
Secure trustless text processing of sensitive

documents

Flávio Codeço Coelho and Bruno Cuconato

May 26, 2017

Abstract

Scaling up the analysis of sensitive or confidential documents fre-
quently stumbles on the limited number of individuals with the necessary
clearance to access the documents. The availability of cryptographic pro-
tocols compatible with text processing methods can greatly improve this
situation allowing for the automated processing of large corpora of confi-
dential documents by “untrusted” third-parties. In this paper we propose
a protocol which allows for secure outsourcing of text analytics tasks with-
out compromising the confidentiality of documents. The method scales
to large corpora, and presents linear time complexity on the size of the
corpus.

Introduction

A fertile ground for the application of machine-learning based on natural lan-
guage features is in triaging classified or otherwise sensitive documents for de-
classification. [6]

The classical scenario of examining sensitive documents for declassification
purposes involves the manual reading and evaluation by a human of the required
security clearance and of the specific knowledge to understand the document and
its implications. The problem with this classic scenario is that such individuals
are usually few and command high wages. The viable rate of manual analysis of
documents is much slower than what is necessary to tackle the enormous volumes
of documents scheduled for evaluation. This problem is a perfect target for
machine learning classification algorithms which can work at very high speeds
without exposing the documents to non-authorized humans. So why is this
not yet the standard procedure for such applications? Mainly because these
algorithms must be trained under the supervision of a human specialist before
they can be used.

In the most usual scenarios, document encryption renders documents useless
for text processing tasks such as the classification of documents.

In most text processing tasks, the ability to identify occurrences of words
and their absolute and relative positions (co-occurrences) is essential. However,
when whole documents are encrypted, the discrimination of its constituent parts
(sentences, words, tables, figures, etc.) is completely impossible unless the doc-
umet is decrypted first. A natural solution to this issue would be to hash each
word separately and in sequence.

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

In fact, this is already commonplace, in text processing software, which
attribute numerical IDs to words, in order to save space, and speed up compu-
tation. But instead of attributing simple sequential IDs to words, which can be
cumbersome with growing dictionaries, in standard text processing tasks this is
accomplished by the compilation of a corpus dictionary with the subsequent at-
tribution of a unique integer ID to each separate word, in order to avoid having
to look up a potentially very large table every time we need to find the ID of a
word. It has become common practice to use non-cryptographic hash functions
(such as CRC32, MD5, etc) to derive integer IDs for individual words with
negligible probabilities of key collision, i.e. two different words with the same
ID [8]. This is not done for security reasons though, and non-cryptographic
hash functions such as MD5 or CRC32 are vulnerable to collisions, or even
brute-force attacks [2, 3].

What we propose in this paper is akin to homomorphic encryption in its
general purpose of allowing for analytical manipulations of encrypted data, but
is much less restrictive [4]. Our only requirement is that the statistical properties
of the corpus as a list of words remain the same after hashing.

In this paper, we propose a protocol in which a client in possession of a
classified corpus of documents can hire an analyst to analyze the corpus without
revealing the contents of the documents. We also offer an open source software
tool to efficiently hash corpora of sensitive documents, before they can be sent
out for analysis.

Methodology

The Methodology proposed takes advantage of the fact that most text process-
ing models are language agnostic, relying only on statistical properties of the
documents. By hashing individual words instead of whole documents we can
hash the content without affecting the statistical properties of the documents
as collections of words.

Hash functions and cryptographic hash functions

Hash functions are mathematical functions which map data coming from a set
of values of arbitrary size to a set of values of fixed size. Hash functions are
deterministic functions so the same data will always lead to the same hash value.
They should also be easy to compute in order to be of practical use on large
datasets.

Cryptographic hash functions are special hash functions which beside be-
ing deterministic and easy to compute, are also required to be virtually non-
invertible, meaning that it should be infeasible to obtain the original data from
its hash value. Hash values should also be uncorrelated to the original data,
meaning that similar data do not lead to similar hashes. Finally, they must
also be resistant to collisions, that is, it must be very hard to find different data
leading to the same hash value.

On Table 1, we can see the hash values of two similar words. Notice that
their hash values are vastly different even though they differ by a single letter.

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

Table 1: SHA-2 256 bit hash values for two different words. The hash values
are displayed in hexadecimal format

Word Hash value – sha256
word 98c1eb4ee93476743763878fcb96a25fbc9a175074d64004779ecb5242f645e6

words dba36bffa5cab0f922d087a3aeb179f9d4e745df40b323e1b1471402848c8a3e

The Hashing Workflow

Our protocol starts from a previously tokenized set of documents. Tokenization
(splitting the documents into words or tokens) is often a required first step
before more detailed statistical analysis of texts can take place. Tokenization is
also a step that can benefit from language as well as domain knowledge. Thus
tokenization should be done by the client before the hashing step.

Once the corpus documents have been converted into sequences of tokens,
it can be passed on to the hashing protocol described below. We assume here
that the corpus is a list of documents, each of which is a list of tokens (words).
Documents may be thought of full documents or parts of it (paragraphs, sen-
tences).

1. Create an empty corpus structure (list of lists) to hold the hashed tokens;

2. Create a decoding dictionary: a list of key, value pairs where the key is an
encoded token (hash) and the values are the unhashed token and its salt.

3. Create an encoding dictionary: a list of key, value pairs where the key is
a plain token and the value is its cryptographic hash.

4. Iterate over unhashed tokens

(a) Check if the word is in the encoding dictionary;

(b) If so, add its hash value to the hashed tokens list

(c) If not, hash it with the addition of a random1 salt, and add them to
the encoding and decoding dictionaries.

5. Return the hashed corpus and the dictionary

After the hashing, the client retains the dictionaries and hands over the
hashed corpus to the analyst. The analyst can then proceed to analyze the
corpus as if it were any ordinary tokenized corpus. After the analysis is done
the client can use the decoding dictionary to decode the results, reverting the
hashed tokens to their original unhashed values, and interpret the analysis.

Security Assessment

Even though the mere use of the protocol presented here is an important step in
terms of security in an analytic scenario, it is worth looking at the most evident
attack vectors the protocol is vulnerable to.

1The random salt may be the same for all words or unique to each.

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

Figure 1: Diagram summarizing the hashing process for a document

Attacks to the Hash Function

Vulnerability to this kind of attack is related to weaknesses of the cryptographic
hash function used. Therefore this risk can always be diminished by choosing a
stronger hash function.

Usually the security of a hash function is measured in terms of three prop-
erties: Pre-image resistance, meaning that given a hash h, it should be very
difficult to find any word w such that hash(w) = h; Second pre-image resis-
tance, meaning that given a word w1, it should be difficult to find a word w2

such that hash(w1) = hash(w2); and collision resistance which means it is dif-
ficult to find two different words w1 and w2 such that hash(w1) = hash(w2).

Using a SHA256 hashing function, which can generate N = 2256 different
hash values, the probability of not having a collision after hashing k words
without is:

N − 1

N
× N − 2

N
× . . .× N − (k − 1)

N

which can be approximated by:

e−
k(k−1)

2N (1)

If we hash all unique words in the English language, roughly 400, 000 the
probability of having a collision is:

1− e−
k(k−1)

2N ≈ 6.9× 10−67

An actual experiment on the English language Wikipedia points to approx-
imately a hundred thousand distinct tokens in 3.9 million documents, leading
to an even smaller probability of collision than the one calculated above.

A more common attack is the dictionary attack, where the attacker builds a
dictionary of hashed words, and tries to match the hashed tokens in a document
to this dictionarized vocabulary.

In order for the attack to be possible the attacker must know which hash
function has been used in the hashing, which is not a public information. Only
the client knows which hash function has been used, because she can choose

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

the one she wants. Besides, since our protocol adds a random salt string to
each token before hashing, a standard dictionary attack is rendered completely
harmless. Salting a password may not help to protect it, because any word+salt
that hashes to the same value works. In our scenario, the attacker’s goal is to
find the correct word behind a hash, so “simply” finding a collision is not enough,
because due to the pidgeon hole principle (or Dirichlet box principle) [7], there
maybe more than one word that hashes to the same value. What is needed is a
pre-image attack which is considered much harder than collision attacks.

Moreover, if an attacker searches actively for collisions, she is more likely to
find wrong combinations of token+salt than the original correct token+salt, if
salt length is sufficiently big. If we assume a hash function whose output is 32
bytes (e.g., SHA256), salt byte length of same size, and a vocabulary of n words,
we have n · 2256 possible combinations of token+salt. If this hash function is
approximately uniform (a property cryptographic hash functions should have),
we expect n collisions per possible output value, because for every word there
are 2256 possible salts and the same number of hash values. Therefore, for the
correct hash, there are on average n collisions, but only one of them is the
correct one, the one formed by the original token.

Code complexity and application examples

In this section we have employed the reference implementation in Python which
we are open sourcing under the lesser general public license (LGPL). The source
code is freely available under https://github.com/NAMD/corpushash. For the
natural language processing (NLP) applications shown we have used the gensim
Python library [5]. In these applications, our goal was to demonstrate that the
results of the analysis run on the plain text corpus and the hashed one were
identical after decoding.

Complexity

We ran benchmark tests to assess the library’s performance, which are all avail-
able at the code repository. There are two main variables that determine the
library’s performance: corpus size in tokens, and corpus nesting level (flat list
versus nested list structure). The main results are that the library has linear
complexity in the former (see fig. 2), while incrementing corpus nesting level
by 1 will make the hashing take 10% longer.

For a real-world measure of the performance, we have hashed the entire
corpus of the Portuguese language Wikipedia2 (1.3 GB compressed, almost 1
million articles) in 00:10:10 of CPU time, but 00:45:59s of Wall time, in a ma-
chine with an Intel core i5-4590 (3.7GHz). Disk I/O was the bottleneck here,
as the corpus documents are streamed from disk to be hashed and back to disk
aftewards in order guarantee constant memory usage. Using a Solid-State Disk
(SSD) or parallelizing the I/O can improve these times.

2Available at https://dumps.wikimedia.org/ptwiki

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

https://github.com/NAMD/corpushash
https://dumps.wikimedia.org/ptwiki

Figure 2: Time to hash a corpus of given size. Time is normalized by ∀ti.ti = ti
t1

Table 2: TF-IDF weights for a few hashed tokens. The hashes were further
encoded in Base85 format to reduce to space required to store the hashed corpus.
The TF-IDF scores for both corpora were identical as expected.

token hashed token TFIDF weights
emma f‘mQ@sY^3|&5lPGYwGpTTVKRktQ*p-pT#Qd_6Hqv 0.5042503721243
jane 1Sb%Q^?q7fVE4P<eCkRbDr#Q5EFXRP9n$KrlTx+- 0.1430875592365
austen 4l@t*ZLBNhsA8#dI)lp$FnOTQ%hwsZ>lKnh6UNyq 0.0004753739509

TF-IDF Model

In this application we calculate TF-IDF weights of an English language corpus
made available by the NLTK [1] library based on works offered by Project
Gutenberg.3

After hashing the full corpus using our library, we fed the results into gensim,
obtaining TF-IDF weights for each hashed token (see Table 2).

Our validating procedure consisted in calculating independently the TF-IDF
weigths of the original (unhashed) corpus, and then comparing the results with
those of the hashed corpus. Both tests were successful, showing that employing
our library only adds a couple modular steps (hashing and decoding) to calcu-
lating and applying a TF-IDF model, without changing its results or the way
the task is carried out. The results of these tests are available along with the
source code in the Github repository.

3Available at https://www.gutenberg.org/.

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

https://www.gutenberg.org/

token hashed token coefficient
” +xy0wTTqhE|JZz*%3WH{1@1q9h<G<=uLOD^et9xA 0.313
Tories kGAJg>G9k#tX-bv0@t‘HG>lN^h{c3!)<j‘xP7D7) 0.181
preoccupied 7y5%8<c1FGHe#<|dSu3vccWGzM9Q=*v4Z~lCTyRF 0.171
inequality %4N-jt=3f2@)u4VhSd^a*M@(S%#}e2p!OmWo6cGd 0.171
@Tommy Colc fcu&‘jIKDa#uPvE5u2(^)Z6n*AYzTwzbe#gP5;R1 0.171
wrote MK{t^7~%aBL2s88ymX=}S3R5ZohAfC370_$lde}H 0.171
Miliband UC&2ub*;{Z+u~QBI_5Nvm##j=vQ4Kb{jrqZ0cyQ9 0.167
claiming !~2FQb#UvY9{_*vVk6$2r=BlJ7&KiuJ=m&?+39}‘ 0.167
w Wze>-N3e(e%@~h_T9GmAjsj^FE15#}DV6I7z^#l0 0.166
man (=w$026I9$E;O3NWu‘+r+EKS@8tfx7Y|rQ?#Qexa 0.164

Table 3: LSI results for the top topic (top ten words). Again the word compo-
sition and coefficients for every word were identical for both corpora.

LSI Model

Another common text analytics methodology is the topic modeling using the
latent semantic indexing algorithm (LSI). In this application we employed the
Twitter Samples corpus made available by the NLTK [1] and Twitter. We
followed the standard steps and our validation procedure was similar to the
one done for the TF-IDF analysis. We calculate the topics for the plain and
the hashed corpus and among the 100 selected as a parameter, we compare
the top topics, their component words and their coefficients. We were able to
demonstrate in this this way that the two result sets where the same. Table 3
contain the ten top words in the first topic and their coefficients for both the
plain and hashed models.

Discussion

The security of the protocol proposed here relies on two basic attack vectors: (1)
Breaking the hash function, and (2) Attempting to reconstruct the documents
based the frequency of co-occurrences of words. It is not our goal in this paper
to provide guarantees about the level of security of the proposed protocol, but
rather to propose a reasonably secure and computationally cheap protocol to
help alleviating the present bottlenecks in the analysis of sensitive documents.
We have shown that our protocol scales up linearly with the number of words
in the corpus, imposing a negligible additional computational cost to the whole
intended textual analysis.

The current protocol can also serve other purposes. For example, the hashed
corpora can be fed to an information retrieval system providing full text indexing
and search. Thus the owner of collection of sensitive documents could publish a
search interface to the collection in which users could perform searches normally.
Once the search terms would be hashed (using the encoding dictionary), and
used to query the index. The resulting documents could then be queued for
manual assessment to determine if they can be released. This procedure could
lead to the opening of huge collections for public search, without requiring
first that all documents are individually examined and released. The effort of

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

manual analysis could in effect be prioritized based on the subjects of greater
public interest.

Our methodology has some limitations, however. Since the words are no
longer identifiable to the contractor, all the pre-processing of the corpus such
as tokenization, lemmatization or stemming, removal of stopwords, etc. has to
be done by a trained technician with security clearance. Analyses which require
part-of-speech (POS) tagging, i.e. based on syntactic features, can only be done
if the POS tags are calculated beforehand and hashed as well, following the
same protocol. The provision of POS information, even if in hashed form, is
likely to facilitate frequency based attacks.

References

[1] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing
with Python. O’Reilly Media, 2009.

[2] Deguang Le, Jinyi Chang, Xiangnan LIU, and Dong-Hui Guo. Implemen-
tation of md5 fast decryption algorithm based on graphic processing unit.
Computer Engineering, 36(11):154–155, 2010.

[3] Simon Marechal. Advances in password cracking. Journal in computer vi-
rology, 4(1):73–81, 2008.

[4] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homo-
morphic encryption be practical?, page 113–124. ACM, 2011.

[5] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010.
ELRA. Available at http://is.muni.cz/publication/884893/en.

[6] Renato Rocha Souza, Flavio Codeco Coelho, Rohan Shah, and Matthew
Connelly. Using artificial intelligence to identify state secrets. arXiv preprint
arXiv:1611.00356, 2016.

[7] V.G. Sprindzhuk. Dirichlet box principle. Springer & The European
Mathematical Society. Available at http://www.encyclopediaofmath.

org/index.php?title=Dirichlet_box_principle&oldid=16845.

[8] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and
Josh Attenberg. Feature hashing for large scale multitask learning, page
1113–1120. ACM, 2009.

8

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2994v1 | CC BY 4.0 Open Access | rec: 26 May 2017, publ: 26 May 2017

http://is.muni.cz/publication/884893/en
http://www.encyclopediaofmath.org/index.php?title=Dirichlet_box_principle&oldid=16845
http://www.encyclopediaofmath.org/index.php?title=Dirichlet_box_principle&oldid=16845

