A peer-reviewed version of this preprint was published in PeerJ on 17 August 2017.

<u>View the peer-reviewed version</u> (peerj.com/articles/3700), which is the preferred citable publication unless you specifically need to cite this preprint.

Marroquin-Flores RA, Williamson JL, Chavez AN, Bauernfeind SM, Baumann MJ, Gadek CR, Johnson AB, McCullough JM, Witt CC, Barrow LN. 2017. Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests. PeerJ 5:e3700 https://doi.org/10.7717/peerj.3700

Diversity, abundance, and host relationships in the avian malaria community of New Mexico pine forests

Rosario A. Marroquin-Flores 1 , Jessie L. Williamson 1 , Andrea N. Chavez 1,2 , Selina M. Bauernfeind 1 , Matthew J. Baumann 1 , Chauncey R. Gadek 1 , Andrew B. Johnson 1 , Jenna M. McCullough 1 , Christopher C. Witt $^{\text{Corresp.}}$, 1 , Lisa N. Barrow $^{\text{Corresp.}}$

Corresponding Authors: Christopher C. Witt, Lisa N. Barrow Email address: cwitt@unm.edu, Inbarrow@unm.edu

Avian malaria parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) affect bird demography, distribution limits, and community structure, yet most bird communities and populations remain unsurveyed. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe the diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2150-2460 meters). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian malaria genera. The combined infection rate was 36.6%, with the highest infection rate for Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium). When compared to all previously known lineages in the MalAvi and GenBank databases, 65% (28) of the haplotypes that we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera. *Haemoproteus* and *Leucocytozoon* were each restricted to three avian host-clades or groups (out of six), while *Plasmodium* occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian malaria diversity to be 70 haplotypes (95% CI: 43-98); thus, we may have already sampled ~60% of the diversity of avian malaria in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in open-access databases (MalAvi, Genbank, and ARCTOS).

¹ Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, United States

² Bureau of Land Management Rio Puerco Field Office, Rio Puerco, NM, United States

Diversity, abundance, and host relationships in the avian malaria community of New Mexico pine forests

Short title: Avian malaria diversity in New Mexico

Rosario A. Marroquin-Flores¹, Jessie L. Williamson¹, Andrea N. Chavez^{1,2}, Selina M. Bauernfeind¹, Matthew J. Baumann¹, Chauncey R. Gadek¹, Andrew B. Johnson¹, Jenna M.

McCullough¹, Christopher C. Witt¹, Lisa N. Barrow¹

¹Museum of Southwestern Biology and Department of Biology, University of New Mexico,

Albuquerque, New Mexico, USA

²Bureau of Land Management Rio Puerco Field Office, Rio Puerco, New Mexico, USA

Corresponding authors:

Lisa N. Barrow (Inbarrow@unm.edu), Christopher C. Witt (cwitt@unm.edu)

Abstract

2	Avian malaria parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) affect bird
3	demography, distribution limits, and community structure, yet most bird communities and
4	populations remain unsurveyed. We conducted a community-level survey of these vector-
5	transmitted parasites in New Mexico, USA, to describe the diversity, abundance, and host
6	associations. We focused on the breeding-bird community in the transition zone between piñon-
7	juniper woodland and ponderosa pine forests (elevational range: 2150-2460 meters). We
8	screened 186 birds representing 49 species using both standard PCR and microscopy techniques
9	to detect infections of all three avian malaria genera. The combined infection rate was 36.6%,
10	with the highest infection rate for <i>Haemoproteus</i> (20.9%), followed by <i>Leucocytozoon</i> (13.4%),
11	then <i>Plasmodium</i> (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes
12	(25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium). When compared to all previously known
13	lineages in the MalAvi and GenBank databases, 65% (28) of the haplotypes that we recovered
14	were novel. We found evidence for host specificity at the avian clade and species level, but this
15	specificity was variable among parasite genera. Haemoproteus and Leucocytozoon were each
16	restricted to three avian host-clades or groups (out of six), while Plasmodium occurred in all
17	groups except non-passerines. We found striking variation in infection rate among host species,
18	with nearly universal infection among vireos and no infection among nuthatches. Using
19	rarefaction and extrapolation, we estimated the total avian malaria diversity to be 70 haplotypes
20	(95% CI: 43–98); thus, we may have already sampled \sim 60% of the diversity of avian malaria in
21	New Mexico pine forests. It is possible that future studies will find higher diversity in
22	microhabitats or host species that are under-sampled or unsampled in the present study.
23	Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears,

- 24 parasite images, and documentation provided in open-access databases (MalAvi, Genbank, and
- 25 ARCTOS).

Introduction

26

27 Parasites are influential components of biotic communities, yet the vast majority of parasite 28 diversity remains undescribed (Dobson et al., 2008; Poulin, 2014). A striking example is 29 provided by the haemosporidian parasites (Protozoa: Apicomplexa: Haemosporida) that infect 30 primates, rodents, bats, lizards, and birds. Avian haemosporidians of the genera *Haemoproteus*, 31 *Plasmodium*, and *Leucocytozoon* (hereafter, 'avian malaria') are known to affect bird community 32 structure (Atkinson et al., 2013; Kulma et al., 2013; Clark, Clegg & Lima, 2014), immune 33 function (Atkinson et al., 2001; Beadell et al., 2007), telomere length and senescence (Asghar et 34 al., 2015), survivorship (Atkinson et al., 2000), and fecundity (Knowles, Palinauskas & Sheldon, 35 2010). Over 250 avian malaria species have been described based on morphology (Valkiūnas, 36 2005), but mitochondrial (mtDNA) sequences have revealed that at least one order of magnitude 37 higher diversity exists (Bensch, Hellgren & Pérez-Tris, 2009; Clark, Clegg & Lima, 2014). 38 Nearly two decades since the introduction of mtDNA 'barcode' survey methods (Bensch et al., 39 2000), many geographic regions and the vast majority of avian populations remain unsurveyed 40 for haemosporidians. New community-level surveys of avian malaria will be critical to 41 understanding their diversity, biogeography, and coevolutionary dynamics. 42 The need for new descriptive data on avian malaria communities is vital, particularly in 43 under-sampled regions and habitats, for several reasons. Interacting bird, dipteran, and avian 44 malaria species underlie the avian malaria transmission cycle (Valkiūnas, 2005; LaPointe, Goff 45 & Atkinson, 2010), and these are likely to be susceptible to range shifts driven by climate warming. This situation creates the potential for novel host-parasite interactions. When naïve 46 47 hosts encounter novel malarial strains, the consequences can be severe, as illustrated by the 48 decimation of native Hawaiian honeycreepers after the introduction of *Plasmodium relictum*

49 (Warner, 1968; van Riper et al., 1986; Atkinson et al., 2000). Furthermore, increased 50 temperatures can result in multiple reproductive cycles for the dipteran definitive hosts (Robinet 51 & Roques, 2010), potentially causing increased infection risk or parasitemia, with negative 52 consequences for bird population growth (Scott et al., 1983; Brown et al., 2001; Garamszegi, 53 2011). Increased contact between hosts and parasites may also facilitate host-switching, which 54 appears to be a common mode of lineage diversification in this group (Ricklefs & Fallon, 2002; 55 Galen & Witt, 2014; Ricklefs et al., 2014). Descriptions of avian malaria communities will elucidate the ecological niches, host relationships, and host-switching potential of parasite 56 57 lineages, providing information that will be critical for wildlife management and will provide a 58 basis for predicting climate change impacts. 59 The southwestern United States, in particular, is mostly unsurveyed and is likely to 60 harbor a distinct avian malaria assemblage, in part because its arid environment imposes 61 challenges for the dipteran definitive hosts that serve as vectors (Yohannes et al., 2005; Lachish 62 et al., 2011). The few previous community-level surveys of avian malaria parasites in western 63 North America have been conducted in California (Martinsen et al., 2008; Walther et al., 2016) 64 and Alaska (Loiseau et al., 2012; Oakgrove et al., 2014). Here we report on the first community-65 level avian malaria survey in New Mexico, USA. New Mexico's arid climate and broad elevation gradients provide a compelling and untapped system in which to investigate avian malaria 66 67 diversity and ecology. We focus specifically on the breeding-season community in the 68 elevational zone between 2150–2460 meters, which is characterized by the transition from 69 forests dominated by piñon pine to those dominated by ponderosa pine. Our objectives were: (1) 70 To compare infection rates for each of the three avian malaria genera (*Haemoproteus*, 71 *Plasmodium*, and *Leucocytozoon*) among a suite of breeding bird species using microscopy and

72	mtDNA; (2) To describe associations between avian malaria lineages and their host species in a
73	phylogenetic context; (3) To evaluate lineage-richness (α -diversity) of the avian malaria
74	community in a previously unsurveyed region and habitat, including the proportion of lineages
75	that are novel (never found in previous surveys). The survey results that we report are fully
76	extendable via voucher specimens, frozen tissues, blood smears, parasite images, and
77	documentation in open-access databases (MalAvi, Genbank, and ARCTOS).
78	
79	Methods
80	Field Sampling
81	We conducted fieldwork during June and July 2016 at three sites in northern New Mexico within
82	the jurisdiction of the Rio Puerco Field Office of the Bureau of Land Management (BLM), an
83	agency within the United States Department of Interior. The three sites included: (1) Mesa
84	Chivato (McKinley and Sandoval Counties), which is on the northern flank of Mt. Taylor; (2) El
85	Malpais National Conservation Area (Cibola County), which is on the southern side of the Zuni
86	Mountains; and (3) Elk Springs (Sandoval County), which is on the western slope of the Jemez
87	Mountains (Fig. 1). Sampling was conducted within a narrow elevational band (2150–2460 m) at
88	the upper elevational extent of piñon-juniper woodland, where it transitions to ponderosa pine
89	forest. These pine-dominated habitats were interspersed with patches of grassland and occasional
90	Gambel oak, Douglas fir, or aspen. Permanent water was scarce in the sampled habitats,
91	consisting of a tiny, spring-fed creek in the Elk Springs site, a natural spring (Ojo de los Indios)
92	that has been developed in Mesa Chivato, and a few widely-dispersed watering troughs and
93	earthen tanks for cattle or wildlife in Mesa Chivato and El Malpais National Conservation Area.

95

96

97

98

99

100

101

102

103

104

105

106

107

We focused on the breeding-season community in order to characterize locallytransmitted parasites. Sampling during the breeding season may also maximize detection because breeding birds experience an increase in glucocorticoid stress hormones (Romero, 2002), which can cause relapse of latent avian malaria infections (Applegate, 1970; Valkiūnas et al., 2004; Garvin & Schoech, 2006). Blood smears were prepared at the time of collection and were later fixed and stained in the lab (details below). Whole avian specimens were preserved on dry ice and transported to the Museum of Southwestern Biology (MSB) at the University of New Mexico for specimen preparation and preservation of tissues for genetic analysis. All samples were collected under Institutional Animal Care and Use Protocol 16-200406-MC and appropriate state and federal scientific collecting permits (New Mexico Department of Game and Fish Authorization Number 3217; U.S. Fish and Wildlife Permit Number MB094297-0). Complete details on each specimen, including precise locality, collection method, and necropsy data are available in Table S1 and its embedded links to the ARCTOS database. Additionally, all novel haplotypes, host species infected, and occurrence sites were documented in the MalAvi database (Bensch, Hellgren & Pérez-Tris, 2009). Genetic data collection We extracted genomic DNA from frozen pectoral muscle tissue of 186 avian specimens using a

109

110

111

112

113

114

115

116

108

We extracted genomic DNA from frozen pectoral muscle tissue of 186 avian specimens using a QIAGEN DNeasy Blood and Tissue Kit, following the manufacturer's protocol. We used three nested polymerase chain reaction (PCR) protocols to amplify a 478 base pair (bp) fragment of cytochrome b (*cytb*) in the haemosporidian mitochondrial genome. We followed the protocols of Hellgren, Waldenström & Bensch (2004) and Waldenström et al. (2004) to maximize detection of *Haemoproteus*, *Plasmodium*, and *Leucocytozoon* parasites. We used the outer primer pairs

117 HaemNFI/HaemNR3 and HaemNF/HaemNR2 with the nested primer pair HaemF/HaemR2 to 118 screen for Haemoproteus and Plasmodium. We used the outer primer pair HaemNFI/HaemNR3 119 with the nested primer pair HaemFL/HaemR2L to screen for Leucocytozoon. Each outer PCR 120 contained 1.25 U AmpliTag Gold DNA Polymerase (Applied Biosystems), 1X PCR Buffer II, 121 2.5 mM MgCl₂, 0.2 mM dNTP, 0.5 µM each primer, and 20 ng template DNA in a total reaction 122 volume of 25 µl. The thermal profile of this reaction was modified following Galen & Witt 123 (2014) and consisted of an initial 8-min denaturation step at 95°C, followed by 20 cycles of 94°C 124 for 30 sec, 50°C for 30 sec, and 72°C for 45 sec, with a final 10-min extension at 72°C. The 125 nested PCR used the outer PCR product as the template (1 µl for Haemoproteus and 126 Plasmodium; 2 µl for Leucocytozoon). Reaction conditions were the same for nested PCR except 127 the number of cycles was increased to 35. Negative controls were included in each PCR reaction 128 to check for contamination. Once identified, positive controls were included in each subsequent 129 PCR to verify successful DNA amplification. All PCR reactions were visualized on 2% agarose 130 gels using SYBR Safe Gel Stain (Invitrogen) and a Kodak Gel Logic 200 Digital Imaging 131 System to identify positive samples and verify the presence of PCR product of the expected 132 length. All successful amplifications were purified using ExoSap-IT (Affymetrix, Inc.) and 133 sequenced in both directions using dye terminator cycle sequencing on an ABI 3130 sequencer at 134 the UNM Molecular Biology Core Facility. 135 136 Microscopic examination 137 Blood smears were air dried in the field and, within six months, were fixed using absolute 138 methanol and stained for 50 minutes with phosphate-buffered Giemsa solution (7.0 pH). We

examined each blood smear for evidence of haemosporidan blood parasites using either a Leica

DM5000 B or a Nikon Labophot-2 light microscope, following identification protocol described by Valkiūnas (2005). We scanned at least 10,000 erythrocytes in all viable smears at 1000X magnification using an oil immersion lens. We did not attempt to identify gametocytes to morphospecies; rather, we took digital photographs to archive in the ARCTOS database. We rescreened 76 (45%) of the blood smears to confirm negative or positive identifications after an initial comparison with PCR results.

Genetic data analysis

Parasite sequences were edited and aligned using the default alignment algorithm in Geneious version 8.0 (Biomatters Ltd; Kearse et al., 2012). We compared our sequences to previously sequenced infections in the public databases GenBank (National Center for Biotechnology Information, U.S. National Library of Medicine) and MalAvi (Bensch, Hellgren & Pérez-Tris, 2009) using the Basic Local Alignment Search Tool (BLAST). We used the closest match to determine the parasite genus for each haplotype. Studies have indicated that avian malaria sequences differing by a single bp can differ in host association and in transmission (Bensch, Hellgren & Pérez-Tris, 2009). We therefore characterized parasite haplotypes differing by one or more bp from existing sequences in the GenBank and MalAvi databases as novel and named them following MalAvi naming conventions (first three letters of the genus and species of the first bird host species from which the haplotype was sequenced, followed by a haplotype number for that bird species). Some authors have suggested combining haplotypes into lineages based on a 1% divergence rule (Outlaw & Ricklefs, 2014) and considering geographic distributions and hosts infected (Svensson-Coelho et al., 2013). In this study we tentatively treat each haplotype as

a unique lineage; additional sampling will be required to determine whether some of these closely related haplotype groups may represent segregating variants within single populations.

We estimated the phylogenetic relationships among New Mexico haemosporidian parasites based on *cytb* using maximum likelihood in RAxML version 8.2 (Stamatakis, 2014). Given the modest size of the dataset, we analyzed all codon positions as a single partition. We used the GTR+G model of nucleotide substitution and conducted a rapid bootstrap analysis with 1000 bootstrap replicates, after which we searched for the best-scoring maximum-likelihood tree. We did not specify an outgroup for the ML analysis and instead rooted the tree at the *Leucocytozoon* clade based on the relationships for Haemosporida determined using several loci and taxa (Borner et al. 2016). We generated a phylogenetic tree for the avian species sampled using BirdTree.org, which uses calibrated backbone trees of well-supported avian clades and generates trees for all bird species by partially constraining them to their respective clade (expanded methods in Jetz et al., 2012, 2014). We used the phylogeny subsets tool to download a tree including only the species we sampled from the 'Ericson All Species' source of trees (Ericson et al., 2006).

Estimates of lineage diversity

We used EstimateS version 9.1.0 (Colwell, 2013) to generate an estimate of undiscovered lineage diversity present in northern New Mexico avian malaria communities. This approach estimates species richness in a community based on rarefaction and extrapolation of reference samples (Colwell et al., 2012). We used counts for each parasite haplotype as individual-based abundance data regardless of host species identity, which should result in a conservative estimate of species richness. Rarefaction was conducted with 100 randomizations and the rarefaction

curve was extrapolated with unconditional 95% confidence intervals to a total of 400 individuals, at which point the species richness curve reached an asymptote.

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

185

186

Results

Parasite abundance

We collected 186 individuals from 49 species and representing 19 families of New Mexico birds (Table S1). Twenty-six species tested positive for one or more of the three genera of avian malaria parasites. In total, 65 out of the 186 birds were infected based on PCR (34.9%). These include 39 birds infected with one or more lineages of *Haemoproteus* (20.9%), 15 birds infected with *Plasmodium* (8.0%), and 25 birds infected with *Leucocytozoon* (13.4%). Two additional individuals tested positive for either *Haemoproteus* or *Plasmodium* in the PCR screening, but we were unable to identify these lineages to genus because of poor sequence quality. Infection rates were variable among parasite genera, as well as among host clades and host species (Fig. 2). We defined co-infection as testing PCR positive for more than one genus of malaria parasite (i.e. possessing both Leucocytozoon and Haemoproteus/Plasmodium), or testing positive for more than one haplotype within a parasite genus (i.e. two distinct *Haemoproteus* or *Plasmodium* lineages), either in separate nested PCR reactions or by presence of double peaks in sequence chromatograms. A total of 18 (9.7%) of individuals were co-infected, including two mixed infections comprised of Leucocytozoon with Plasmodium, 12 of Leucocytozoon with Haemoproteus, two of Haemoproteus with Haemoproteus, and one of Plasmodium with Plasmodium.

We completed microscopic examination for 168 individuals (90%) that had blood smears of adequate quality. We detected evidence of positive haemosporidian infection in 43 (25.6%) of

208 the individuals we screened. The rate of detection was higher using PCR than microscopy (Table 209 1). In 21 cases, PCR was positive with a negative microscopy result, and in three cases, 210 microscopy was positive with a negative PCR result. Parasitemia (defined as the proportion of 211 red blood cells infected out of 10,000) was < 1% for the majority of slides examined. The highest 212 level of infection was in an individual of *Empidonax oberholseri* (Tyrannidae) with $\sim 2\%$ of red 213 blood cells infected. Combining both PCR and microscopy results, 68 birds in total (36.6%) were 214 infected. 215 216 *Parasite diversity* 217 We identified 43 distinct haplotypes of avian malaria parasites, including 25 Haemoproteus, six 218 *Plasmodium*, and 12 *Leucocytozoon* haplotypes (Fig. 2; Table S2). Based on published 219 sequences in the MalAvi and GenBank databases, 28 haplotypes (65%) identified were novel, 220 which consisted of 18 novel haplotypes for *Haemoproteus* (meaning 72% of the haplotypes we found for the genus were novel), two for Plasmodium (33%), and eight for Leucocytozoon 221 222 (67%). We identified a total of 83 positive PCR infections, and obtained unambiguous sequences 223 from 77 of them. We excluded four sequences positively identified as *Leucocytozoon* and two 224 sequences for which we were unable to distinguish between *Haemoproteus* and *Plasmodium* 225 from the parasite phylogeny. These infections were included for the calculation of overall and 226 Leucocytozoon infection rates. Additionally, we found evidence of infection in three juvenile 227 birds; two with *Leucocytozoon* and one with a novel *Haemoproteus* lineage, providing evidence 228 for local transmission. 229

230 Parasite phylogeny and host associations

231	The parasite phylogeny indicated strong support for the sister group relationship between avian
232	Haemoproteus and Plasmodium (bootstrap value = 100). We recovered monophyletic
233	relationships for each genus with strong to moderate support (bootstrap values: 100 for
234	Leucocytozoon, 85 for Haemoproteus, 67 for Plasmodium). We found evidence for associations
235	between host clades and parasite genera. All <i>Haemoproteus</i> haplotypes were restricted to three
236	avian clades: Passerides clade 1b, Corvides, and Suboscines (Fig. 2). Similarly, all
237	Leucocytozoon haplotypes were restricted to Passerides clade 1b, Passerides clade 2, and
238	Corvides. Plasmodium infections occurred in all avian clades or groups sampled except non-
239	passerines. We found no infections in non-passerine species, which may be due to low sample
240	size (n = 8). Although node-support values were modest, some monophyletic <i>Haemoproteus</i>
241	groups appear to be restricted to single avian clades (Fig. 2). Notably, the clade containing
242	VIRPLU04 to VIGIL07 included 14 infections, 12 of which were recovered only from avian
243	hosts in the genus Vireo.
244	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2997v1 | CC BY 4.0 Open Access | rec: 31 May 2017, publ: 31 May 2017

261

245 Estimates of lineage diversity 246 A rarefaction curve generated in EstimateS using the 77 infections and 43 haplotypes identified suggested that the total haplotype richness is ~70 (95% CI: 43–98; Fig. 3). According to this 247 248 method, we have identified ~60% of the lineage diversity present at these sites, and sampling a 249 total of ~240 infections should be sufficient to capture > 95% of the lineage diversity in this 250 avian malaria community. Based on our PCR-derived infection rate of 34.9%, this projection suggests we will need to screen ~690 birds, or ~500 additional samples to adequately 252 characterize the avian malaria community of New Mexico pine forests. This estimate should be 253 regarded as a conservative minimum estimate of the sampling needed, as explained below. 254 255 **Discussion** 256 Haemosporidian abundance in New Mexico pine forest breeding bird communities 257 We detected high levels of infection in the first community-wide survey of blood parasites in 258 New Mexico breeding birds, with over one third (36.6%) of individuals infected with at least one 259 of the three parasite genera. This level of infection is comparable to community surveys in other 260 parts of the U.S. including California (39.8% of 399 birds; Walther et al., 2016), Alaska (53% of 903 birds; Oakgrove et al., 2014), and Missouri (38.6% of 757 birds; Ricklefs et al., 2005). 262 Community-level surveys in other parts of the world vary widely in avian malaria infection rates, 263 from 17.4% of 2661 birds in Brazil (excludes *Leucocytozoon*; Fecchio et al., 2017), to 79.1% of 532 birds in east Africa (Lutz et al., 2015). In our New Mexico study, Haemoproteus was the 264 most prevalent parasite genus (20.9% of birds infected), followed by *Leucocytozoon* (13.4%), 265 266 then *Plasmodium* (8.0%). This generic composition was strikingly different from that found by 267 some previous studies in western North America. For example, Walther et al. (2016) found much

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

higher *Plasmodium* infection rates compared to the other two genera in a California songbird community, and Oakgrove et al. (2014) found Leucocytozoon to be the most abundant genus in an Alaska survey. The relative absence of standing water in ponderosa pine forest and piñonjuniper woodland habitats and differences in vector ecology may contribute to these patterns. Interestingly, Elk Springs, the site with a spring-fed creek, had a higher *Haemoproteus* infection rate and nearly three times the *Leucocytozoon* infection rate compared to the Mesa Chivato and El Malpais National Conservation Area, but this pattern remains to be confirmed with additional sampling. The variation in prevalence that we detected among host species suggests intriguing avenues for further investigation. We uncovered extremely high parasite prevalence and high levels of co-infection in two Vireo species, Vireo gilvus and V. plumbeus. Of 13 individuals collected, 12 (92%) were positive for either *Haemoproteus* or *Leucocytozoon*, and 8 (61.5%) were co-infected. Walther et al. (2016) also identified high infection rates in Vireo gilvus (n = 11) and identified V. gilvus as the only study species to be co-infected with more than three parasite lineages. The high prevalence and rate of co-infection indicates that *Vireo* species will be important to investigate as potential reservoirs for *Haemoproteus* and *Leucocytozoon* parasites (e.g., Möens et al., 2016). In contrast, the three species of nuthatches (Sitta pygmaea, S. canadensis, S. carolinensis) in our survey were completely uninfected (n = 12). It is possible that immune function or ecological characteristics such as cavity-nesting (Feechio et al., 2011; Svensson-Coelho et al., 2013; Lutz et al., 2015) minimize infection in these species. The number of positive infections we detected with PCR differed somewhat from microscopy results, consistent with previous studies that have compared the two methods (Valkiūnas et al., 2008; Möens et al., 2016). Differences between PCR and microscopy detection

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

are expected for at least three reasons. First, PCR can identify a positive infection with fewer than a single parasite per one million host cells (Hellgren, Waldenström & Bensch, 2004), thus these low-level infections are unlikely to be detected using standard microscopic examinations of 10,000–100,000 cells. Second, it is conceivable that infections detected by PCR may be abortive infections, which would not develop into gametocytes in the blood stream (Valkiūnas et al., 2013). Third, parasitemia is easiest to identify by microscopy at peak levels of infection (Atkinson et al., 2000); however, we are unlikely to sample birds experiencing this level of parasitemia because of reduced activity in infected birds (Knowles, Palinauskas & Sheldon, 2010). Furthermore, detection by PCR appears to be sensitive to tissue type, with higher detection probability for heart, liver, or pectoral muscle tissue compared to blood (Svensson-Coelho et al., 2016). We sampled pectoral muscle tissue, for which Svensson-Coelho et al. (2016) found fewer false negatives compared to other tissue types, although no tissue type had perfect detection. Novel parasite diversity and apparent host clade associations Our survey revealed high diversity of avian malaria parasites in northern New Mexico including several novel lineages. Of the 43 haplotypes we sampled, 14 have previously been identified and published in the MalAvi database. Eight of these have only been documented in the U.S., and five have only been identified within the western U.S., suggesting restricted geographical ranges within continental North America for at least some lineages. *Haemoproteus* was the most diverse lineage in our study with 25 haplotypes identified, 18 of which were novel. Similar to the variation in patterns of prevalence, other surveys have found either *Plasmodium* (California: Walther et al., 2016; South America: Svensson-Coelho et al., 2013; Fecchio et al., 2017) or

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Leucocytozoon (Alaska: Oakgrove et al., 2014; eastern Africa: Lutz et al., 2015) to have higher diversity compared to other genera. We found more novel lineages (28 total, or 65%) than similar community-level surveys in California (40% novel; Walther et al., 2016) and Alaska (49% novel; Oakgrove et al., 2014) despite having a much smaller sample size thus far (186 birds compared to 399 and 913; 46–49 species sampled in all three surveys). The apparent host breadth and geographic range of the lineages we sampled provides evidence for some generalist parasites, mostly within *Plasmodium*. For example, LAIRI01 was found in four different avian clades in our study, and has previously been reported in the Philippines, Ecuador, and Mexico (Silva-Iturriza, Ketmaier & Tiedemann, 2012; Levin et al., 2013). We found one occurrence of WW3, which is distributed across Africa, Europe, and other parts of the U.S. (Waldenström et al., 2002; Bensch & Åkesson, 2003; Hellgren et al., 2007). One *Haemoproteus* lineage, SIAMEX01, also appears to be wide-ranging across the U.S. and has been identified in several avian hosts (Ricklefs & Fallon, 2002; Levin et al., 2013). The majority of avian malaria lineages found in our study, however, seem to be host specific at the species or clade level. One example includes the six *Haemoproteus* and three *Leucocytozoon* lineages that were specific to Vireo species, three of which were also identified in Vireo species in California (Walther et al., 2016). Among the major host clades, lineage diversity was highest for Passerides clade 1b and Corvides. Most *Haemoproteus* and *Leucocytozoon* lineages were sampled from a single avian host clade, but additional sampling is needed to confirm the patterns of host specificity in New Mexico pine forest breeding bird communities. Our estimates of total avian malaria lineage diversity indicate that a substantial number of haplotypes, ~25, remain to be sampled in these communities; this is likely to be an underestimate. Although there was clearly some host specificity, we were not able to account for

host-species identity in our rarefaction procedure in EstimateS. Our sampling of host species was uneven and biased toward common species. Considering the preponderance of unsampled and under-sampled bird species in the community, the avian malaria diversity in New Mexico pine forests is likely much higher than the estimate presented here. For the same reasons, uneven sampling among the three sites may have exacerbated our underestimation of diversity, particularly if there is species-turnover among mountain ranges.

Conclusions

We uncovered a diverse community of avian malaria parasites in New Mexico pine forests, with the majority of infections representing novel mtDNA haplotypes. We found evidence for host-specificity at the level of avian species and clades. There was also striking variation in infection rates among avian species and clades, typified by near universal infection of vireos and absence of infection in nuthatches. This study underscores the need for further sampling in southwestern North America in order to discover the diversity of ecologically important symbionts that are interacting with birds. Follow-up studies should extend on the open-data provided here to test our extrapolation of the total avian malaria haplotype diversity, and to determine the extent to which the avian malaria community varies among neighboring 'sky island' mountain ranges or at elevations above or below the zone sampled here.

Acknowledgements

We thank Michael J. Andersen, Celina Aguilar, Becky Bixby, Sara V. Brant, Mariel Campbell, Spencer Galen, and Xena Mapel for support; George Rosenberg of the Molecular Biology Core Facility at UNM for assistance with sequencing; the U.S. Fish and Wildlife Service and New

- 360 Mexico Department of Game and Fish for providing permits; and the Bureau of Land
- 361 Management for logistical support and site access.

References

362

383

384

- Applegate JE. 1970. Population Changes in Latent Avian Malaria Infections Associated with Season and Corticosterone Treatment. *Journal of Parasitology* 56:439–443.
- Asghar M., Hasselquist D., Hansson B., Zehtindjiev P., Westerdahl H., Bensch S. 2015. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. *Science* 347:436–438. DOI: 10.1126/science.1261121.
- Atkinson CT., Dusek RJ., Woods KL., Iko WM. 2000. Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi. *Journal of Wildlife Diseases* 36:197–204. DOI: 10.7589/0090-3558-36.2.197.
- Atkinson CT., Lease JK., Drake BM., Shema NP. 2001. Pathogenicity, serological responses, and diagnosis of experimental and natural malarial infections in native hawaiian thrushes. The Condor 103:209–218. DOI: 10.1650/0010-5422(2001)103[0209:psrado]2.0.co;2.
- Atkinson CT., Saili KS., Utzurrum RB., Jarvi SI. 2013. Experimental evidence for evolved tolerance to avian malaria in a wild population of low elevation Hawai'i 'Amakihi (Hemignathus virens). *EcoHealth* 10:366–375. DOI: 10.1007/s10393-013-0899-2.
- Beadell JS., Atkins C., Cashion E., Jonker M., Fleischer RC. 2007. Immunological change in a parasite-impoverished environment: Divergent signals from four island taxa. *PLoS ONE* 2. DOI: 10.1371/journal.pone.0000896.
- Bensch S., Åkesson S. 2003. Temporal and Spatial Variation of Hematozoans in Scandinavian
 Willow Warblers. *Journal of Parasitology* 89:388–391. DOI: 10.1645/0022-3395(2003)089[0388:TASVOH]2.0.CO;2.
 - Bensch S., Hellgren O., Pérez-Tris J. 2009. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. *Molecular Ecology Resources* 9:1353–1358. DOI: 10.1111/j.1755-0998.2009.02692.x.
- Bensch S., Stjernman M., Hasselquist D., Orjan O., Hannson B., Westerdahl H., Pinheiro RT.
 2000. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. *Proceedings of the Royal Society B: Biological Sciences* 267:1583–1589. DOI: 10.1098/rspb.2000.1181.
- Borner J., Pick C., Thiede J., Kolawole OM., Kingsley MT., Schulze J., Cottontail VM.,
 Wellinghausen N., Schmidt-Chanasit J., Bruchhaus I., Burmester T. 2016. Phylogeny of
 haemosporidian blood parasites revealed by a multi-gene approach. *Molecular Phylogenetics and Evolution* 94:221–231. DOI: 10.1016/j.ympev.2015.09.003.
- Brown CR., Komar N., Quick SB., Sethi RA., Panella NA., Brown MB., Pfe M., Pfeffer M.
 2001. Arbovirus infection increases with group size. *Proc R Soc Lond B Biol Sci* 268:1833–1840. DOI: 10.1098/rspb.2001.1749.
- Clark NJ., Clegg SM., Lima MR. 2014. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): New insights from molecular data. *International Journal for Parasitology* 44:329–338. DOI: 10.1016/j.ijpara.2014.01.004.
- Colwell RK. 2013. EstimateS: Statistical estimation of species richness and shared species from
 samples. Version 9. *User's Guide and application published at:* http://purl.oclc.org/estimates.
- Colwell RK., Chao A., Gotelli NJ., Lin SY., Mao CX., Chazdon RL., Longino JT. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. *Journal of Plant Ecology* 5:3–21. DOI: 10.1093/jpe/rtr044.
- 406 Dobson A., Lafferty KD., Kuris AM., Hechinger RF., Jetz W. 2008. Homage to Linnaeus: How

- 407 many parasites? How many hosts? *Proceedings of the National Academy of Sciences of the United States of America* 105:11482–11489. DOI: 10.1073/pnas.0803232105.
- Ericson PGP., Zuccon D., Ohlson JI., Johansson US., Alvarenga H., Prum RO. 2006. Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida). *Molecular Phylogenetics and Evolution* 40:471–483. DOI: 10.1016/j.ympev.2006.03.031.
- Fecchio A., Lima MR., Silveira P., Braga ÉM., Marini MÂ. 2011. High prevalence of blood parasites in social birds from a neotropical savanna in Brazil. *Emu* 111:132–138. DOI: 10.1071/MU10063.
- Fecchio A., Pinheiro R., Felix G., Faria IP., Pinho JB., Lacorte GA., Braga EM., Farias IP.,
 Aleixo A., Tkach V V., Collins MD., Bell JA., Weckstein JD. 2017. Host community
 similarity and geography shape the diversity and distribution of haemosporidian parasites in
 Amazonian birds. *Ecography*. DOI: 10.1111/ecog.03058.
- Galen SC., Witt CC. 2014. Diverse avian malaria and other haemosporidian parasites in Andean house wrens: Evidence for regional co-diversification by host-switching. *Journal of Avian Biology* 45:374–386. DOI: 10.1111/jav.00375.
- Garamszegi LZ. 2011. Climate change increases the risk of malaria in birds. *Global Change* Biology 17:1751–1759. DOI: 10.1111/j.1365-2486.2010.02346.x.
- Garvin MC., Schoech SJ. 2006. Hormone levels and infection of Haemoproteus danilewskyi in free-ranging blue jays (Cyanocitta cristata). *The Journal of parasitology* 92:659–662. DOI: 10.1645/GE-759R.1.
- Hellgren O., Waldenström J., Bensch S. 2004. a New Pcr Assay for Simultaneous Studies of
 Leucocytozoon, Plasmodium, and Haemoproteus From Avian Blood. *Journal of Parasitology* 90:797–802. DOI: 10.1645/GE-184R1.
- Hellgren O., Waldenström J., Peréz-Tris J., Szöll Ösi E., Hasselquist D., Krizanauskiene A.,
 Ottosson U., Bensch S. 2007. Detecting shifts of transmission areas in avian blood parasites
 A phylogenetic approach. *Molecular Ecology* 16:1281–1290. DOI: 10.1111/j.1365 294X.2007.03227.x.
- Jarvis A., Reuter HI., Nelson A., Guevara E. 2008. Hole-filled seamless SRTM data V4.
 International Centre for Tropical Agriculture (CIAT):available from http://srtm.csi.cgiar.org.
- Jetz W., Thomas GH., Joy JB., Hartmann K., Mooers AO. 2012. The global diversity of birds in space and time. *Nature* 491:444–448. DOI: 10.1038/nature11631.
- Jetz W., Thomas GH., Joy JB., Redding DW., Hartmann K., Mooers AO. 2014. Global
 Distribution and Conservation of Evolutionary Distinctness in Birds. *Current Biology* 24:919–930. DOI: 10.1016/j.cub.2014.03.011.
- Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A.,
 Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A. 2012. Geneious
 Basic: An integrated and extendable desktop software platform for the organization and
 analysis of sequence data. *Bioinformatics* 28:1647–1649. DOI:
 10.1093/bioinformatics/bts199.
- Knowles SCL., Palinauskas V., Sheldon BC. 2010. Chronic malaria infections increase family
 inequalities and reduce parental fitness: experimental evidence from a wild bird population.
 Journal of Evolutionary Biology 23:557–569. DOI: 10.1111/j.1420-9101.2009.01920.x.
- Kulma K., Low M., Bensch S., Qvarnström A. 2013. Malaria infections reinforce competitive asymmetry between two Ficedula flycatchers in a recent contact zone. *Molecular Ecology*

- 453 22:4591–4601. DOI: 10.1111/mec.12409.
- Lachish S., Knowles SCL., Alves R., Wood MJ., Sheldon BC. 2011. Infection dynamics of endemic malaria in a wild bird population: Parasite species-dependent drivers of spatial and temporal variation in transmission rates. *Journal of Animal Ecology* 80:1207–1216. DOI:
- 457 10.1111/j.1365-2656.2011.01893.x.
- 458 LaPointe DA., Goff ML., Atkinson CT. 2010. Thermal constraints to the sporogonic
 459 development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai'i.
 460 The Journal of parasitology 96:318–324. DOI: 10.1645/GE-2290.1.
- Levin II., Zwiers P., Deem SL., Geest EA., Higashiguchi JM., Iezhova TA., Jiménez-Uzcátegui
 G., Kim DH., Morton JP., Perlut NG., Renfrew RB., Sari EHR., Valkiunas G., Parker PG.
 2013. Multiple Lineages of Avian Malaria Parasites (Plasmodium) in the Galapagos Islands
 and Evidence for Arrival via Migratory Birds. *Conservation Biology* 27:1366–1377. DOI:
 10.1111/cobi.12127.
- Loiseau C., Harrigan RJ., Cornel AJ., Guers SL., Dodge M., Marzec T., Carlson JS., Seppi B.,
 Sehgal RNM. 2012. First Evidence and Predictions of Plasmodium Transmission in
 Alaskan Bird Populations. *PLoS ONE* 7:7–11. DOI: 10.1371/journal.pone.0044729.
- Lutz HL., Hochachka WM., Engel JI., Bell JA., Tkach V V., Bates JM., Hackett SJ., Weckstein
 JD. 2015. Parasite prevalence corresponds to host life history in a diverse assemblage of
 afrotropical birds and haemosporidian parasites. *PLoS ONE* 10. DOI:
 10.1371/journal.pone.0121254.
- Martinsen ES., Blumberg BJ., Eisen RJ., Schall JJ. 2008. Avian hemosporidian parasites from northern California oak woodland and chaparral habitats. *Journal of wildlife diseases* 44:260–268. DOI: 10.7589/0090-3558-44.2.260.
- Moens MAJ., Valkiūnas G., Paca A., Bonaccorso E., Aguirre N., Pérez-Tris J., Cotter S. 2016.
 Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds. *Journal of Animal Ecology* 85:1234–1245. DOI: 10.1111/1365-2656.12550.
- Moyle RG., Oliveros CH., Andersen MJ., Hosner PA., Benz BW., Manthey JD., Travers SL.,
 Brown RM., Faircloth BC. 2016. Tectonic collision and uplift of Wallacea triggered the
 global songbird radiation. *Nature Communications* 7:1–7. DOI: 10.1038/ncomms12709.
- Oakgrove KS., Harrigan RJ., Loiseau C., Guers S., Seppi B., Sehgal RNM. 2014. Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. *International Journal for Parasitology* 44:717–727. DOI: 10.1016/j.ijpara.2014.04.011.
- Outlaw DC., Ricklefs RE. 2014. Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. *Parasitology* 141:1223–32. DOI: 10.1017/S0031182014000560.
- 489 Poulin R. 2014. Parasite biodiversity revisited: Frontiers and constraints. *International Journal* 490 *for Parasitology* 44:581–589. DOI: 10.1016/j.ijpara.2014.02.003.
- 491 Ricklefs RE., Fallon SM. 2002. Diversification and host switching in avian malaria parasites.
 492 *Proceedings of the Royal Society B: Biological Sciences* 269:885–892. DOI:
 493 10.1098/rspb.2001.1940.
- Ricklefs RE., Outlaw DC., Svensson-Coelho M., Medeiros MCI., Ellis VA., Latta S. 2014.
 Species formation by host shifting in avian malaria parasites. *Proceedings of the National Academy of Sciences of the United States of America* 111:14816–21. DOI:
- 497 10.1073/pnas.1416356111.
- 498 Ricklefs RE., Swanson BL., Fallon SM., Martinez-Abrain A., Scheuerlein A., Gray J., Latta S.

- 2005. Community Relationships of Avian Malaria Parasites. *Ecological Monographs* 75:543–559. DOI: 10.1890/04-1820.
- van Riper C., van Riper SG., Goff ML., Laird M. 1986. The Epizootiology and Ecological
 Significance of Malaria in Hawaiian Land Birds. *Ecological Monographs* 56:327–344.
 DOI: 10.2307/1942550.
- Robinet C., Roques A. 2010. Direct impacts of recent climate warming on insect populations. *Integrative Zoology* 5:132–142. DOI: 10.1111/j.1749-4877.2010.00196.x.
- Romero LM. 2002. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. *General and Comparative Endocrinology* 128:1–24. DOI: 10.1016/S0016-6480(02)00064-3.
- Scott TW., McLean RG., Bruce Francy D., Card CS. 1983. A Simulation Model for the Vector Host Transmission System of a Mosquito-Borne Avian Virus, Turlock (Bunyaviridae) 1.
 Journal of Medical Entomology 20:625–640.
- 512 Silva-Iturriza A., Ketmaier V., Tiedemann R. 2012. Prevalence of avian haemosporidian 513 parasites and their host fidelity in the central Philippine islands. *Parasitology International* 514 61:650–657. DOI: 10.1016/j.parint.2012.07.003.
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30:1312–1313. DOI: 10.1093/bioinformatics/btu033.
- Svensson-Coelho M., Blake JGJG., Loiselle B a., Penrose a. SAS., Parker PG., Ricklefs RE.
 2013. Diversity, Prevalence, and Host Specificity of Avian Plasmodium and Haemoproteus in a Western Amazon Assemblage. DOI: 10.1525/om.2013.76.1.1.1.
- Svensson-Coelho M., Silva GT., Santos SS., Miranda LS., Araujo-Silva LE., Ricklefs RE.,
 Miyaki CY., Maldonado-Coelho M. 2016. Lower Detection Probability of Avian
 Plasmodium in Blood Compared to Other Tissues. *Journal of Parasitology* 102:559–561.
 DOI: 10.1645/16-8.
- Valkiunas G. 2005. Avian malaria parasites and other haemosporidia. Boca Raton, Florida,
 USA: CRC Press.
- Valkiūnas G., Bairlein F., Iezhova TA., Dolnik O V. 2004. Factors affecting the relapse of
 Haemoproteus belopolskyi infections and the parasitaemia of Trypanosoma spp. in a
 naturally infected European songbird, the blackcap, Sylvia atricapilla. *Parasitology Research* 93:218–222. DOI: 10.1007/s00436-004-1071-2.
- Valkiŭnas G., Iezhova T a., Križanauskiené A., Palinauskas V., Sehgal RNM., Bensch S. 2008.
 A comparative analysis of microscopy and PCR-based detection methods for blood
 parasites. *The Journal of Parasitology* 94:1395–401. DOI: 10.1645/GE-1570.1.
- Valkiunas G., Kazlauskiene R., Bernotiene R., Palinauskas V., Iezhova TA. 2013. Abortive longlasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. *Parasitology Research* 112:2159–2169. DOI: 10.1007/s00436-013-3375-6.
- Waldenström J., Bensch S., Hasselquist D., Östman Ö. 2004. A New Nested Polymerase Chain
 Reaction Method Very Efficient in Detecting Plasmodium and Haemoproteus Infections
 from Avian Blood A New Nested Polymerase Chain Reaction Method Very Efficient in
 Detecting Plasmodium and Haemoproteus Infections From Avian B. *Journal of Parasitology* 90:191–194. DOI: 10.1645/GE-3221RN.
- Waldenström J., Bensch S., Kiboi S., Hasselquist D., Ottosson U. 2002. Cross-species infection
 of blood parasites between resident. *Molecular Ecology* 11:1545–1554.
- Walther EL., Carlson JS., Cornel A., Morris BK., Sehgal RNM. 2016. First molecular study of

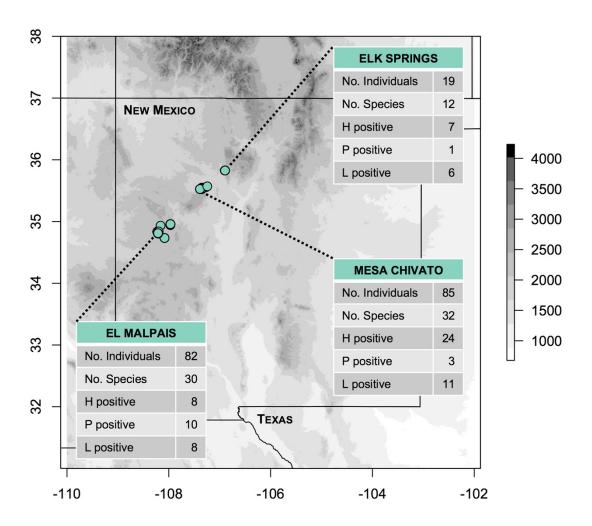

545	prevalence and diversity of avian haemosporidia in a central California songbird
546	community. Journal of Ornithology 157:549–564. DOI: 10.1007/s10336-015-1301-7.
547	Warner RE. 1968. The role of introduced diseases in the extinction of the endemic Hawaiian
548	avifauna. The Condor 70:101–120. DOI: 10.2307/1365954.
549	Yohannes M., Haile M., Ghebreyesus TA., Witten KH., Getachew A., Byass P., Lindsay SW.
550	2005. Can source reduction of mosquito larval habitat reduce malaria transmission in
551	Tigray, Ethiopia? Tropical Medicine and International Health 10:1274–1285. DOI:
552	10.1111/j.1365-3156.2005.01512.x.
553	
554	

Table 1 Positive infections identified from microscopy and PCR. Total screened indicates the number of individual birds screened by each method. Of those screened, the number and proportion of individuals that were positive are reported.

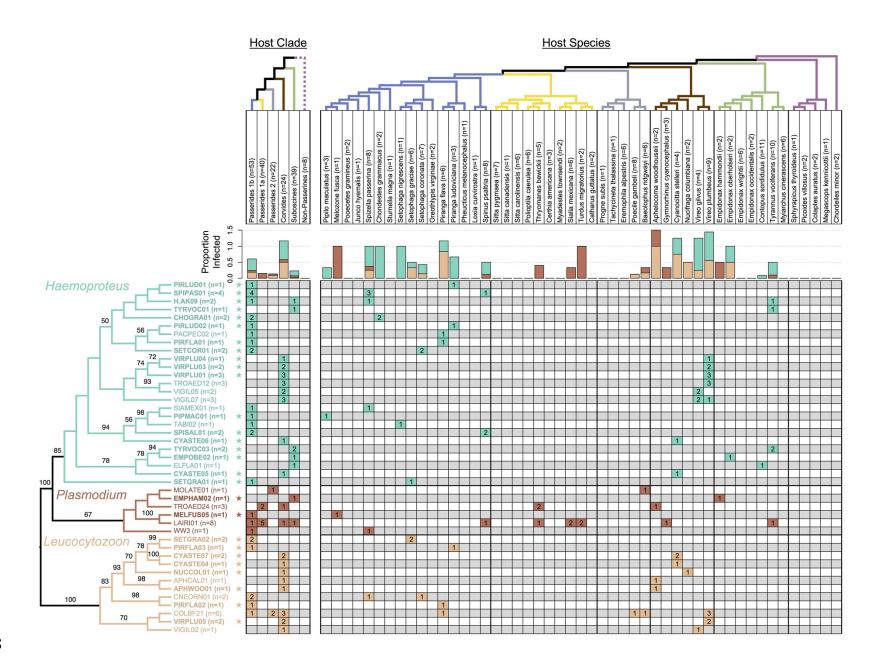
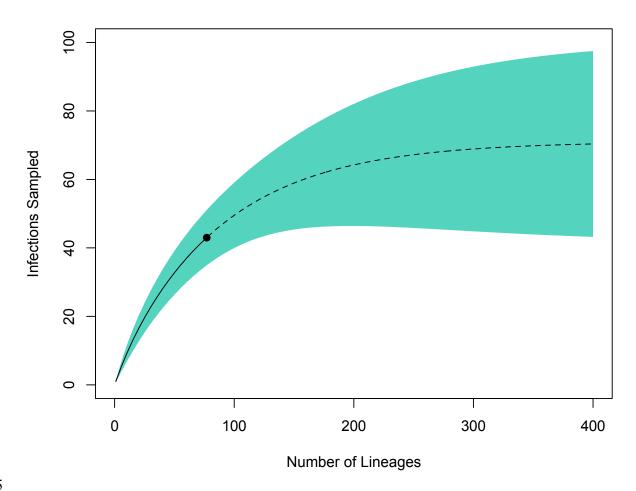

		Haemoproteus/Plasmodium	Leucocytozoon	Overall
Method	Total screened	No. positive (%)	No. positive (%)	No. positive (%)
Microscopy	168	40 (23.8%)	7 (4.2%)	43 (25.6%)
PCR	186	55 (29.6%)	25 (13.4%)	65 (34.9%)

Figure 1 Map of study areas and 2016 sampling localities. Fieldwork was conducted in three sites located in piñon-juniper and ponderosa pine woodland habitats (elevational range: 2150-2460 meters). The number of individuals found positive for *Haemoproteus* (H), *Plasmodium* (P), and *Leucocytozoon* (L) is shown. Elevation is based on the SRTM Digital Elevation Database (Jarvis et al., 2008).



Peer Preprints

Figure 2 Phylogeny of haemosporidian haplotypes found in New Mexico birds. Columns represent host clades (left) and host species (right). Dotted line indicates non-monophyly of non-passerines, and clade names are based on the names and topology from Moyle et al. (2016). Host species phylogeny was generated from BirdTree.org and the colors of host clade branches correspond to host species in each clade. Bar plots depict the proportion of individuals infected for each parasite genus: *Haemoproteus* (turquoise), *Plasmodium* (dark brown), *Leucocytozoon* (light brown). Stars indicate novel malaria haplotypes. The parasite phylogeny was estimated in RAxML and branch labels indicate bootstrap values. The table is shaded to indicate which clade/species was infected with each lineage and the number of birds infected.

Figure 3 Estimate of malaria lineage diversity in northern New Mexico based on EstimateS rarefaction and extrapolation using 77 avian malaria infections and 43 distinct haplotypes. The point indicates the reference sample, solid line the rarefaction, and dotted line the extrapolation. The analysis suggests that sampling approximately 240 total infections would capture > 95% of the haemosporidian lineage diversity in this community. The total haplotype richness is estimated to be 70 (95% CI: 43–98).

