al., (2016) sampled 279 

from April to January, while we focused our sampling efforts on the breeding season (June and 280 

July). Haemoproteus may be easier to detect by PCR over short timeframes because relapses are 281 

generally longer in Haemoproteus infections compared to Plasmodium (Valkiunas, 2005). 282 

Another factor to consider is the relative absence of standing water in ponderosa pine forest and 283 

piñon-juniper woodland habitats and how differences in vector ecology may contribute to these 284 

patterns. For instance, simuliid black flies that transmit Leucocytozoon parasites commonly lay 285 

eggs in running water (Adler, Currie & Wood, 2004). Interestingly, Elk Springs, the site with a 286 

spring-fed creek, had a higher Leucocytozoon infection rate (32%) compared to Mesa Chivato 287 

(13%) and El Malpais National Conservation Area (10%), but this pattern remains to be 288 

confirmed with additional sampling. 289 

 The variation in infection rate that we detected among host species suggests intriguing 290 

avenues for further investigation. We uncovered extremely high infection and co-infection rates 291 

in two Vireo species, Vireo gilvus and V. plumbeus. Of 13 individuals collected, 12 (92%) were 292 

positive for either Haemoproteus or Leucocytozoon, and eight (61.5%) were co-infected. Walther 293 

et al. (2016) also identified high infection rates in Vireo gilvus (n = 11) and identified V. gilvus as 294 

the only study species to be co-infected with more than three parasite lineages. The high rates of 295 

infection and co-infection indicate that Vireo species will be important to investigate as potential 296 

reservoirs for Haemoproteus and Leucocytozoon parasites (e.g., Möens et al., 2016). In contrast, 297 

the three species of nuthatches (Sitta pygmaea, S. canadensis, S. carolinensis) in our survey were 298 
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completely uninfected (n = 12). It is possible that immune function or ecological characteristics 299 

minimize infection in these species. For example, nuthatches are cavity-nesters, a characteristic 300 

that is hypothesized to reduce exposure time to vectors and result in lower infection rates 301 

(Fecchio et al., 2011; Svensson-Coelho et al., 2013; Lutz et al., 2015; Medeiros et al., 2015). 302 

The number of positive infections we detected with PCR differed somewhat from 303 

microscopy results, consistent with previous studies that have compared the two methods 304 

(Valkiknas et al., 2008; Möens et al., 2016). Differences between PCR and microscopy detection 305 

are expected for at least three reasons. First, PCR can identify a positive infection with fewer than 306 

a single parasite per one million host cells (Hellgren, Waldenström & Bensch, 2004), infections 307 

that are unlikely to be detected using standard microscopic examinations of 10,000–100,000 cells 308 

(Atkinson et al., 2000). Second, it is conceivable that infections detected by PCR may be abortive 309 

infections, which would not develop into gametocytes in the blood stream (Valkiknas et al., 310 

2013). Third, detection by PCR appears to be sensitive to tissue type, with higher detection 311 

probability for heart, liver, or pectoral muscle tissue compared to blood (Svensson-Coelho et al., 312 

2016). We sampled pectoral muscle tissue, for which Svensson-Coelho et al. (2016) found fewer 313 

false negatives compared to other tissue types, although in that study, no tissue type detected 314 

every infection that was detected by at least one of the four tissue types. 315 

 316 

Novel parasite diversity and apparent host clade associations 317 

Our survey revealed high diversity of avian haemosporidian parasites in northern New Mexico 318 

including several novel lineages. Of the 43 haplotypes we sampled, 16 have previously been 319 

identified and published in MalAvi or GenBank. Nine of these have only been documented in the 320 

U.S., six of which have only been identified within the western U.S., suggesting restricted 321 
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geographical ranges within continental North America for at least some lineages. Haemoproteus 322 

was the most diverse lineage in our study with 25 haplotypes identified, 17 of which were novel. 323 

Likewise, several studies in other parts of the world including Asia, Europe, and sub-Saharan 324 

Africa have documented higher lineage diversity in Haemoproteus compared to Plasmodium 325 

(reviewed in Clark, Clegg & Lima, 2014). Other surveys have found either Plasmodium 326 

(California: Walther et al., 2016; South America: Svensson-Coelho et al., 2013; Fecchio et al., 327 

2017) or Leucocytozoon (Alaska: Oakgrove et al., 2014; eastern Africa: Lutz et al., 2015) to have 328 

higher diversity compared to other genera. We found more novel lineages (27 total, or 63%) than 329 

similar community-level surveys in California (40% novel; Walther et al., 2016) and Alaska 330 

(49% novel; Oakgrove et al., 2014) despite having a much smaller sample size thus far. In this 331 

study, we sampled 186 birds compared to 399 birds (Walther et al., 2016) and 913 birds 332 

(Oakgrove et al., 2014), and all three surveys sampled a similar number of host species (46–49). 333 

 The apparent host breadth and geographic range of the lineages we sampled provides 334 

evidence for some generalist parasites, mostly within Plasmodium. For example, LAIRI01 was 335 

found in four different avian clades in our study, and has previously been reported in the 336 

Philippines, Ecuador, and Mexico (Silva-Iturriza, Ketmaier & Tiedemann, 2012; Levin et al., 337 

2013). We found one occurrence of WW3, which is distributed across Africa, Europe, and other 338 

parts of the U.S. (Waldenström et al., 2002; Bensch & Åkesson, 2003; Hellgren et al., 2007). One 339 

Haemoproteus lineage, SIAMEX01, also appears to be wide-ranging across the U.S. and has been 340 

identified in several avian hosts (Ricklefs & Fallon, 2002; Levin et al., 2013). The majority of 341 

avian haemosporidian lineages found in our study, however, seem to be host specific at the 342 

species or clade level. One example includes the six Haemoproteus and two Leucocytozoon 343 

lineages that were specific to Vireo species in our study, although one of these haplotypes, 344 
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TROAED12, was first described from a different host species, the house wren (Troglodytes 345 

aedon; Galen & Witt, 2014). Three of the vireo-specific lineages in our study (VIGIL02, 346 

VIGIL05, and VIGIL07) were also identified in Vireo species in California (Walther et al., 2016). 347 

Interestingly, a clade of haemosporidians specific to two eastern Vireo species was identified by 348 

Ricklefs et al., (2005), but those haplotypes cannot be directly compared at present because a 349 

different portion of cytb was sequenced. Among the major host clades, lineage diversity was 350 

highest for Passerides clade 1b and Corvides. Most Haemoproteus and Leucocytozoon lineages 351 

were sampled from a single avian host clade, but additional sampling is needed to confirm the 352 

patterns of host specificity in New Mexico pine forest breeding bird communities. 353 

 Our estimates of total avian haemosporidian lineage diversity indicate that a substantial 354 

number of haplotypes, ~25, remain to be sampled in these communities; this is likely to be an 355 

underestimate. Although there was evidence of host specificity, we could not account for host-356 

species identity in our rarefaction procedure in EstimateS because sample sizes for individual 357 

host species were small and biased towards common species. Considering the preponderance of 358 

unsampled and under-sampled bird species in the community, the avian haemosporidian diversity 359 

in New Mexico pine forests is likely much higher than the estimate presented here. For the same 360 

reasons, uneven sampling among the three sites may have exacerbated our underestimation of 361 

diversity, particularly if there is species-turnover among mountain ranges. 362 

 363 

Conclusions 364 

We uncovered a diverse community of avian haemosporidian parasites in New Mexico pine 365 

forests, with the majority of infections representing novel mtDNA haplotypes. We found 366 

evidence for host-specificity at the level of avian species and clades. There was also striking 367 
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variation in infection rates among avian species and clades, exemplified by near universal 368 

infection of vireos and absence of infection in nuthatches. This study underscores the need for 369 

further sampling in southwestern North America in order to discover the diversity of ecologically 370 

important parasites that are interacting with birds. Follow-up studies should extend on the open-371 

data provided here to test our extrapolation of the total avian haemosporidian haplotype diversity, 372 

and to determine the extent to which the avian haemosporidian community varies among 373 

neighboring ‘sky island’ mountain ranges or at elevations above or below the zone sampled here. 374 
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Table 1 Positive infections identified from microscopy, PCR, and both methods combined. Total 581 

screened indicates the number of individual birds screened by each method. Of those screened, 582 

the number and proportion of individuals that were positive are reported. Detection rates were 583 

higher for PCR, although three samples were positively identified using microscopy but not PCR. 584 

 585 
 586 
 587 

  Haemoproteus/Plasmodium Leucocytozoon Overall 

Method 
Total 
screened 

No. positive (%) No. positive (%) No. positive (%) 

Microscopy 168 40 (23.8%) 7 (4.2%) 43 (25.6%) 

PCR 186 55 (29.6%) 25 (13.4%) 65 (34.9%) 

Combined 186 58 (31.2%) 25 (13.4%) 68 (36.6%) 

  588 
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Figure 1 Map of study areas and 2016 sampling localities. Fieldwork was conducted in three 589 

sites located in piñon-juniper and ponderosa pine woodland habitats (elevational range: 2150-590 

2460 meters). The number of infections detected by PCR and sequencing at each site for 591 

Haemoproteus (H), Plasmodium (P), and Leucocytozoon (L) is shown. Note that two infections 592 

from El Malpais could not be assigned to H or P because of poor sequence quality, resulting in 81 593 

infections shown. Elevation is based on the SRTM Digital Elevation Database (Jarvis et al., 594 

2008). 595 

 596 

 597 
 598 
 599 
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Figure 2 Phylogeny of haemosporidian haplotypes found in New Mexico birds. Columns represent host clades (left) and host species 600 

(right). Dotted line indicates non-monophyly of non-passerines, and clade names are based on the names and topology from Moyle et 601 

al. (2016). Host species phylogeny was generated from BirdTree.org and the colors of host clade branches correspond to host species 602 

in each clade. Bar plots depict the combined infection rate (number of infections divided by number of birds screened) for each 603 

parasite genus: Haemoproteus (turquoise), Plasmodium (dark brown), Leucocytozoon (light brown). Stars indicate novel 604 

haemosporidian haplotypes. The parasite phylogeny was estimated in RAxML and branch labels indicate bootstrap values. The table is 605 

shaded to indicate which clade/species was infected with each haplotype. The number of infections sequenced for each haplotype and 606 

bird clade/species is shown, representing a total of 77 sequenced infections. 607 
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Figure 3 Estimate of haemosporidian lineage diversity in northern New Mexico based on 609 

EstimateS rarefaction and extrapolation using 77 avian haemosporidian infections and 43 distinct 610 

haplotypes. The point indicates the reference sample, solid line the rarefaction, and dotted line the 611 

extrapolation. The analysis suggests that sampling approximately 240 total infections would 612 

capture > 95% of the haemosporidian lineage diversity in this community. The total haplotype 613 

richness is estimated to be 70 (95% CI: 43–98). 614 
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