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Avian malaria parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) affect
bird demography, distribution limits, and community structure, yet most bird communities
and populations remain unsurveyed. We conducted a community-level survey of these
vector-transmitted parasites in New Mexico, USA, to describe the diversity, abundance,
and host associations. We focused on the breeding-bird community in the transition zone
between pifion-juniper woodland and ponderosa pine forests (elevational range:
2150-2460 meters). We screened 186 birds representing 49 species using both standard
PCR and microscopy techniques to detect infections of all three avian malaria genera. The
combined infection rate was 36.6%, with the highest infection rate for Haemoproteus
(20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced
MmtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon,
6 Plasmodium). When compared to all previously known lineages in the MalAvi and
GenBank databases, 65% (28) of the haplotypes that we recovered were novel. We found
evidence for host specificity at the avian clade and species level, but this specificity was
variable among parasite genera. Haemoproteus and Leucocytozoon were each restricted
to three avian host-clades or groups (out of six), while Plasmodium occurred in all groups
except non-passerines. We found striking variation in infection rate among host species,
with nearly universal infection among vireos and no infection among nuthatches. Using
rarefaction and extrapolation, we estimated the total avian malaria diversity to be 70
haplotypes (95% Cl: 43-98); thus, we may have already sampled ~60% of the diversity of
avian malaria in New Mexico pine forests. It is possible that future studies will find higher
diversity in microhabitats or host species that are under-sampled or unsampled in the
present study. Fortunately, this study is fully extendable via voucher specimens, frozen
tissues, blood smears, parasite images, and documentation provided in open-access
databases (MalAvi, Genbank, and ARCTOS).
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Abstract

Avian malaria parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) aftect bird
demography, distribution limits, and community structure, yet most bird communities and
populations remain unsurveyed. We conducted a community-level survey of these vector-
transmitted parasites in New Mexico, USA, to describe the diversity, abundance, and host
associations. We focused on the breeding-bird community in the transition zone between pifion-
juniper woodland and ponderosa pine forests (elevational range: 2150-2460 meters). We
screened 186 birds representing 49 species using both standard PCR and microscopy techniques
to detect infections of all three avian malaria genera. The combined infection rate was 36.6%,
with the highest infection rate for Haemoproteus (20.9%), followed by Leucocytozoon (13.4%),
then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes
(25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium). When compared to all previously known
lineages in the MalAvi and GenBank databases, 65% (28) of the haplotypes that we recovered
were novel. We found evidence for host specificity at the avian clade and species level, but this
specificity was variable among parasite genera. Haemoproteus and Leucocytozoon were each
restricted to three avian host-clades or groups (out of six), while Plasmodium occurred in all
groups except non-passerines. We found striking variation in infection rate among host species,
with nearly universal infection among vireos and no infection among nuthatches. Using
rarefaction and extrapolation, we estimated the total avian malaria diversity to be 70 haplotypes
(95% CI: 43-98); thus, we may have already sampled ~60% of the diversity of avian malaria in
New Mexico pine forests. It is possible that future studies will find higher diversity in
microhabitats or host species that are under-sampled or unsampled in the present study.

Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears,
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24  parasite images, and documentation provided in open-access databases (MalAvi, Genbank, and

25 ARCTOS).
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Introduction

Parasites are influential components of biotic communities, yet the vast majority of parasite
diversity remains undescribed (Dobson et al., 2008; Poulin, 2014). A striking example is
provided by the haemosporidian parasites (Protozoa: Apicomplexa: Haemosporida) that infect
primates, rodents, bats, lizards, and birds. Avian haemosporidians of the genera Haemoproteus,
Plasmodium, and Leucocytozoon (hereafter, ‘avian malaria’) are known to affect bird community
structure (Atkinson et al., 2013; Kulma et al., 2013; Clark, Clegg & Lima, 2014), immune
function (Atkinson et al., 2001; Beadell et al., 2007), telomere length and senescence (Asghar et
al., 2015), survivorship (Atkinson et al., 2000), and fecundity (Knowles, Palinauskas & Sheldon,
2010). Over 250 avian malaria species have been described based on morphology (Valkiiinas,
2005), but mitochondrial (mtDNA) sequences have revealed that at least one order of magnitude
higher diversity exists (Bensch, Hellgren & Pérez-Tris, 2009; Clark, Clegg & Lima, 2014).
Nearly two decades since the introduction of mtDNA ‘barcode’ survey methods (Bensch et al.,
2000), many geographic regions and the vast majority of avian populations remain unsurveyed
for haemosporidians. New community-level surveys of avian malaria will be critical to
understanding their diversity, biogeography, and coevolutionary dynamics.

The need for new descriptive data on avian malaria communities is vital, particularly in
under-sampled regions and habitats, for several reasons. Interacting bird, dipteran, and avian
malaria species underlie the avian malaria transmission cycle (Valkitinas, 2005; LaPointe, Goff
& Atkinson, 2010), and these are likely to be susceptible to range shifts driven by climate
warming. This situation creates the potential for novel host-parasite interactions. When naive
hosts encounter novel malarial strains, the consequences can be severe, as illustrated by the

decimation of native Hawaiian honeycreepers after the introduction of Plasmodium relictum
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(Warner, 1968; van Riper et al., 1986; Atkinson et al., 2000). Furthermore, increased
temperatures can result in multiple reproductive cycles for the dipteran definitive hosts (Robinet
& Roques, 2010), potentially causing increased infection risk or parasitemia, with negative
consequences for bird population growth (Scott et al., 1983; Brown et al., 2001; Garamszegi,
2011). Increased contact between hosts and parasites may also facilitate host-switching, which
appears to be a common mode of lineage diversification in this group (Ricklefs & Fallon, 2002;
Galen & Witt, 2014; Ricklefs et al., 2014). Descriptions of avian malaria communities will
elucidate the ecological niches, host relationships, and host-switching potential of parasite
lineages, providing information that will be critical for wildlife management and will provide a
basis for predicting climate change impacts.

The southwestern United States, in particular, is mostly unsurveyed and is likely to
harbor a distinct avian malaria assemblage, in part because its arid environment imposes
challenges for the dipteran definitive hosts that serve as vectors (Yohannes et al., 2005; Lachish
etal., 2011). The few previous community-level surveys of avian malaria parasites in western
North America have been conducted in California (Martinsen et al., 2008; Walther et al., 2016)
and Alaska (Loiseau et al., 2012; Oakgrove et al., 2014). Here we report on the first community-
level avian malaria survey in New Mexico, USA. New Mexico's arid climate and broad elevation
gradients provide a compelling and untapped system in which to investigate avian malaria
diversity and ecology. We focus specifically on the breeding-season community in the
elevational zone between 2150-2460 meters, which is characterized by the transition from
forests dominated by pifion pine to those dominated by ponderosa pine. Our objectives were: (1)
To compare infection rates for each of the three avian malaria genera (Haemoproteus,

Plasmodium, and Leucocytozoon) among a suite of breeding bird species using microscopy and

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2997v1 | CC BY 4.0 Open Access | rec: 31 May 2017, publ: 31 May 2017




72

73

74

75

76

77

78

79

80

81

82

&3

84

85

86

87

88

&9

90

91

92

93

mtDNA; (2) To describe associations between avian malaria lineages and their host species in a
phylogenetic context; (3) To evaluate lineage-richness (a-diversity) of the avian malaria
community in a previously unsurveyed region and habitat, including the proportion of lineages
that are novel (never found in previous surveys). The survey results that we report are fully
extendable via voucher specimens, frozen tissues, blood smears, parasite images, and

documentation in open-access databases (MalAvi, Genbank, and ARCTOS).

Methods

Field Sampling

We conducted fieldwork during June and July 2016 at three sites in northern New Mexico within
the jurisdiction of the Rio Puerco Field Office of the Bureau of Land Management (BLM), an
agency within the United States Department of Interior. The three sites included: (1) Mesa
Chivato (McKinley and Sandoval Counties), which is on the northern flank of Mt. Taylor; (2) El
Malpais National Conservation Area (Cibola County), which is on the southern side of the Zuni
Mountains; and (3) Elk Springs (Sandoval County), which is on the western slope of the Jemez
Mountains (Fig. 1). Sampling was conducted within a narrow elevational band (2150-2460 m) at
the upper elevational extent of pifion-juniper woodland, where it transitions to ponderosa pine
forest. These pine-dominated habitats were interspersed with patches of grassland and occasional
Gambel oak, Douglas fir, or aspen. Permanent water was scarce in the sampled habitats,
consisting of a tiny, spring-fed creek in the Elk Springs site, a natural spring (Ojo de los Indios)
that has been developed in Mesa Chivato, and a few widely-dispersed watering troughs and

earthen tanks for cattle or wildlife in Mesa Chivato and El Malpais National Conservation Area.
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We focused on the breeding-season community in order to characterize locally-
transmitted parasites. Sampling during the breeding season may also maximize detection because
breeding birds experience an increase in glucocorticoid stress hormones (Romero, 2002), which
can cause relapse of latent avian malaria infections (Applegate, 1970; Valkilnas et al., 2004;
Garvin & Schoech, 2006). Blood smears were prepared at the time of collection and were later
fixed and stained in the lab (details below). Whole avian specimens were preserved on dry ice
and transported to the Museum of Southwestern Biology (MSB) at the University of New
Mexico for specimen preparation and preservation of tissues for genetic analysis. All samples
were collected under Institutional Animal Care and Use Protocol 16-200406-MC and appropriate
state and federal scientific collecting permits (New Mexico Department of Game and Fish
Authorization Number 3217; U.S. Fish and Wildlife Permit Number MB094297-0). Complete
details on each specimen, including precise locality, collection method, and necropsy data are
available in Table S1 and its embedded links to the ARCTOS database. Additionally, all novel
haplotypes, host species infected, and occurrence sites were documented in the MalAvi database

(Bensch, Hellgren & Pérez-Tris, 2009).

Genetic data collection

We extracted genomic DNA from frozen pectoral muscle tissue of 186 avian specimens using a
QIAGEN DNeasy Blood and Tissue Kit, following the manufacturer’s protocol. We used three
nested polymerase chain reaction (PCR) protocols to amplify a 478 base pair (bp) fragment of
cytochrome b (cytb) in the haemosporidian mitochondrial genome. We followed the protocols of
Hellgren, Waldenstrom & Bensch (2004) and Waldenstrom et al. (2004) to maximize detection

of Haemoproteus, Plasmodium, and Leucocytozoon parasites. We used the outer primer pairs
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HaemNFI/HaemNR3 and HaemNF/HaemNR2 with the nested primer pair HaemF/HaemR?2 to
screen for Haemoproteus and Plasmodium. We used the outer primer pair HaemNFI/HaemNR3
with the nested primer pair HaemFL/HaemR2L to screen for Leucocytozoon. Each outer PCR
contained 1.25 U AmpliTaq Gold DNA Polymerase (Applied Biosystems), 1X PCR Buffer II,
2.5 mM MgCl,, 0.2 mM dNTP, 0.5 uM each primer, and 20 ng template DNA in a total reaction
volume of 25 pl. The thermal profile of this reaction was modified following Galen & Witt
(2014) and consisted of an initial 8-min denaturation step at 95°C, followed by 20 cycles of 94°C
for 30 sec, 50°C for 30 sec, and 72°C for 45 sec, with a final 10-min extension at 72°C. The
nested PCR used the outer PCR product as the template (1 ul for Haemoproteus and
Plasmodium; 2 nl for Leucocytozoon). Reaction conditions were the same for nested PCR except
the number of cycles was increased to 35. Negative controls were included in each PCR reaction
to check for contamination. Once identified, positive controls were included in each subsequent
PCR to verify successful DNA amplification. All PCR reactions were visualized on 2% agarose
gels using SYBR Safe Gel Stain (Invitrogen) and a Kodak Gel Logic 200 Digital Imaging
System to identify positive samples and verify the presence of PCR product of the expected
length. All successful amplifications were purified using ExoSap-IT (Affymetrix, Inc.) and
sequenced in both directions using dye terminator cycle sequencing on an ABI 3130 sequencer at

the UNM Molecular Biology Core Facility.

Microscopic examination
Blood smears were air dried in the field and, within six months, were fixed using absolute
methanol and stained for 50 minutes with phosphate-buffered Giemsa solution (7.0 pH). We

examined each blood smear for evidence of haemosporidan blood parasites using either a Leica
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140 DMS5000 B or a Nikon Labophot-2 light microscope, following identification protocol described
141 by Valkiiinas (2005). We scanned at least 10,000 erythrocytes in all viable smears at 1000X

142  magnification using an oil immersion lens. We did not attempt to identify gametocytes to

143 morphospecies; rather, we took digital photographs to archive in the ARCTOS database. We re-
144 screened 76 (45%) of the blood smears to confirm negative or positive identifications after an
145 initial comparison with PCR results.

146

147  Genetic data analysis

148  Parasite sequences were edited and aligned using the default alignment algorithm in Geneious
149  version 8.0 (Biomatters Ltd; Kearse et al., 2012). We compared our sequences to previously

150 sequenced infections in the public databases GenBank (National Center for Biotechnology

151 Information, U.S. National Library of Medicine) and MalAvi (Bensch, Hellgren & Pérez-Tris,
152 2009) using the Basic Local Alignment Search Tool (BLAST). We used the closest match to

153  determine the parasite genus for each haplotype. Studies have indicated that avian malaria

154 sequences differing by a single bp can differ in host association and in transmission (Bensch,

155 Hellgren & Pérez-Tris, 2009). We therefore characterized parasite haplotypes differing by one or
156 more bp from existing sequences in the GenBank and MalAvi databases as novel and named

157 them following MalAvi naming conventions (first three letters of the genus and species of the
158 first bird host species from which the haplotype was sequenced, followed by a haplotype number
159 for that bird species). Some authors have suggested combining haplotypes into lineages based on
160 a 1% divergence rule (Outlaw & Ricklefs, 2014) and considering geographic distributions and

161 hosts infected (Svensson-Coelho et al., 2013). In this study we tentatively treat each haplotype as
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162 aunique lineage; additional sampling will be required to determine whether some of these

163  closely related haplotype groups may represent segregating variants within single populations.
164 We estimated the phylogenetic relationships among New Mexico haemosporidian

165 parasites based on cytb using maximum likelihood in RAXML version 8.2 (Stamatakis, 2014).
166  Given the modest size of the dataset, we analyzed all codon positions as a single partition. We
167 used the GTR+G model of nucleotide substitution and conducted a rapid bootstrap analysis with
168 1000 bootstrap replicates, after which we searched for the best-scoring maximume-likelihood tree.
169  We did not specify an outgroup for the ML analysis and instead rooted the tree at the

170  Leucocytozoon clade based on the relationships for Haemosporida determined using several loci
171 and taxa (Borner et al. 2016). We generated a phylogenetic tree for the avian species sampled
172  using BirdTree.org, which uses calibrated backbone trees of well-supported avian clades and

173  generates trees for all bird species by partially constraining them to their respective clade

174  (expanded methods in Jetz et al., 2012, 2014). We used the phylogeny subsets tool to download a
175 tree including only the species we sampled from the ‘Ericson All Species’ source of trees

176  (Ericson et al., 2006).

177

178  Estimates of lineage diversity

179  We used EstimateS version 9.1.0 (Colwell, 2013) to generate an estimate of undiscovered

180 lineage diversity present in northern New Mexico avian malaria communities. This approach

181 estimates species richness in a community based on rarefaction and extrapolation of reference
182 samples (Colwell et al., 2012). We used counts for each parasite haplotype as individual-based
183 abundance data regardless of host species identity, which should result in a conservative estimate

184  of species richness. Rarefaction was conducted with 100 randomizations and the rarefaction
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curve was extrapolated with unconditional 95% confidence intervals to a total of 400 individuals,

at which point the species richness curve reached an asymptote.

Results
Parasite abundance
We collected 186 individuals from 49 species and representing 19 families of New Mexico birds
(Table S1). Twenty-six species tested positive for one or more of the three genera of avian
malaria parasites. In total, 65 out of the 186 birds were infected based on PCR (34.9%). These
include 39 birds infected with one or more lineages of Haemoproteus (20.9%), 15 birds infected
with Plasmodium (8.0%), and 25 birds infected with Leucocytozoon (13.4%). Two additional
individuals tested positive for either Haemoproteus or Plasmodium in the PCR screening, but we
were unable to identify these lineages to genus because of poor sequence quality. Infection rates
were variable among parasite genera, as well as among host clades and host species (Fig. 2). We
defined co-infection as testing PCR positive for more than one genus of malaria parasite (i.e.
possessing both Leucocytozoon and Haemoproteus/Plasmodium), or testing positive for more
than one haplotype within a parasite genus (i.e. two distinct Haemoproteus or Plasmodium
lineages), either in separate nested PCR reactions or by presence of double peaks in sequence
chromatograms. A total of 18 (9.7%) of individuals were co-infected, including two mixed
infections comprised of Leucocytozoon with Plasmodium, 12 of Leucocytozoon with
Haemoproteus, two of Haemoproteus with Haemoproteus, and one of Plasmodium with
Plasmodium.

We completed microscopic examination for 168 individuals (90%) that had blood smears

of adequate quality. We detected evidence of positive haemosporidian infection in 43 (25.6%) of
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the individuals we screened. The rate of detection was higher using PCR than microscopy (Table
1). In 21 cases, PCR was positive with a negative microscopy result, and in three cases,
microscopy was positive with a negative PCR result. Parasitemia (defined as the proportion of
red blood cells infected out of 10,000) was < 1% for the majority of slides examined. The highest
level of infection was in an individual of Empidonax oberholseri (Tyrannidae) with ~2% of red
blood cells infected. Combining both PCR and microscopy results, 68 birds in total (36.6%) were

infected.

Parasite diversity

We identified 43 distinct haplotypes of avian malaria parasites, including 25 Haemoproteus, six
Plasmodium, and 12 Leucocytozoon haplotypes (Fig. 2; Table S2). Based on published
sequences in the MalAvi and GenBank databases, 28 haplotypes (65%) identified were novel,
which consisted of 18 novel haplotypes for Haemoproteus (meaning 72% of the haplotypes we
found for the genus were novel), two for Plasmodium (33%), and eight for Leucocytozoon
(67%). We identified a total of 83 positive PCR infections, and obtained unambiguous sequences
from 77 of them. We excluded four sequences positively identified as Leucocytozoon and two
sequences for which we were unable to distinguish between Haemoproteus and Plasmodium
from the parasite phylogeny. These infections were included for the calculation of overall and
Leucocytozoon infection rates. Additionally, we found evidence of infection in three juvenile
birds; two with Leucocytozoon and one with a novel Haemoproteus lineage, providing evidence

for local transmission.

Parasite phylogeny and host associations

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2997v1 | CC BY 4.0 Open Access | rec: 31 May 2017, publ: 31 May 2017




231 The parasite phylogeny indicated strong support for the sister group relationship between avian
232 Haemoproteus and Plasmodium (bootstrap value = 100). We recovered monophyletic

233 relationships for each genus with strong to moderate support (bootstrap values: 100 for

234 Leucocytozoon, 85 for Haemoproteus, 67 for Plasmodium). We found evidence for associations
235 between host clades and parasite genera. All Haemoproteus haplotypes were restricted to three
236 avian clades: Passerides clade 1b, Corvides, and Suboscines (Fig. 2). Similarly, all

237  Leucocytozoon haplotypes were restricted to Passerides clade 1b, Passerides clade 2, and

238  Corvides. Plasmodium infections occurred in all avian clades or groups sampled except non-
239 passerines. We found no infections in non-passerine species, which may be due to low sample
240  size (n = 8). Although node-support values were modest, some monophyletic Haemoproteus
241  groups appear to be restricted to single avian clades (Fig. 2). Notably, the clade containing

242 VIRPLUO04 to VIGILO7 included 14 infections, 12 of which were recovered only from avian
243 hosts in the genus Vireo.

244
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Estimates of lineage diversity

A rarefaction curve generated in EstimateS using the 77 infections and 43 haplotypes identified
suggested that the total haplotype richness is ~70 (95% CI: 43-98; Fig. 3). According to this
method, we have identified ~60% of the lineage diversity present at these sites, and sampling a
total of ~240 infections should be sufficient to capture > 95% of the lineage diversity in this
avian malaria community. Based on our PCR-derived infection rate of 34.9%, this projection
suggests we will need to screen ~690 birds, or ~500 additional samples to adequately
characterize the avian malaria community of New Mexico pine forests. This estimate should be

regarded as a conservative minimum estimate of the sampling needed, as explained below.

Discussion

Haemosporidian abundance in New Mexico pine forest breeding bird communities

We detected high levels of infection in the first community-wide survey of blood parasites in
New Mexico breeding birds, with over one third (36.6%) of individuals infected with at least one
of the three parasite genera. This level of infection is comparable to community surveys in other
parts of the U.S. including California (39.8% of 399 birds; Walther et al., 2016), Alaska (53% of
903 birds; Oakgrove et al., 2014), and Missouri (38.6% of 757 birds; Ricklefs et al., 2005).
Community-level surveys in other parts of the world vary widely in avian malaria infection rates,
from 17.4% of 2661 birds in Brazil (excludes Leucocytozoon; Fecchio et al., 2017), to 79.1% of
532 birds in east Africa (Lutz et al., 2015). In our New Mexico study, Haemoproteus was the
most prevalent parasite genus (20.9% of birds infected), followed by Leucocytozoon (13.4%),
then Plasmodium (8.0%). This generic composition was strikingly different from that found by

some previous studies in western North America. For example, Walther et al. (2016) found much
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268 higher Plasmodium infection rates compared to the other two genera in a California songbird
269 community, and Oakgrove et al. (2014) found Leucocytozoon to be the most abundant genus in
270 an Alaska survey. The relative absence of standing water in ponderosa pine forest and pifion-
271 juniper woodland habitats and differences in vector ecology may contribute to these patterns.
272 Interestingly, Elk Springs, the site with a spring-fed creek, had a higher Haemoproteus infection
273 rate and nearly three times the Leucocytozoon infection rate compared to the Mesa Chivato and
274  El Malpais National Conservation Area, but this pattern remains to be confirmed with additional
275 sampling.

276 The variation in prevalence that we detected among host species suggests intriguing

277 avenues for further investigation. We uncovered extremely high parasite prevalence and high
278 levels of co-infection in two Vireo species, Vireo gilvus and V. plumbeus. Of 13 individuals

279  collected, 12 (92%) were positive for either Haemoproteus or Leucocytozoon, and 8 (61.5%)
280 were co-infected. Walther et al. (2016) also identified high infection rates in Vireo gilvus (n =
281 11) and identified V. gilvus as the only study species to be co-infected with more than three

282 parasite lineages. The high prevalence and rate of co-infection indicates that Vireo species will
283 be important to investigate as potential reservoirs for Haemoproteus and Leucocytozoon parasites
284 (e.g., Moens et al., 2016). In contrast, the three species of nuthatches (Sitta pygmaea, S.

285  canadensis, S. carolinensis) in our survey were completely uninfected (n = 12). It is possible that
286 immune function or ecological characteristics such as cavity-nesting (Fecchio et al., 2011;

287 Svensson-Coelho et al., 2013; Lutz et al., 2015) minimize infection in these species.

288 The number of positive infections we detected with PCR differed somewhat from

289 microscopy results, consistent with previous studies that have compared the two methods

290 (Valkiiinas et al., 2008; Moens et al., 2016). Differences between PCR and microscopy detection
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are expected for at least three reasons. First, PCR can identify a positive infection with fewer
than a single parasite per one million host cells (Hellgren, Waldenstrom & Bensch, 2004), thus
these low-level infections are unlikely to be detected using standard microscopic examinations of
10,000-100,000 cells. Second, it is conceivable that infections detected by PCR may be abortive
infections, which would not develop into gametocytes in the blood stream (Valkiiinas et al.,
2013). Third, parasitemia is easiest to identify by microscopy at peak levels of infection
(Atkinson et al., 2000); however, we are unlikely to sample birds experiencing this level of
parasitemia because of reduced activity in infected birds (Knowles, Palinauskas & Sheldon,
2010). Furthermore, detection by PCR appears to be sensitive to tissue type, with higher
detection probability for heart, liver, or pectoral muscle tissue compared to blood (Svensson-
Coelho et al., 2016). We sampled pectoral muscle tissue, for which Svensson-Coelho et al.
(2016) found fewer false negatives compared to other tissue types, although no tissue type had

perfect detection.

Novel parasite diversity and apparent host clade associations

Our survey revealed high diversity of avian malaria parasites in northern New Mexico including
several novel lineages. Of the 43 haplotypes we sampled, 14 have previously been identified and
published in the MalAvi database. Eight of these have only been documented in the U.S., and
five have only been identified within the western U.S., suggesting restricted geographical ranges
within continental North America for at least some lineages. Haemoproteus was the most diverse
lineage in our study with 25 haplotypes identified, 18 of which were novel. Similar to the
variation in patterns of prevalence, other surveys have found either Plasmodium (California:

Walther et al., 2016; South America: Svensson-Coelho et al., 2013; Fecchio et al., 2017) or
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Leucocytozoon (Alaska: Oakgrove et al., 2014; eastern Africa: Lutz et al., 2015) to have higher
diversity compared to other genera. We found more novel lineages (28 total, or 65%) than
similar community-level surveys in California (40% novel; Walther et al., 2016) and Alaska
(49% novel; Oakgrove et al., 2014) despite having a much smaller sample size thus far (186
birds compared to 399 and 913; 4649 species sampled in all three surveys).

The apparent host breadth and geographic range of the lineages we sampled provides
evidence for some generalist parasites, mostly within Plasmodium. For example, LAIRIO1 was
found in four different avian clades in our study, and has previously been reported in the
Philippines, Ecuador, and Mexico (Silva-Iturriza, Ketmaier & Tiedemann, 2012; Levin et al.,
2013). We found one occurrence of WW3, which is distributed across Africa, Europe, and other
parts of the U.S. (Waldenstrdm et al., 2002; Bensch & Akesson, 2003; Hellgren et al., 2007).
One Haemoproteus lineage, SIAMEXO01, also appears to be wide-ranging across the U.S. and
has been identified in several avian hosts (Ricklefs & Fallon, 2002; Levin et al., 2013). The
majority of avian malaria lineages found in our study, however, seem to be host specific at the
species or clade level. One example includes the six Haemoproteus and three Leucocytozoon
lineages that were specific to Vireo species, three of which were also identified in Vireo species
in California (Walther et al., 2016). Among the major host clades, lineage diversity was highest
for Passerides clade 1b and Corvides. Most Haemoproteus and Leucocytozoon lineages were
sampled from a single avian host clade, but additional sampling is needed to confirm the patterns
of host specificity in New Mexico pine forest breeding bird communities.

Our estimates of total avian malaria lineage diversity indicate that a substantial number of
haplotypes, ~25, remain to be sampled in these communities; this is likely to be an

underestimate. Although there was clearly some host specificity, we were not able to account for
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host-species identity in our rarefaction procedure in EstimateS. Our sampling of host species was
uneven and biased toward common species. Considering the preponderance of unsampled and
under-sampled bird species in the community, the avian malaria diversity in New Mexico pine
forests is likely much higher than the estimate presented here. For the same reasons, uneven
sampling among the three sites may have exacerbated our underestimation of diversity,

particularly if there is species-turnover among mountain ranges.

Conclusions

We uncovered a diverse community of avian malaria parasites in New Mexico pine forests, with
the majority of infections representing novel mtDNA haplotypes. We found evidence for host-
specificity at the level of avian species and clades. There was also striking variation in infection
rates among avian species and clades, typified by near universal infection of vireos and absence
of infection in nuthatches. This study underscores the need for further sampling in southwestern
North America in order to discover the diversity of ecologically important symbionts that are
interacting with birds. Follow-up studies should extend on the open-data provided here to test
our extrapolation of the total avian malaria haplotype diversity, and to determine the extent to
which the avian malaria community varies among neighboring ‘sky island’ mountain ranges or at

elevations above or below the zone sampled here.
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Table 1 Positive infections identified from microscopy and PCR. Total screened indicates the
number of individual birds screened by each method. Of those screened, the number and

proportion of individuals that were positive are reported.

Haemoproteus/Plasmodium Leucocytozoon Overall
Total o o o
Method screened No. positive (%) No. positive (%) No. positive (%)
Microscopy 168 40 (23.8%) 7 (4.2%) 43 (25.6%)
PCR 186 55 (29.6%) 25 (13.4%) 65 (34.9%)
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562 Figure 1 Map of study areas and 2016 sampling localities. Fieldwork was conducted in three
563 sites located in pifion-juniper and ponderosa pine woodland habitats (elevational range: 2150-
564 2460 meters). The number of individuals found positive for Haemoproteus (H), Plasmodium (P),
565 and Leucocytozoon (L) is shown. Elevation is based on the SRTM Digital Elevation Database

566 (Jarvis et al., 2008).
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Figure 2 Phylogeny of haemosporidian haplotypes found in New Mexico birds. Columns represent host clades (left) and host species
(right). Dotted line indicates non-monophyly of non-passerines, and clade names are based on the names and topology from Moyle et
al. (2016). Host species phylogeny was generated from BirdTree.org and the colors of host clade branches correspond to host species
in each clade. Bar plots depict the proportion of individuals infected for each parasite genus: Haemoproteus (turquoise), Plasmodium
(dark brown), Leucocytozoon (light brown). Stars indicate novel malaria haplotypes. The parasite phylogeny was estimated in RAXML
and branch labels indicate bootstrap values. The table is shaded to indicate which clade/species was infected with each lineage and the

number of birds infected.
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Figure 3 Estimate of malaria lineage diversity in northern New Mexico based on EstimateS
rarefaction and extrapolation using 77 avian malaria infections and 43 distinct haplotypes. The
point indicates the reference sample, solid line the rarefaction, and dotted line the extrapolation.
The analysis suggests that sampling approximately 240 total infections would capture > 95% of
the haemosporidian lineage diversity in this community. The total haplotype richness is

estimated to be 70 (95% CI: 43-98).
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