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Background. There is huge amount of full-text biomedical literatures available in public repositories like

PubMed Central (PMC). However, a substantial number of the papers are in Portable Document Format

(PDF) and do not provide plain text format ready for text mining and natural language processing (NLP).

Although there exist many PDF-to-text converters, they still suffer from several challenges while

processing biomedical PDFs, such as the correct transcription of titles/abstracts, segmenting

references/acknowledgements, special characters, jumbling errors (the wrong order of the text), and

word boundaries.

Methods. In this paper, we present bioPDFX, a novel tool which complements weaknesses with

strengths of multiple state-of-the-art methods and then applies machine learning methods to address all

issues above

Results. The experiment results on publications of Genome Wide Association Studies (GWAS)

demonstrated that bioPDFX significantly improved the quality of XML comparing to state-of-the-art PDF-

to-XML converter, leading to a biomedical database more suitable for text mining.

Discussion. Overall, the whole pipeline developed in this paper makes the published literature in form of

PDF files much better suited for text mining tasks, while slightly improving the overall text quality as well.

The service is open to access freely at URL: http://textmining.ucsd.edu:9000 . A list of PubMed Central

IDs of the 941 articles (see Supplemental File 1) used in this study is available for download at the same

URL. The instructions of how to run the service with a PubMed ID are described in Supplemental File 2.
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Abstract 16 

Background. There is huge amount of full-text biomedical literatures available in public 17 

repositories like PubMed Central (PMC). However, a substantial number of the papers are in 18 

Portable Document Format (PDF) and do not provide plain text format ready for text mining and 19 

natural language processing (NLP). Although there exist many PDF-to-text converters, they still 20 

suffer from several challenges while processing biomedical PDFs, such as the correct transcription 21 

of titles/abstracts, segmenting references/acknowledgements, special characters, jumbling errors 22 

(the wrong order of the text), and word boundaries. 23 

 24 

Methods. In this paper, we present bioPDFX, a novel tool which complements weaknesses with 25 

strengths of multiple state-of-the-art methods and then applies machine learning methods to 26 

address all issues above.   27 

 28 

Results. The experiment results on publications of Genome Wide Association Studies (GWAS) 29 

demonstrated that bioPDFX significantly improved the quality of XML comparing to state-of-the-30 

art PDF-to-XML converter, leading to a biomedical database more suitable for text mining. 31 

 32 

Discussion. Overall, the whole pipeline developed in this paper makes the published literature in 33 

form of PDF files much better suited for text mining tasks, while slightly improving the overall 34 

text quality as well. The service is open to access freely at URL: http://textmining.ucsd.edu:9000. 35 

A list of PubMed Central IDs of the 941 articles (see Supplemental File 1) used in this study is 36 

available for download at the same URL. The instructions of how to run the service with a PubMed 37 

ID are described in Supplemental File 2. 38 

39 
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1. Introduction 40 

PubMed Central (PMC) (2015e) contains full-text of about 4 million biomedical literatures, 41 

and is one of the most important freely available data sources for the biomedical natural language 42 

processing (NLP) research field. Although many new publications now provide plain text along 43 

with the Portable Document Format (PDF), a substantial number of them do not. However, text 44 

mining algorithms work more effectively on text-based formats such as plain text, XML or HTML 45 

documents. Therefore, NLP researchers usually need to transcribe the biomedical literatures from 46 

PDF to text as a preprocessing step of the NLP pipeline. 47 

However, transcribing PDF to text accurately is not trivial. The design goals of the PDF 48 

standard target ease of human readability rather than electronic consumption of data by other 49 

software tools. That is, the PDF standard does not attempt to encode any semantic connection 50 

between characters in a word or between paragraphs, but characters are “painted" individually at 51 

specific 2-dimensional coordinates. Berg et. al. outlined some challenges encountered in 52 

transcribing PDF documents to text accurately, such as varied reading orders, sectional formatting 53 

and number of columns (Berg 2011). These issues create a variability in text quality in the 54 

generated outputs and impedes accurate text mining. 55 

Although there are already a variety of tools available today for PDF-to-text transcription 56 

(such as Apache PDFBox  Mozilla PDF.js ￼(2015d) Adobe Acrobat SDK ￼(2015a) Tesseract 57 

Optical Character Recognition (OCR) ￼(Smith 2007) ￼(Constantin et al. 2013)several 58 

challenges to be solved for converting biomedical literature PDF to XML for text mining purpose:: 59 

1. Extracting title and abstracts correctly. In case of manuscripts which might have contents 60 

other than title or abstract on their first page, conversion tools like PDFX struggle to 61 
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identify them correctly. 62 

2. Identifying reference and acknowledgement sections in various format. The format of 63 

references varies considerably among different publications ranging from a separate 64 

section towards the end to individual references in footnotes continuing alongside the 65 

content body. Take PDFX as an example, as a purely rule-based system, it often falters in 66 

recognizing references when the common pattern of having references in the end with a 67 

heading is not present. Similar problems were noticed in identifying acknowledgements as 68 

well. 69 

3. Recognizing special characters (such as '!' and '@'). PDFX and all PDF to text converters 70 

usually suffer from the problem of recognizing the special characters depending on the 71 

publishing of the PDF files. 72 

4. Detecting and fixing jumbling errors (the wrong order of text while converting PDF to 73 

text). Often most PDF conversion tools jumbles the work order in or across sentences due 74 

to mistakes in reading order detection/segmentation. An example is given in Figure 1 where 75 

the exponents of numbers in a table are extracted as a separate column and hence are jumbled 76 

with respect to the actual text. 77 

5. Correcting word boundaries. Often words straddling the column boundary have a hyphen 78 

inserted in between them (e.g., “cancer” might become “can-” and “cer” if it is the last 79 

word of a row). Although this is not an error due to conversion, we would still like to 80 

correct it and merge the hyphenated parts as a single word wherever possible to support 81 

NLP afterwards. 82 

83 
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Figure 1. A kind of jumbling error in a table. 84 

The table at the top is what is present in the PDF. The lower portion shows the transcribed XML. 85 

The exponents marked in the red-colored box are incorrectly extracted as a separate column in the 86 

XML. 87 

 88 

89 
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To address these issues, we proposed bioPDFX, a novel tool that integrates current state-of-90 

the-art PDF conversion methods to transcribe biomedical PDF articles to high quality text in XML 91 

format. The bioPDFX tool leverages the following four tools to transcribe text of the given PDF: 92 

PDFX (Constantin et al. 2013), PMC Entrez e-utilities API (Sayers et al. 2011), Tesseract OCR 93 

(Smith 2007), and Apache PDFBox (2015b). The input of bioPDFX includes a biomedical 94 

literature PDF file and its corresponding PubMed ID, while the output is the converted XML file. 95 

The overall processing pipeline of bioPDFX consists of the following five components, each 96 

address an abovementioned challenge: 97 

1. Title and Abstract Correction. We used the PMC Entrez e-utilities API to retrieve the 98 

correct title and abstract from PubMed. 99 

2. Reference and Acknowledgment Correction. To detect whether a paragraph is reference, 100 

acknowledgement, or none of them, we designed two binary classifiers, one for reference 101 

and the other for acknowledgement. For reference detection, we extracted features such as 102 

density of year (e.g., “2016”), density of “et. al.”, and density of numbers followed by the 103 

dot (e.g., “12.”. We normalized these features and train a classifier to predict whether a 104 

paragraph is a reference text. For acknowledgment detection, we used a classifier with 105 

features being TF-IDF followed by Latent Semantic Analysis (Deerwester et al. 1990) to 106 

perform the detection. 107 

3. Special Character Correction. The basic idea is to compare the results from PDFX and 108 

that from Tesseract OCR to identify suspicious characters (i.e., different identified 109 

characters within the same n-gram), and then apply Hidden Markov Model (HMM) (Baum 110 

& Petrie 1966) with Viterbi inference algorithm (Viterbi 1967) and language model to 111 

choose the “most probable” candidate character for the mismatch character by maximizing 112 
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the overall likelihood to recover the n-gram. 113 

4. Jumbling Error Correction. We used the text extracted using Apache PDFBox to correct 114 

the possible jumbling errors from PDFX. We first detected jumbled n-gram, and then 115 

replaced them by the non-jumbled version from Apache PDFBox. 116 

5. Word Boundary Correction. We adopted a simple dictionary lookup method by comparing 117 

different parts (e.g., “can-” and “cer”) with the English dictionary in the Enchant 118 

Spellchecking System (2015c) and merging them as required. 119 

To evaluate the bioPDFX tool, we randomly extracted 100 biomedical literatures related to 120 

Genome Wide Association Study (GWAS) (Hindorff et al. 2009; Welter et al. 2014) from PMC, 121 

and used XML versions (i.e., NXMLs) of those 100 articles provided in PMC as gold standards. 122 

We compare bioPDFX with the state-of-the-art PDFX tool (Constantin et al. 2013). As a use case, 123 

we also compare the results of converting important information (p-value and number) and overall 124 

text quality in the GWAS papers using bioPDFX and PDFX. We evaluate both individual 125 

correction steps and overall conversion results. The experiment results show significant 126 

improvement for all five types of correction tasks, especially for abstract, 127 

reference/acknowledgement, special character, and jumbling error corrections. 128 

Our contributions of this study are three-fold: 129 

• We identified five issues (title/abstract, reference/acknowledgment, special character, 130 

jumbling error, and word boundary) of the state-of-the-art PDF-to-XML tools as the very 131 

first step of biomedical NLP pipeline. 132 

• We integrated the output of four popular tools (PDFX, PMC Entrez e-utilities API, 133 

Tesseract OCR, and Apache PDFBox) in bioPDFX and designed five corresponding 134 
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correction steps to solve the abovementioned issues. 135 

• We evaluated bioPDFX and compare it to PDFX for each correction steps as well as a real-136 

world GWAS information extraction task, and the results demonstrated that bioPDFX can 137 

improve all the five issues and increase the extraction accuracy for GWAS literatures. 138 

 139 

Related Work. The rest of the section reviews the related studies along with the mention of tools 140 

that we use in our approach. PDF text extraction involves extracting out all textual content from 141 

the PDF file in an order that makes sense even without the formatting of the PDF. A variety of 142 

tools are available that parse and convert PDF to text such as Apache PDFBox (2015b), Mozilla 143 

PDF.js (2015d), and Adobe Acrobat SDK (2015a). Most text extractors use a page segmentation 144 

algorithm to determine all the textual areas of the PDF based on width of the whitespace and from 145 

these boundaries also determine a reading order. A major problem associated with the text based 146 

extraction is because of variability of PDF publishing software. Some tools embed a special 147 

character that is not included in a standard font by drawing a vector graphics over it. Thus, although 148 

it might look perfectly correct to a reader, the information is not present in the text layer of the 149 

PDF for text extractors to extract. In our bioPDFX tool, we integrated text extraction from Apache 150 

PDFBox with other tools such as PDFX and optical character recognition tool Tesseract OCR to 151 

overcome challenges like this. 152 

XML transcription of a PDF file involves extraction of text, tables, images, etc. and then 153 

tagging them with appropriate sections/regions to make an XML. The exact format of the 154 

transcribed XML depends on the specific tool and might have a tag for title, abstract, introduction, 155 

tables, etc. Some tools like PDFX (Constantin et al. 2013) use a schema similar to JATS/NLM 156 

document-type definition (DTD) format which is a specific format for scientific articles and are 157 
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highly optimized around the organization of such PDF files. PDFX is a freely available rule-based 158 

system which converts scholarly PDF articles to XMLs which have detailed sectional information 159 

such as title, abstract, references, tables, and acknowledgment. It derives transcription parameters 160 

from the relative font sizes, style and spacing of articles with respect to individual PDF files. In 161 

our work, we integrate PDFX with other extraction tools to improve the extraction results for texts 162 

like title, abstract, reference, and acknowledgement. 163 

Text post-processing is a step that improves the correctness of the generated text. Several 164 

tools, such as Tesseract OCR (Smith 2007), deploy techniques from Optical Character Recognition 165 

(OCR) to increase the accuracy in the post-processing stage. Because most OCR engines classify 166 

each character independent of other characters, it is important to post-process the text using some 167 

contextual information such as statistical language models or syntactic and semantic rules. One 168 

such method suggested by Zhuang and Zhu (Zhuang & Zhu 2005) reduces the candidate character 169 

search space for characters by using the candidate distance information by an OCR engine in 170 

conjunction with an n-gram based language model and a semantic lexicon. In another method 171 

proposed by Velagapudi (Velagapudi 1999), contextual information was extracted by modeling 172 

words/n-grams as sequences of characters and a Hidden Markov Model (HMM) was subsequently 173 

used to decide the best sequence, using the given OCR output as the observation. Transition 174 

probabilities of one character to another are calculated from a corpus and emission probabilities 175 

are calculated from the output of the OCR engine on a corpus, to statistically record the error 176 

patterns of the OCR engine. At the word level, Tong and Evans (Tong & Evans 1996) corrected 177 

OCR text by modeling the text as sequence bigrams and then using HMM to compute the best 178 

word sequence. The system learns the character level confusion probabilities for a specific OCR 179 

engine and uses it to achieve better performance. In our study, we follow a similar approach to 180 
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post-process the output from PDFX using the Tesseract OCR engine. 181 

In addition to above methodologies, several systems extract metadata such as authors, year of 182 

publication, journal name, and bibliographical information from natural language text or PDFs 183 

directly. CERMINE (Tkaczyk et al. 2014) uses supervised and unsupervised machine learning 184 

techniques to extract parsed bibliographic references and metadata directly from PDFs. FLUX-185 

CiM (Cortez et al. 2007) uses unsupervised, non-template methods to extract citation components 186 

from articles. Other PDF transcribers include LA-PDFText.(Ramakrishnan et al. 2012) Although 187 

the abovementioned tools are available for PDF-to-text transcription, several issues are yet to be 188 

dealt with, such as how to extract title and abstracts correctly, identify reference acknowledgement 189 

sections in various format, recognize special characters correctly, detect and fix jumbling errors, 190 

and correct word boundaries. PDFJailbreak (Garcia et al. 2013) is a communal project to create an 191 

architecture and shared API to support open community development of semantic information 192 

extractor from biomedical literature in PDF form. 193 

194 
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2. Materials and Methods 195 

The goal of this study is to extract high-quality XMLs from a biomedical literature PDFs to 196 

make it better suited for our text mining tasks. Given a PDF file and its corresponding PubMed ID, 197 

our system integrates the following four tools to generate output XML files: 198 

 199 

• PDFX (Constantin et al. 2013) to transcribe XML of the given PDF 200 

• PMC Entrez e-utilities API (Sayers et al. 2011) to retrieve text from PubMed 201 

• Tesseract OCR (Smith 2007) to extract text extracted from the PDF file 202 

• Apache PDFBox (2015b) to transcribe text of the given PDF 203 

 204 

As shown in Figure 2, there are five correction stages (title/abstract, 205 

reference/acknowledgment, special character, jumbling error, and word boundary corrections) in 206 

the bioPDFX pipeline. Each stage is a filter and accepts an XML as input, giving a corrected XML 207 

as output. We start from the XML generated by PDFX, correct title and abstract using PMC Entrez 208 

e-utilities API, identify reference and acknowledgement texts, exploit Tesseract OCR to fix special 209 

characters, utilize Apache PDFBox to correct jumbling errors, and recover word-boundaries as our 210 

final stage. It should be noted that the pipeline design of bioPDFX allows different order of 211 

correction stages, as well as adding new correction stages. The detail of each of the correction 212 

stages is discussed in the following subsections. 213 

214 
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Figure 2. A flow diagram showing the stages of correction and their inputs. 215 

Stages are arranged in a pipelined fashion and take an XML as input and return a corrected XML 216 

as output. 217 

 218 

219 
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2.1 Title and Abstract Correction 220 

The flow diagram illustrating this step is given in Figure 3. As the input of this step, PDFX 221 

performs well in detecting title and abstract for regular research articles; but in case of manuscripts 222 

which might have contents other than title or abstract on their first page, PDFX struggles to identify 223 

them correctly. To overcome this, we used the PMC Entrez e-utilities API (Sayers et al. 2011) to 224 

retrieve the correct title and abstract (using PubMed ID of the paper) and substituted them for 225 

whatever was present in PDFX XML. It should be noted that we applied PMC Entrez e-utilities 226 

API because our focus is the biomedical literatures archived in PubMed Central. 227 

228 
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Figure 3. A flow diagram showing the title and abstract correction. 229 

The title and abstract correction pipeline, with PDFX XML as input and Title/Abstract corrected 230 

XML as output. 231 

 232 

233 
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2.2 Reference and Acknowledgement Correction 234 

The format of references varies considerably among different publications ranging from a 235 

separate section towards the end to individual references in footnotes continuing alongside the 236 

content body. As PDFX is a purely rule-based system, it often falters in recognizing references 237 

when the common pattern of having references in the end with a heading is not present. Similar 238 

problems were noticed in identifying acknowledgements as well. 239 

A key observation was that whenever PDFX identifies references/acknowledgement in a 240 

paper, it is generally correct and correction was needed only in the case when it does not identify 241 

either. We realized that the text content in references and acknowledgment showed clear patterns 242 

in language, and because for our purpose, we did not need to extract individual bibliographic items 243 

in the references section like PDFX does, classifying each section as a reference/acknowledgment 244 

was enough. Also, it is important to note that the only requirement was to detect reference text, 245 

which is much coarser grained and simpler than complete metadata extraction from journals, or 246 

metadata extraction for each citation.  247 

Although references and acknowledgment are usually clumped together, in this correction 248 

step we designed two separate classifiers, as the patterns they show are different: 249 

(1) For reference detection, we used PDFX XMLs which had a PDFX “reference” tag to train the 250 

classifier (there are 451 such XMLs in our experiment), by taking reference text as positive 251 

examples and rest of the text from the paper as negative examples. Some of the most prominent 252 

features were density of year like numbers, density of “et. al” and similar strings, density of 253 

numbers followed by the dot and so on. For each of the above features, the ratio of the numbers 254 

found versus total number of tokens in the text was used instead of the raw numbers. We 255 
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normalized these features and train a Random Forest classifier (Breiman 2001) to predict 256 

whether a paragraph is a reference text. 257 

(2) For acknowledgment detection, we used PDFX XMLs which had a PDFX “acknowledgment” 258 

tag to train the reference classifier (there are 451 such XMLs in our experiment). We exploited 259 

another Random Forest classifier with features being TF-IDF followed by Latent Semantic 260 

Analysis (Deerwester et al. 1990) (Truncated Singular Value Decomposition (Hansen 1987; 261 

Kolda & O'leary 1998) in our experiment) to perform the detection. The features we adopted 262 

are TF-IDF of the phrases such as “funded by” and “express gratitude”. 263 

 264 

2.3 Special Characters Correction 265 

PDFX and other PDF-to-text converters usually suffer from the problem of recognizing the 266 

special characters (such as '!' and '@') depending on the publishing of the PDF files. The basic idea 267 

for the special character correction step is that given a possibly erroneous n-gram from PDFX in 268 

the token/word level, we recognized the corresponding n-gram in Tesseract OCR and then aligned 269 

the two n-grams by their characters. Then, for differing characters we make a decision about what 270 

character should be present in that position using Hidden Markov Model (HMM) (Baum & Petrie 271 

1966) with Viterbi inference algorithm (Viterbi 1967) and language models. The flowchart for this 272 

pipeline is summarized in Figure 4. 273 

274 
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Figure 4. A flow diagram for special character correction. 275 

This pipeline shows the steps taken in correcting special character errors in an n-gram. 276 

 277 

278 
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2.3.1 Suspicious N-Gram and Character Identification 279 

Before applying HMM, we first select similar character-level n-grams (we treat each character, 280 

including the space, as unigram) from the output of OCR and PDFX, align the n-grams and then 281 

mark suspicious characters in the n-grams. To select the most similar n-gram from OCR and PDFX 282 

text, we used Levenshtein Distance (Levenshtein 1966) normalized for length to measure the 283 

similarity between the two n-grams. The alignment of the two n-grams is done at the character 284 

level and is based on a gene sequence alignment mechanism which is widely used (Hsu et al. 2008). 285 

If the n-gram in OCR text is at least 0.6 (in Levenshtein Distance) as like the PDFX n-gram then 286 

the characters that need to be replaced are marked. This is done by looking at the characters that 287 

differ in the two n-grams after the alignment and selecting those characters which are not aligned 288 

with whitespaces or digits. These mismatch characters are then fed to a HMM to predict top 289 

possible correct character. The example in Figure 5 show the OCR, PDFX, and gold standard n-290 

grams. In this example, the mismatch characters in OCR n-gram are “α”, “u”, and “3”, while 291 

that in PDFX n-gram are “a”, “a” and “s”. 292 

293 
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Figure 5. An example showing three types of n-gram: OCR, PDFX, and gold standard. 294 

The mismatch characters are shown in bold and underlined style. 295 

 296 

297 
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2.3.2 Prediction of Top-N Possible Correct N-Gram Lists for OCR and PDFX 298 

After marking the suspicious characters in the n-gram from OCR and the one from PDFX, we 299 

predict the list of the most probable correct n-grams for OCR and the list for PDFX. Our solution 300 

is to train an HMM (16) using a training corpus of aligned OCR, PDFX and gold standard texts, 301 

and infer the “most probable” n-gram by the Viterbi algorithm. 302 

While formulating this problem in terms of HMM Viterbi inference, one of our assumptions 303 

is that characters in the words of meaningful sentences follow the Markov assumption to a good 304 

extent, something which is already well proven by handwriting and speech recognition applications, 305 

which have used HMMs to achieve good performance (10) (19). The other assumption is that 306 

OCR and PDFX have a statistical pattern or bias in the character level errors that they make, and 307 

that these patterns can be learned through a training corpus. The same technique of modeling 308 

words as sequences of characters by HMM has been used to boost OCR accuracy in (24). 309 

To formally state the problem, we first define a character xt as the t-th letter in an OCR n-gram. 310 

Therefore, each OCR n-gram can be represented as X = x1x2...xN , which is a concatenation of N 311 

characters. It should be noted that the character whitespace (i.e., “ ”) is also treated as a character. 312 

In Figure 5, the number of characters in the OCR n-gram “the α-value wa3 less than 0.01” is 30. 313 

Next, we compute an ambiguity dictionary, which is a dictionary that records occurrences 314 

of observed mismatched characters in the corpus. Specifically, the ambiguity dictionary is a list 315 

of tuples of the form: (observed character, actual character, frequency). For example, a tuple (“α”, 316 

“p”, 30) means that for 30 times when we saw “α” in OCR / PDFX text corpus, the actual 317 

character in gold standard was “p”. Multiple tuples for an observed character, like “α” in our 318 

example can be aggregated and written as: 319 
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 320 

“α”: [(“p”, 150), (“α”,30), (“a”, 5)], 321 

 322 

which means that for “α” in OCR / PDFX n-gram, the true character should be a “p” 150 times, 323 

“α” 30 times and “a”, 5 times. 324 

Thus, each mismatch character (from OCR n-gram) xt corresponds to a candidate-character set 325 

δt , which can be computed from the ambiguity dictionary. For non-mismatch characters, the 326 

candidate character set δt = {xt}, contains only one element which is exactly xt . In our OCR n-327 

gram example, the candidate-token set of the first character “t” is “t”, while that of the fifth 328 

character “α” may be {“α”, “a”, “p”, “o”, “0”}, for example. Therefore, our problem can be 329 

regarded as to choose the “most probable” candidate character for each mismatch character in 330 

OCR n-gram, which can maximize the overall likelihood to recover the gold standard n-gram. 331 

In other words, we want to find Y
*
 = y1 ∗ y2 ∗ ...yN = argmaxY P(Y|X ), where y1 ∗ y2 ∗ ...yN are 332 

the “most probable” candidate characters given X , the pair of OCR and PDFX n-grams. We 333 

simplify the notation by using P(Y) as the target probability that we want to maximize. 334 

We apply Hidden Markov Model (HMM) to solve our problem. Based on the Markov 335 

assumption, the probability we want to maximize can be written as P(Y) = P(y1y2...yN) = 336 

P(y1)P(y2|y1)P(y3|y2)...P(yN|yN − 1). The model of our HMM is defined as follows: 337 

 338 

• Observation 339 

σ = p1, p2, ..., pM , which is a set of all possible M values for all characters. 340 
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 341 

• State 342 

 343 

which is a set of all possible K values for all candidate characters. 344 

 345 

• Initialization Probabilities 346 

Π = {πi|πi = P(yt = qi)}, which is a set of initial probabilities for each state. 347 

Therefore, |Π|= K. Suppose L1(qi) is the conditional probability given by 1-gram 348 

language model (trained from the gold standard n-grams) for each candidate-character 349 

qi (e.g., “α”), we compute πi as follows: 350 

πi = L1(qi) 351 

Note that  352 

 353 

 354 

• Transition Probabilities 355 

A = {ai j|ai j = P(yt+1 = q j|yt = qi)}, which is a set of probabilities transiting from the 356 

t-th candidate character yt with state qi, to the (t + 1)-th candidate-character yt+1 with 357 

state qj. Therefore, |A| = K2. Suppose L2(qi, q j) is the conditional probability 358 
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given by 2-gram language model (trained from the gold standard n-grams) for two 359 

consecutive candidate-characters qi and q j (for example, “α-”), we compute ai j as 360 

follows: 361 

ai j = L2(qi, q j) 362 

 363 

Note that  364 

 365 

 366 

• Emission Probabilities 367 

B = {bik|bik = P(xt = pk|yt = qi)}, which is a set of probability for the t-th 368 

candidate-character yt with state qi, to emit the t-th character xt with observation 369 

pk.Therefore, |B| = K*M. Suppose C(pk, qi) is the count that a candidate-character qi 370 

(e.g., “p” from gold standard n-gram) is recognized as a character pk (e.g., “α” from 371 

OCR n-gram), and λ is a regularization constant, we compute bik as follows: 372 

 373 

Note that, for all states i =1, 2, ..., K. In our example ambiguity dictionary for 374 

character “α” = [(“p”, 150), (“α”, 30), (“a”, 5)], the emission probability from “p” to 375 

“α” (i.e., the probability that we observe “α” in OCR n-gram, but the true character 376 

in gold standard n-gram is “p”) can be estimated as ((30 + λ) / (150 + 30 + 5 + λ)). 377 
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 378 

Finally, we apply the Viterbi algorithm with our HMM model to decode the N most probable 379 

Y
*
. In this way, we have the top N most probable n-grams given an OCR n-gram as the 380 

observation. 381 

We follow the same process for PDFX as well, that is, treating the PDFX n-gram as the 382 

observation and using OCR n-gram to see which characters are not in consensus. Similarly, the 383 

ambiguity dictionary for PDFX was derived by applying the same method, except that we record 384 

ambiguities for PDFX instead of OCR. Hence, we can compute another list of the top N most 385 

probable PDFX n-grams along with their probabilities. 386 

 387 

2.3.3 Combination of Top-N Possible Correct N-Grams Lists 388 

Next, we select the most probable n-gram as the n-gram common in both lists (with 389 

respect to marked characters only) which has the maximum combined probability, using the idea 390 

of integrating gene mention tagging models (9). This is illustrated in Figure 6. 391 

392 
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Figure 6. The example showing two top-N list of the most probable NXML n-grams with 393 

their log probabilities given by Viterbi inference. 394 

Candidate number 5 in the left list (where PDFX n-gram is the observation) matches candidate 395 

number 0 in the right list (where OCR n-gram is the observation), which is the “chosen best”. 396 

 397 

398 
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The PDFX n-gram in Figure 6 is “rs2252931 max P = 2.2610 29” and the OCR n-gram is: 399 

“rs2252931 max P=2.2x10-9”. The characters highlighted in green/blue are the characters marked 400 

for correction. We won’t apply correction to other characters, but instead just keep whatever we 401 

observe in the PDFX n-gram because other mismatches are pairs of digits. The left list of 10 402 

candidates is from treating the PDFX n-gram as the observation, while the right side shows the 403 

candidates from treating the OCR n-gram as the observation. The numbers in negative are the log 404 

probabilities for each sequence as given by the Viterbi algorithm. 405 

The candidate numbered 5 in the left list matches the candidate numbered 0 in the right list 406 

(for the highlighted characters), and this combination has the highest joint probability (although 407 

other combinations also match like 5, 1 and 5, 4). Thus, we choose this candidate as the most 408 

probable n-gram. 409 

There can be a case where the two lists do not share a common candidate with respect to 410 

marked characters. In that case, we use the n-gram language model trained on our corpus to 411 

obtain the probabilities for each of these twenty candidates, and select the most probable n-gram 412 

candidate. In case there is again a tie among all twenty, we take the top n-gram candidate from 413 

the PDFX candidate list as the most probable n-gram. An example of this scenario is shown in 414 

Figure 7, where the two lists do not share a candidate in common and the language model chooses 415 

the best candidate in the OCR candidate list, as it scores the highest. 416 

Finally, in the post-processing step, we pick th n-gram with the highest score, as the “most 417 

probable” n-gram as the output of the special character correction step. 418 

419 
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Figure 7. The example showing two top-N list of the most probable n-grams with their log 420 

probabilities given by Viterbi inference. 421 

None of the pair of candidates in the lists match. 422 

 423 

424 
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2.4 Jumbling Correction 425 

The correction of jumbling errors (the wrong order of text while converting PDF to text, as 426 

illustrated in Figure 1) in the output XML from PDFX is done by using the textual output as 427 

generated by Apache PDFBox. We start by making a non-overlapping n-gram set of PDFX XML 428 

text and an overlapping n-gram set for Apache PDFBox text. Then, we use a simple exhaustive 429 

method to check if a n-gram contains jumbling error. That is, if an overlapping n-gram is a 430 

permutation of another n-gram, we consider that the n-gram contains jumbling error. Next, we 431 

replace the suspicious n-gram by the non-jumbled version of n-gram from Apache PDFBox. 432 

Finally, we string together the non-overlapping n-grams with a space to construct the jumbling 433 

corrected text. 434 

 435 

2.5 Word Boundary Correction 436 

To correct word boundary error (e.g., “cancer” might become “can-” and “cer” if it is the last 437 

word of a row, thus it should be combined and corrected as “cancer” instead of two words), we 438 

adopted a simple dictionary lookup method by comparing different parts (e.g., “can-” and “cer”) 439 

with the English dictionary in the Enchant Spellchecking System (2015c) and merging them as 440 

required. Specifically, if the hyphenated word is not present in the English dictionary but the word 441 

without the hyphen is present in the dictionary, we remove the hyphen from the word. If the word 442 

with or without hyphen is not present in the dictionary, we keep it unchanged. 443 

 444 

 445 
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2.6 Experiment Settings 446 

We conduct experiments to compare bioPDFX with state-of-the-art PDFX tool (Constantin et 447 

al. 2013), and test the following two hypotheses: 448 

 449 

(a) For each of the individual correction steps, bioPDFX provides better quality of PDF to 450 

XML conversion. 451 

(b) For overall pipeline, bioPDFX also provides better conversion quality. 452 

 453 

In our experiment, we set n=5 for n-grams. For special character correction, we exploit 454 

StochHMM (14) to calculate the top-N possible correct n-Grams lists by Viterbi inference, and 455 

KenLM (8) to build language models. We set the regularization parameter to 10
-6

. 456 

 457 

2.6.1 Dataset and Gold Standards 458 

To test the two hypotheses, National Human Genome Research Institute (NHGRI) provided 459 

2,185 biomedical literatures (Jain et al. 2016) related to Genome Wide Association Study (GWAS) 460 

(Hindorff et al. 2009; Welter et al. 2014). Among them, 941 are indexed by PubMed Central 461 

(PMC), where both PDF and XML versions are available for download as we searched in 2015.  462 

From these articles, we randomly sampled 100 pairs of PDF and XML versions (i.e., NXMLs) 463 

from these 941 articles as gold standards for four of our correction tasks: title and abstract, special 464 

characters, jumbling, and word boundary. For reference and acknowledgement, we built our own 465 

gold standard from PDF files directly rather than using those present in NXMLs. The reason behind 466 
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this was incomplete reference sections in most of NXMLs and complete omission of 467 

acknowledgement sections. For 70 randomly selected PubMed articles, we manually compiled 468 

references and acknowledgement text from their PDFs to act as gold standard. For hypothesis (b), 469 

we further manually labeled the p-value and numbers (which are import for GWAS literatures) as 470 

our gold standard. We randomly split the data in to 50% training and 50% test. 471 

 472 

2.6.2 Evaluation Metrics 473 

We developed a scoring metric which measured how a corrected XML from our system 474 

performs with respect to the corresponding NXML. In this metric, an n-gram based similarity 475 

method is used which is common in plagiarism detection. The idea is to make two sets of n-grams 476 

from NXMLs and from our system, and use them to measure the occurrence and correct order of 477 

words. We then compute the F1-score of the two n-gram sets as our evaluation metrics for title 478 

and abstract, reference and acknowledgement, special characters, and word boundary. We applied 479 

macro F1-score for most of the correction tasks except special characters and word boundary (of 480 

which micro F1-score is computed). This is because the number of special characters or words 481 

with incorrect boundary in an article can vary considerably. For jumbling error, we cannot apply 482 

the n-gram similarity methods directly, as the error may appear in the tables (as shown in Figure 483 

1). Therefore, we compute the average counts of such errors over all the articles in the dataset as 484 

our evaluation metrics. For hypothesis (b), we further compute the micro F1-score for the p-value 485 

and numbers (for the same reason as special character and word boundary), and the macro F1-486 

score for the overall text quality (which is the n-gram similarity score for the whole document). 487 

488 
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3. Results  489 

The results for each of the five correction steps are shown in Table 1. That is, each step is 490 

evaluated independently. As Table 1 depicts, in all correction steps bioPDFX outperforms PDFX, 491 

especially for abstract, reference/acknowledgement, special character, and jumbling error 492 

corrections. 493 

On the other hand, Table 2 shows the scores at the end of the pipeline, where the corrections 494 

are run in order of the pipeline as shown in Figure 2. Like the results of individual corrections 495 

steps, bioPDFX in general perform better. The additional evaluation tasks (p-value, number and 496 

overall text quality) are also included in Table 2. It should be noted that although no correction is 497 

aimed at improving p-values, numbers or overall text quality, bioPDFX was still able to provide 498 

higher conversion quality for these three tasks. 499 

500 
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Table 1. Stage wise quality score comparison of raw and corrected XMLs. 501 

Correction Step PDFX bioPDFX Metric 

Title 0.9135 0.9763 Macro F1 
Abstract 0.5428 0.8920 Macro F1 
Reference/Acknowledgment 0.6496 0.8026 Macro F1 
Special Character 0.7071 0.8860 Micro F1 
Jumbling 2.89 1.92 Average Error 
Word-Boundary 0.7619 0.8053 Micro F1 

Jumbling score is the average number of jumbling errors detected per paper (lower is better). 502 

503 
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Table 2. Final quality score comparison of raw and corrected XMLs at the end of the 504 

correction pipeline. 505 

Correction Step PDFX bioPDFX Metric 

Title 0.9135 0.9695 Macro F1 
Abstract 0.5428 0.8877 Macro F1 
Reference/Acknowledgment 0.6496 0.8026 Macro F1 
Special Character 0.7071 0.8932 Micro F1 
Jumbling 2.89 1.95 Average Error 
Word-Boundary 0.7619 0.8189 Micro F1 

P-value 0.5465 0.6615 Micro F1 
Number 0.8733 0.8853 Micro F1 
Overall Text Quality 0.9006 0.9107 Micro F1 

Jumbling score is the average number of jumbling errors detected per paper (lower is better). 506 

507 
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4. Discussion  508 

Based on the experiment results, we show the experimental evidence to support the two 509 

hypotheses. Next, we discuss our results for each correction step in detail: 510 

 511 

• Title and Abstract. The correction scores for title and abstract is quite good in case of raw 512 

XMLs and increases substantially in the final corrected XMLs. This is an expected 513 

behavior as we are retrieving titles and abstracts using the PMC Entrez e-utilities API 514 

directly which can be thought of as a gold standard itself. The F1-scores are still not perfect 515 

due to syntactic differences between title/abstract text present in NXMLs and the 516 

title/abstract text retrieved from e-utilities API. For example, the API does not seem to use 517 

Unicode characters like “≤”, “≥” and “∼” and would instead have the phrases “less than or 518 

equal”, “greater than or equal” and “approximately” in their place. Furthermore, there 519 

were cases where the data from NXMLs was incorrect because of errors from 520 

authors of those papers like missing title/abstracts and other similar inconsistencies 521 

in punctuation. Apart from this, we can consider the titles and abstracts to be near perfect in 522 

the corrected XMLs (assuming e-utilities API gives correct results). Some o ther  errors 523 

are introduced due to accumulation of errors from previous stages of corrections in the 524 

pipeline, but as can be seen by comparing stage-wise and end of pipeline scores in Table 1 525 

and Table 2, they are quite small and can be neglected. 526 

• Reference and Acknowledgement. Reference/Acknowledgment scores also improved 527 

considerably and lead to better scores for the remaining stages of the pipeline, by removing 528 

a significant number of the False Positives, as can be observed by comparing the stage-529 
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wise-results in Table 1 and final- results in Table 2. 530 

• Special Character. We could improve special character F1-score by a considerable margin 531 

through our technique of combining HMMs, n-gram alignment, OCR, and language 532 

models. 533 

• Jumbling Error. The average counts of jumbling errors are fewer for bioPDFX then for 534 

PDFX. It should be noted that there is no guarantee that jumbling errors occur only over 5-535 

grams, or equivalently within 5 words. In the same document, there might be jumbling 536 

errors spanning up to arbitrarily large and varied n. A better approach might be to start with 537 

a much larger n and attempt to detect jumbling from there and progressively reduce n one 538 

by one, however this approach is computationally intensive. Even operating on 5-grams 539 

for jumbling error correction step takes a significant amount of time compared to other 540 

correction steps. 541 

• Word Boundary. The F1-score of word boundary correction using bioPDFX are also 542 

improved modestly comparing to PDFX. We also attempted to use a language model (along 543 

with the English dictionary) to increase the range of corrections possible for biomedical 544 

terms, but it did not give us any performance improvement. We believe this is because 545 

word boundary errors are comparatively infrequent compared to total number of words in 546 

an article, and because most words in an article are English words or numbers, most word 547 

boundary errors happen in English words, which are already corrected by the English 548 

dictionary. 549 

Also, the usability of bioPDFX can be largely increased by a multiple-files uploading 550 

functionality, so that users can submit many PDF files of interest for conversion instead of 551 
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uploading one-by-one. We are currently implementing an interface for such a multiple-uploading 552 

feature (Figure 8) for a biocuration tool that will include this feature to maximize the utility of 553 

bioPDFX. 554 

 555 

556 
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Figure 8. The interface for multiple-files uploading. 557 

The usability of bioPDFX can be largely increased by integrating it within a biocuration tool. 558 

 559 

560 
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5. Conclusions 561 

We have developed a tool to convert PDF files into XML format specifically for biomedical 562 

articles, targeting the five challenges of state-of-the-art converters: title/abstract, 563 

reference/acknowledgement, special character, jumbling error, and word boundary. Overall, the 564 

whole pipeline developed in this paper makes the published literature in form of PDF files much 565 

better suited for text mining tasks while slightly improving the overall text quality as well. 566 

Although the tool discussed in this paper is trained to be specifically optimized for our target 567 

corpus (GWAS), we believe that these techniques can be applied to other kinds of literatures as 568 

well. 569 

It should be noted that although we use PDFX XMLs as the main text sources, and use Apache 570 

PDFBox and OCR text as auxiliary text sources, bioPDFX is general and is not dependent on these 571 

text sources. Given a primary text source to correct substitution errors, other secondary text sources 572 

can also be exploited in the correction steps. 573 

There are some limitations of the approach, but we believe that these can be easily overcome 574 

in different domains and by investigation of several different text sources. These limitations are 575 

summarized as below: 576 

 577 

• Title and abstract corrections depend on the PMC Entrez e-Utilities API 578 

• As we model n-grams as sequences of characters and due to the Markov assumption, we 579 

cannot correct errors in which one character is replaced by multiple ones, or is deleted 580 

• Jumbling error correction is only an approximation since we fix n=5 581 

 582 
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In the future, we plan to run each of the text sources in parallel further improving the overall 583 

performance, for which our initial result was reported in (Goyal et al. 2016). Also, we plan to 584 

explore more challenging issues in the PDF to XML conversion process. Finally, we plan to extend 585 

our experiments on more diverse types of large-scale corpuses. 586 

587 
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