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Abstract9

The maximum likelihood estimation (MLE) method, typically used for polytomous logistic regression, is10

prone to bias due to both misclassification in outcome and contamination in the design matrix. Hence,11

robust estimators are needed. In this study, we propose such a method for nominal response data with12

continuous covariates. A generalized method of weighted moments (GMWM) approach is developed for13

dealing with contaminated polytomous response data. In this approach, distances are calculated based on14

individual sample moments. And Huber weights are applied to those observations with large distances.15

Mellow-type weights are also used to downplay leverage points. We describe theoretical properties of the16

proposed approach. Simulations suggest that the GMWM performs very well in correcting contamination-17

caused biases. An empirical application of the GMWM estimator on data from a survet demonstrates its18

usefulness.19
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Introduction20

Polytomous logistic regression models for multinomial data are a powerful technique for relating depen-21

dent categorical responses to both categorical and continuous explanatory covariates [1, 2]. In practice,22

however, the model building process can be highly influenced by peculiarities in the data. The maxi-23

mum likelihood estimation (MLE) method, typically used for the polytomous logistic regression model24

(PLRM), is prone to bias due to both misclassification in outcome and contamination in the design25

matrix [3, 4]. Hence, robust estimators are needed.26

For categorical covariates, we may apply MGP estimator [5], φ-divergence estimator [6], and robust27

quadratic distance estimator [7]. The least quartile dfference estimator can deal with overdispersion28

problem [8]. But all these methods are difficult to be adapted for continuous covariates.29

A generalized method of moments (GMM) estimation can be formed as a substitute of MLE. The30

GMM is particularly useful when the moment conditions are relatively easy to obtain. GMM has been31

extensively studied in econometrics [9–13]. Under some regularity conditions, the GMM estimator is32

consistent [9]. With an appropriately chosen weight matrix, GMM achieves the same efficiency as the33

MLE [14]. Furthermore, under certain circumstances, GMM provides more flexibility, such as dealing34

with endogeneity through instrumental variables [15].35

Like MLE, GMM estimation can be easily corrupted by aberrant observations [16]. Such observations36

can bring up disastrous bias on standard parameter estimates if they are not properly accounted for,37

see [17], [18], and [19]. So we propose a modified estimation method based on an outlier robust variant38

of GMM. The method is different from the kernel-weighted GMM developed for linear time-series data39

by [20] in that this is a data-driven method for defining weights. The new approach is evaluated using40

asymptotic theory, simulations, and an empirical example.41

The robust GMM estimator is motivated by the data from a 2006 study on hypertension in a sample42

of the Chinese population. 520 people completed the survey. Observed variables included demographics,43

social-economic status, weight, height, blood pressure, and food consumption. Sodium intakes were44

calculated based on overall food consumption. Among those covariates, age, body mass index (BMI),45

and sodium intakes are all continuous. Based on blood pressure measurements, subjects were classified46

into 4 categories: Normal, Pre-hypertension, Stage 1 and Stage 2 hypertension. Table 1 lists the summary47

statistics of the sample. One of the research objectives is to examine the association between hypertension48
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and risk factors in the population. Since the proportional odds assumption is violated (Score test for the49

proportional odds assumption gives χ2 = 182.27 with a degree of freedom of 8, p < 0.0001), we apply the50

polytomous logistic model, using the normal category as the reference level. In the case of J category,51

the polytomous logit model have J − 1 comparisons. Each comparison have a set of parameters for all52

covariates in the model. Therefore, the generalized logit model is not parsimonious when comparing with53

the proportional odds model. But the simultaneous estimation of all parameters is more efficient than54

separate models for each comparison. It is another option for ordinal response data, especially when a55

proportional odds model does not fit the data well. Table 2 lists the output from the model estimated56

by MLE. It is obvious that, if MLE is used, the estimates is inconsistent for sodium intakes, particularly57

the negative coefficient of sodium intake for the odds between the Stage 2 hypertension and the Normal58

categories. The inconsistency is more obvious when we plot the odds with respect to the sodium intake,59

the downward trend of the odds in Figure 2.A. This result contradicts the previous finding that there is60

a strong relationship between sodium intake and hypertension, see for example [21], [22] and references61

therein. Besides, Figure 2.A also shows another strange situation: the higher starting points for the odds62

between the Pre-hypertension and the Normal categories. The scatter plot (Figure 1) between distances63

and leverages suggests some observations are possible outliers: Observations 21, 33, 85, 92, 194, 274, 336,64

414, 459, 483, and 489 have large distances, which are blue-colored, and Observations 37, 83, 263, 459,65

483, 485, and 490 have large leverages, which are red-colored.66

Table 1. Summary statistics for surveyed subjects.

Hypertension categories
Covariate Normal Pre-hypertension Stage 1 Stage 2
Gender Male 138 104 29 8

Female 87 114 31 9

Age Mean 43.2 48.8 54.3 60.3
Std. Dev. 13.7 13.8 12.2 13.4

BMI Mean 43.2 48.8 54.3 60.3
Std. Dev. 13.7 13.8 12.2 13.4

Sodium Intake Mean 3.7 3.7 4.6 2.7
Std. Dev. 3.0 2.4 5.0 2.1

The paper is set up as follows. In the next section we presents the basic notations, model, and67
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Figure 1. Scatter plot of distance vs. leverages, which are based on MLE.
Criteria cd for the distance and cx for the leverage are demonstrated.

Table 2. Polytomous logistic regression of a hypertension data: coefficient estimates and
standard errors from GMWM and MLE.

MLE GMWM
Var Coefs Estimates Std.Err p value Estimates Std.Err p value
Sex β21 0.7062 0.2022 0.0002 1.3339 0.2269 < 0.0001

β31 0.9789 0.3235 0.0012 1.0368 0.3013 0.0003
β41 1.4193 0.5746 0.0068 0.6753 0.2195 0.0010

Age β22 0.0350 0.0075 < 0.0001 0.0671 0.0086 < 0.0001
β32 0.0715 0.0121 < 0.0001 0.1139 0.0133 < 0.0001
β42 0.1096 0.0216 < 0.0001 0.0753 0.0103 < 0.0001

BMI β23 0.1147 0.0316 0.0001 0.1681 0.0360 < 0.0001
β33 0.2422 0.0474 < 0.0001 0.4382 0.0538 < 0.0001
β43 0.4351 0.0884 < 0.0001 0.2279 0.0388 < 0.0001

Sodium β24 0.0104 0.0349 0.3829 0.1831 0.0355 < 0.0001
β34 0.0919 0.0426 0.0155 0.2315 0.0486 < 0.0001
β44 -0.2699 0.1580 0.9562 0.2294 0.0353 < 0.0001

Std.Err = standard error.
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Figure 2. Compare odds plots of sodium intakes between MLE estimates and GMWM
estimates on the population of Female, Age=40, and BMI=23.

standard GMM. Section “A robust GMM” introduces the outlier robust GMM estimator, and gives a68

detailed exposition of its implementation. In Section “Results”, we compares the performance of the69

standard MLE with the new estimator using a Monte-Carlo experiment. And we apply both estimators70

to real epidemiological data, and illustrate the usefulness of the robust estimator for application oriented71

researchers. We conclude with a discussion of advantages and limitations of the approach. The supporting72

document gathers the proofs of the asymptotic property.73

Materials and Methods74

The baseline-category logit model75

Assume a random sample of size n from a large population. Each element in the population may be76

classified into one of J categories, denoted by yi = (yi1, yi2, ..., yiJ) the multinomial trial for subject77

i, where yij = 1 when the response is in category j and yij = 0 otherwise, i = 1, ..., n, j = 1, ..., J .78

Thus,
∑

j yij = 1. Suppose p explanatory covariates, with at least one of them being continuous, are79

observed. Define xi = (1, xi1, ..., xip), and x = (x1, ...,xn). We assume that (yi,xi) are independently80
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and identically distributed (i.i.d). Let πij = πj(xi) = P (Yi = j|xi),, denote the probability that the81

observation of Y belongs to category j, given covariates xi, we assume the relationship between the82

probability πj and x can be modeled as:83

log

{

πj(xi)

πJ(xi)

}

= xT
i βj , j = 2, ..., J (1)

where βT
j = (βj0, βj1, ..., βjp). Here we set the first category as reference class. This model is called84

a baseline-category logit model [23] or generalized logit model [24]. MLE is usually used for obtaining85

parameter estimation of this model. Here we present an alternative estimation method formed with the86

GMM.87

Estimation using GMM88

The baseline-category logit model can be viewed as a multivariate model. Define y∗T
i = (yi2, ..., yiJ),89

since yi1 is redundant. Let XT = (XT
1 , ..., X

T
n ) is a n(J − 1) × (p + 1)(J − 1) matrix, with XT

i , a90

(J − 1)× (p+ 1)(J − 1) matrix, defined as:91

XT
i =



















xT
i

xT
i

· · ·

xT
i



















(2)

In the GMM framework, we define92

u(β) = Xi(y
∗
i − πi), i = 1, ..., n. (3)

where πT
i = (πi2, πi3, ..., πiJ). And βT = (βT

2 , β
T
3 , ..., β

T
J ) is the (p + 1)(J − 1) vector of unknown

parameters. The population moment condition is

E{u(β)} = 0,
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with the corresponding sample moment condition93

Un(β) =

n
∑

i=1

u(β). (4)

The GMM estimation of β̂M can be obtained by minimizing the following quadratic objective function

Qn(β) = UT
n (β)Σ−1

n (β)Un(β),

where Σn(β) can be the empirical variance-covariance matrix given by

Σn(β) =
1

n2

n
∑

i=1

uT (β)u(β)− 1

n
Un(β)U

T
n (β).

Or, for the best efficiency of the GMM estimation, we can take the information matrix of the polytomous94

logit model (PLRM), that is,95

Σn(β) =

n
∑

i=1

Xi(Di − πiπ
T
i )X

T
i . (5)

where Di = diagonal(πi).96

In general, β̂M can be computed via an iterative procedure [25]. Under standard regularity conditions,97

the GMM estimator β̂M exists and converges in probability to the true parameter β0 [9]. A proof of98

asymptotic normality of GMM can be found in Page 2148 of [13].99

A robust GMM100

In this section we introduce the outlier robust GMM estimator. In the following subsection, we specify101

moment conditions used for robust estimation. And the details on the implementation of the estimator102

follows.103

The generalized method of weighted moments104

The main principle used in the robust GMM estimator is that we replace moment conditions by a set of105

observation weighted moment conditions. Instead of Equation (3), we define106

uw(β) = wiXi(y
∗
i − πi)− ci, i = 1, ..., n. (6)
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where ci = E{wiXi(y
∗
i − πi)}. Then the estimation can be based on the moment conditions

E{uw(β)} = 0.

Consequently, the generalized method of weighted moments (GMWM) estimates can be defined by107

β̂w = argmin
β∈B

Qw
n (β). (7)

where108

Qw
n (β) = [Uw

n (β)]T {Σw
n (β)}−1Uw

n (β), (8)

with109

Uw
n (β) =

n
∑

i=1

uw(β). (9)

Here we take the summation as the sample moment condition. The advantage of using the summation is110

that it can lead us to a direct estimation of covariance matrix.111

It is clear to see that this definition is analogous to the standard GMM. If we choose wi = 1 and112

ci = 0 for all observations, the moment conditions in (6) are reduced to the standard moment conditions.113

Therefore, the standard GMM is a special case of the GMWM.114

In order to specify the weights for the robust GMM estimator, we need the following definition of a115

distance, which is based on individual moment conditions:116

di(β) = [uw
i (β)]

T {Σw
n (β)}−1uw

i (β), i = 1, ..., n. (10)

The weight is assigned based on di(β), that is, wd = w (di(β)). There are several alternative specifications117

of weight functions available in the literature [17, 18]. In this study, the Huber’s weights are applied:118

w (di(β)) = min

(

1,
cd

di(β)

)

. (11)

The above specification of weight function requires a value of the tuning constant cd. Both the outlier119

sensitivity and the efficiency of the estimator are determined by the constant. On the one hand, the120

estimator should be reasonably efficient if the sample contains no outlier. On the other hand, the estimator121

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.299v1 | CC-BY 3.0 Open Access | received: 23 Mar 2014, published: 23 Mar 2014

P
re
P
ri
n
ts



9

should be insensitive to outliers. To determine cd, understanding the distribution of di(β) is critical.122

Clearly, uw
i (β) is a column vector, and di(β) is a scalar quadratic distance, so we set cd = χ−2

1 (0.975)/n,123

where χ−2
p (·) is the quantile of the χ2 distribution with p degrees of freedom.124

If we take the information matrix (5) of the PLRM as Σw
n (β), we can computer a leverage for each125

observation:126

Hi = Xi{Σw
n (β)}−1XT

i σ
w
i , i = 1, ..., n. (12)

where σw
i is the ith component of Σw

n (β). Then, a Mallows-type weight can be defined based on trace(Hi);127

that is, wx = w(trace(Hi)), to downplay the observations with high leverages. [26] suggest that the128

practical rule for isolating leverage points might set cx = 2(p + 1)(J − 1)/n. In this study, we give129

observations with large leverages 0 weights,130

wx = w(trace(Hi)) =











1 if trace(Hi) ≤ 2(p+1)(J−1)
n

0 otherwise.
(13)

An approach often used to combine the two weights is wi = wd · wx. [27].131

The consistency correction vector ci is defined as

ci =
(

w
(

d
(1)
i (β)

)

− w
(

d
(0)
i (β)

))

/diag (Σw
n (β)) , i = 1, ..., n.

where w
(

d
(h)
i (β)

)

= w
(

Xi{h− πi(β)}/diag [Σw
n (β)]

−1
)

with h = {0, 1}, is the weight for y∗i .132

Implementation of the estimator133

The continuous updating estimation method is applied in this study for estimating the regression coeffi-134

cients and corresponding variance. The procedure is detailed as follows:135

1. Apply an initial value β(0) for computing Σn (β).136

2. Compute di(β) using Equation (10) and Hi using Equation (12); assign weights correspondingly137

based on (11) and (13).138

3. With the combined weights, calculate Σw
n (β) and Uw

n (β) in Equation (9).139

4. Obtain the estimator β̂
(1)

w by minimizing Qw
n of Equation (8).140

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.299v1 | CC-BY 3.0 Open Access | received: 23 Mar 2014, published: 23 Mar 2014

P
re
P
ri
n
ts



10

5. Go back to Step 1, replace β(0) with the estimator β̂
(1)

w in computing Σw
n

(

β̂
(1)

w

)

, and move to the141

next iteration.142

6. Continue this procedure until convergence criteria are met.143

For the starting value β(0), a reasonable choice is the MLE estimation based on the original data.144

In the appendix, we proved that, under some regularity assumptions, we can have that β̂w is consistent145

for β0. And by studying the behavior of the weighted moment equations in a neighborhood of β0,146

we showed that the asymptotic linearity ensures the applicability of the central limit theorem for the147

asymptotic normality of GMWM.148

Results149

Monte Carlo simulations150

In this section we investigate the properties of the GMWM estimator using a Monte-Carlo study. We

generate data with three response categories and two covariates which are from multivariate normal

distribution with 0 mean and identity covariance. The true coefficient matrix β0 is

β0 =













β10 β20 β30

β11 β21 β31

β12 β22 β32













=













0 1.0 −0.3

0 −0.8 0.7

0 −1.0 −0.5













.

Based on the specified coefficient values and using the probability based on the model (1), we compute151

the category-specific probabilities for each subject. Then, using the computed probabilities, we deter-152

mine the most likely category to which each subject belongs. This decision is made through random153

generation from the multinomial distribution with the probability vector as a parameter. For instance,154

multinomial categories in R-Language are generated using rmultinorm(ni, Ni, π(xi)) function, where155

π(xi) = (π1(xi), ..., πJ(xi)) is the probability vector, ni is the number of random vectors to draw, and156

Ni is the total number of objects that are put into J-categories. In our case, ni = Ni = 1 for all subjects157

and J = 3.158

Two sample sizes, 100 and 1000, are examined. For each sample size, we run the simulation 1000159

times. Average biases and MSEs are calculated and tabulated. Table 3 shows the results from randomly160
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generated data with no outliers added. When the sample size is small, GMWM will give greater biases161

on β30 and β31 compared to the MLE method. For the sample size 1000, biases on these two parameters162

increase too, but not so obviously. Variances will also be inflated due to the weights we applied.163

Table 3. Bias of parameter estimates and MSE from randomly generated data without
outliers.

MLE GMWM
n Parameter True Bias MSE Coverage Bias MSE Coverage
100 β20 1.0 0.0666 0.1030 0.945 0.0488 0.1986 0.949

β30 -0.3 -0.0059 0.1206 0.957 -0.1440 0.5578 0.952
β21 -0.8 -0.0654 0.1190 0.938 -0.0513 0.2550 0.961
β31 0.7 0.0566 0.1892 0.963 0.2318 0.5468 0.923
β22 -1.0 -0.0853 0.1764 0.969 -0.0691 0.2380 0.950
β32 -0.5 -0.0624 0.1453 0.945 0.0203 0.3195 0.964

1000 β20 1.0 0.0050 0.0087 0.956 0.0043 0.0181 0.962
β30 -0.3 -0.0055 0.0105 0.984 -0.0106 0.0333 0.950
β21 -0.8 -0.0039 0.0099 0.943 -0.0013 0.0251 0.956
β31 0.7 0.0081 0.0160 0.968 0.0162 0.0401 0.954
β22 -1.0 -0.0071 0.0145 0.987 -0.0025 0.0258 0.948
β32 -0.5 -0.0047 0.0122 0.948 0.0041 0.0361 0.947

Outliers are generated from a multivariate normal distribution with the mean vector = (2, 3) and164

identity covariance I2. For these outliers, their responses are intentionally misclassified, that is, they are165

placed within a different category from those predicted categories based on the true parameters.166

Table 4 lists simulation results with outliers added. For estimations from datasets with 5% outliers,167

bias correction from the GMWM is excellent. However, when the datasets have 10% outliers, biases168

on estimations of some parameters (β21 and β22 in this simulation) are decreased, but not completely169

corrected.170
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Table 4. Comparison between GMWM and MLE estimation from randomly generated data with outliers added.

5% contamination 10% contamination
GMWM MLE GMWM MLE

Size Parameter Bias MSE Coverage Bias MSE Coverage Bias MSE Coverage Bias MSE Coverage
100 β20 0.0568 0.1102 0.956 0.0860 0.0884 0.957 0.0489 0.0999 0.971 0.0868 0.0819 0.970

β30 -0.0038 0.1427 0.954 -0.0055 0.1528 0.949 -0.0057 0.1510 0.945 -0.0431 0.1461 0.814
β21 -0.0392 0.1464 0.949 0.2377 0.1360 0.785 0.0319 0.1227 0.946 0.3607 0.1933 0.579
β31 0.0175 0.2020 0.944 -0.1072 0.1270 0.921 -0.0235 0.1770 0.943 -0.1631 0.1283 0.949
β22 0.0374 0.1207 0.949 0.3848 0.2115 0.578 0.0207 0.0968 0.945 0.6088 0.4151 0.526
β32 -0.0548 0.1572 0.956 -0.0964 0.0904 0.964 -0.0817 0.1349 0.977 -0.1069 0.0803 0.967

1000 β20 0.0172 0.0189 0.939 0.0490 0.0102 0.932 0.0451 0.0202 0.944 0.0657 0.0120 0.900
β30 0.0012 0.0340 0.945 0.0124 0.0075 0.952 -0.0071 0.0336 0.952 -0.0111 0.0063 0.822
β21 0.0260 0.0242 0.937 0.2874 0.0885 0.101 0.0164 0.0207 0.936 0.3876 0.1545 0.002
β31 -0.0058 0.0356 0.950 -0.1423 0.0345 0.697 -0.0497 0.0346 0.917 -0.2269 0.0658 0.521
β22 0.0366 0.0237 0.936 0.4390 0.2032 0.000 0.0238 0.0182 0.938 0.6500 0.4322 0.000
β32 -0.0106 0.0292 0.951 -0.0538 0.0103 0.940 -0.0434 0.0250 0.953 -0.0629 0.0106 0.902
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Application171

For the hypertension data, the criterion for identifying observations with large distances is cd = 0.22,172

and the criterion for identifying leverage points is cx = 0.12. Applying the GMWM estimator, those173

blue-colored points in Figure 1 are automatically downweighted, and red-colored points have 0 weight.174

The GMWM method indeed eliminates those inconsistencies: the coefficient of sodium intake for the175

odds model between the Stage 2 hypertension and the Normal categories is no longer negative, see the176

right side of Table 2.177

As the results indicate, age, gender, and BMI all had significant impact on hypertension status. For178

example, one unit increase in BMI resulted in an increase of 1.26 (95% confidence interval: 1.16 - 1.35)179

times in likelihood to have Stage 2 hypertension when compared with the normal status. And with one180

year age increase, a subject was 1.07 (95% CI: 1.06 - 1.10) times more likely to have Stage 2 hypertension181

than to stay at the normal healthy status. Contrary to the MLE results for sodium intakes, which182

were difficult to make a conclusion due to inconsistent estimate, we now find that sodium intakes were183

statistically significant. When a daily intake of sodium increased one gram, a subject were 1.26 (95%184

CI: 1.15 - 1.37) times more likely to have Stage 1 hypertension, and 1.25 (95% CI: 1.17 - 1.35) times185

more likely to have Stage 2 hypertension. These results are consistent with the findings from previous186

studies [21, 22].187

Discussion188

A reasonable choice to fit ordinal response data is the proportional odds model if the proportional odds189

assumption is not violated. Proportional odds models can take the ordinal information into modeling.190

And it reduces the number of parameters which is needed by the generalized logit model. Unfortunately,191

our data does not met the fundamental assumption of proportional odds models, which makes us choose192

to treat the outcome as a nominal response.193

A datum with a nominal response and some continuous covariates is commonly seen in many scientific194

areas, such as sociology, economy, and biomedical studies. In order to be able to deal with outliers,195

we modified the GMM estimator to replace the standard moment conditions with weighted moment196

conditions, so that aberrant observations automatically receive less weight. We proved that the proposed197

method has good asymptotic behavior. When outliers are present, the GMWM estimator give much198
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smaller biases than the estimations derived from the traditional MLE method. This method can be199

adapted to check whether results obtained with the traditional MLE approach are driven only by a few200

outlying observations. The weights produced from the robust procedure can be used to diagnose the201

cause of the differences and to indicate routes for model re-specification.202
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Appendix: Consistency and asymptotic normality203

In this appendix, we introduce the assumptions for the asymptotic analysis of GMWM, and outline the204

derivations on the main asymptotic properties of GMWM.205

We make the following sets of regularity assumptions regarding properties of the moment functions206

and identification assumptions.207

Assumption I208

I1. B is a compact parametric space.209

I2. Σ is a positive definite matrix.210

I3. It holds that E[uw(β)] = 0 if and only if β = β0, and for any ε > 0, that

inf
β∈B\N (β

0
,ε)

‖E[uw(β)]‖ > 0

where N (β0, ε) = {β ∈ R
l
∣

∣ ‖β − β0‖ < ε} is an open ε-neighborhood of a point β0.211

Assumption F212

F1. Let uw(β) be continuous in β ∈ B, and be twice differentiable in β on N (β0, ε) almost surely.213

F2. Expectation E supβ∈B ‖uw(β)‖, E supβ∈N (β
0
,ε) ‖∂uw(β)/∂βk‖, and214

E supβ∈N (β
0
,ε)

∥

∥∂2uw(β)/∂βk∂βl

∥

∥ exists and are finite for k, l = 1, ..., p.215

Assumption W216

W1. limε→0 sup‖∆‖≤ε |w(β +∆)− w(β)| = 0.217

W2. limε→0 sup‖∆‖≤ε |∂w(β +∆)/∂β − ∂w(β)/∂β| = 0.218

When the above assumptions are met, we can prove that β̂w is consistent for β0. We begin with studying219

the behavior of the weighted moment equations in a neighborhood of β0. And proving their asymptotic220

linearity is followed. The linearity ensures the applicability of the central limit theorem for the asymptotic221

normality of GMWM.222
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Theorem 1. Let the Assumption F and I hold, then the GMWM estimator β̂w is asymptotically normal,

that is,
√
n
(

β̂w − β0

)

F−→ N(0,MTSwM) as n → ∞, where

M =
(

(V w)TΣV w
)−1

(V w)TΣ,

Sw = E

[

1

n

n
∑

i=1

uw(β̂)uw(β̂)T

]

.

with V w = E
[

∂Uw(β̂)

∂βT

]

.223

We start with proving two lemmas before we present the proof of Theorem 1.224

Lemma 1. Let the assumption F, I and W hold, and let Uw
r (β) be the rth element of the vector Uw(β),225

r = 1, ..., p. Then, for 0 < s < 1,226

sup
‖t‖≤C

∣

∣

∣

∣

∣

1

n

∑

i

p
∑

l=1

tl

{

(∂/∂βl)U
w
i,r

(

β +
st√
n

)

− (∂/∂βl)U
w
i,r(β)

}

∣

∣

∣

∣

∣

= op(1). (14)

227

Proof. For l, r = 1, ..., p, by differentiating the ith component of Uw
r (β), we get

∂Uw
i,r(β)

∂βl

= −w(β)Xi

∂πi(β)

∂βl

+
∂wi(β)

∂βl

Xi(yi − πi(β))

Then,228

sup
‖t‖≤C

∣

∣

∣

∣

∣

1

n

n
∑

i=1

p
∑

l=1

tl

{

(∂/∂βl)U
w
i,r

(

β +
st√
n

)

− (∂/∂βl)U
w
i,r(β)

}

∣

∣

∣

∣

∣

≤ C

n

n
∑

i=1

p
∑

l=1

tl sup
‖t‖≤C

∣

∣

∣

∣

(∂/∂βl)U
w
i,r

(

β +
st√
n

)

− (∂/∂βl)U
w
i,r(β)

∣

∣

∣

∣

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.299v1 | CC-BY 3.0 Open Access | received: 23 Mar 2014, published: 23 Mar 2014

P
re
P
ri
n
ts



17

and229

sup
‖t‖≤C

∣

∣

∣

∣

(∂/∂βl)U
w
i,r

(

β +
st√
n

)

− (∂/∂βl)U
w
i,r(β)

∣

∣

∣

∣

≤ sup
‖t‖≤C

{∣

∣

∣

∣

wi

(

β +
st√
n

)

− wi (β)

∣

∣

∣

∣

(

∂/∂βl)πi

(

β +
st√
n

)∣

∣

∣

∣

}

+ sup
‖t‖≤C

{∣

∣

∣

∣

(∂/∂βl)πi

(

β +
st√
n

)

− (∂/∂βl)πi (β)

∣

∣

∣

∣

|Xiwi (β) |
}

+ sup
‖t‖≤C

{∣

∣

∣

∣

(∂/∂βl)wi

(

β +
st√
n

)

− (∂/∂βl)wi (β)

∣

∣

∣

∣

∣

∣

∣

∣

Xi

(

yi − πi

(

β +
st√
n

))∣

∣

∣

∣

}

+ sup
‖t‖≤C

{∣

∣

∣

∣

(

yi − πi

(

β +
st√
n

))

− (yi − πi (β))

∣

∣

∣

∣

(∂/∂βl)wi (β)|
}

.

Then, by taking expectation at both sides,230

E

{

sup
‖t‖≤C

∣

∣

∣

∣

(∂/∂βl)U
w
i,r

(

β +
st√
n

)

− (∂/∂βl)U
w
i,r(β)

∣

∣

∣

∣

}

≤ sup
‖t‖≤C

∣

∣

∣

∣

wi

(

β +
st√
n

)

− wi (β)

∣

∣

∣

∣

sup
‖t‖≤C

(

∂/∂βl)πi

(

β +
st√
n

)∣

∣

∣

∣

+ sup
‖t‖≤C

∣

∣

∣

∣

(∂/∂βl)πi

(

β +
st√
n

)

− (∂/∂βl)πi (β)

∣

∣

∣

∣

sup
‖t‖≤C

|Xiwi (β) |

+ sup
‖t‖≤C

∣

∣

∣

∣

(∂/∂βl)wi

(

β +
st√
n

)

− (∂/∂βl)wi (β)

∣

∣

∣

∣

E

{

sup
‖t‖≤C

∣

∣

∣

∣

Xi

(

yi − πi

(

β +
st√
n

))∣

∣

∣

∣

}

+ sup
‖t‖≤C

∣

∣

∣

∣

(

yi − πi

(

β +
st√
n

))

− (yi − πi (β))

∣

∣

∣

∣

sup
‖t‖≤C

(∂/∂βl)wi (β)| .

Thus, by conditions F and W, we have

E

{

sup
‖t‖≤C

∣

∣

∣

∣

(∂/∂βl)U
w
i,r

(

β +
st√
n

)

− (∂/∂βl)U
w
i,r(β)

∣

∣

∣

∣

}

−→ 0, ∀i.

and

E

{

sup
‖t‖≤C

∣

∣

∣

∣

∣

1

n

n
∑

i=1

p
∑

l=1

tl

{

(∂/∂βl)U
w
i,r

(

β +
st√
n

)

− (∂/∂βl)U
w
i,r(β)

}

∣

∣

∣

∣

∣

}

−→ 0, ∀i.

Therefore, we have the results in (14).231

Lemma 2. Let the Assumption F, I and W hold, it holds that232

1√
n

sup
‖t‖≤C

∥

∥

∥Uw
n (β0 + n− 1

2 t)− Uw
n (β0) + V wn− 1

2 t
∥

∥

∥ = op(1), (15)
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as n → ∞, where V w = E
[

∂Uw(β)

∂βT

]

.233

Proof. Write

Uw
n (β0 + n− 1

2 t)− Uw
n (β0) =

n
∑

i=1

wi(β0 + n− 1

2 t)ui(β0 + n− 1

2 t)−
n
∑

i=1

wi(β0)ui(β0)

By the Taylor expansion, ui(β0 + n− 1

2 t) = ui(β0) + n− 1

2 t
[

∂
∂β

ui(β0 +
t√
n
)
]

, where 0 < s < 1. Then, we234

can write235

Uw
n (β0 + n− 1

2 t)− Uw
n (β0)

=

n
∑

i=1

ui(β0)
{

wi(β0 + n− 1

2 t)− wi(β0)
}

(16)

+
1√
n

n
∑

i=1

wi(β0)t
∂

∂β
ui(β0) (17)

+
1√
n

n
∑

i=1

{

wi(β0 + n− 1

2 t)− wi(β0)
}

t
∂

∂β
ui(β0) (18)

+
1√
n

n
∑

i=1

wi

(

β0 +
t√
n

)

t







∂ui

(

β0 +
t√
n

)

∂β
− ∂ui(β0)

∂β







(19)

We will now show that terms (16), (18) and (19) are asymptotically negligible. As to the term (16), By236

Assumption W1, {wi(β0 + n− 1

2 t)− wi(β0)} → 0, and ui(β0) is independent of β. So we have the term237

(16) tends to zero. Similarly, ∂/∂βui(β0) is independent of β and t is bounded. Hence, the term (18)238

tends to zero. Lemma 1 implies
∂ui

(

β
0
+ t

√

n

)

∂β
− ∂ui(β0

)
∂β

→ 0, as n → ∞. So the term (19) can be neglect239

too.240

Now, let us analyze the term (17). Let w∗
i (β0) be the limit of wi(β0). Rewrite (17) as241

1√
n

n
∑

i=1

wi(β0)t
∂

∂β
ui(β0) =

1√
n

n
∑

i=1

[wi(β0)− w∗
i (β0)] t

∂

∂β
ui(β0) (20)

+
1√
n

n
∑

i=1

{

w∗
i (β0)t

∂

∂β
ui(β0)− E

[

w∗
i (β0)t

∂

∂β
ui(β0)

]}

(21)

+
1√
n
E

[

w∗
i (β0)t

∂

∂β
ui(β0)

]

(22)

The first term (20) is negligible because ∂/∂βui(β0) is independent of β, t is bounded, and [wi(β0)− w∗
i (β0)] →
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0. By the central limit theorem, each element of vector (21) converges in distribution to a normally dis-

tribution random variable with zero mean and a finite variance which is uniformly bounded by t. Hence,

(21) is bounded in probability. The last term (20) is

1√
n
E

[

w∗
i (β0)t

∂

∂β
ui(β0)

]

=
t√
n
V w

This proves the lemma.242

Proof of Theorem 1. Since tn =
√
n = Op(1) as n → ∞ by Lemma 2, we can write (15) as243

Uw
n (β0 + n− 1

2 tn)− Uw
n (β0) + V wn− 1

2 tn = op(n
− 1

2 ). (23)

with a probability arbitrarily close to one uniformly in tn ∈ {t : ‖t‖ ≤ C}. Moreover, with n− 1

2 tn = op(1),244

∂Uw
n (β0 + n− 1

2 tn)/∂β → V w in probability as n → ∞.245

Note that the first order conditions of GMWM equal to 0, that is,

∂Qw
n (βw)

∂β
=

[

∂Uw
n (βw)

∂β

]T

Σ(βw)U
w
n (βw) = 0,

Replace Uw
n (βw) with Uw

n (β0 + n− 1

2 tn) from Equation (23),246

[

∂Uw
n (β0 + n− 1

2 tn)

∂β

]T

Σ(βw)U
w
n (β0 + n− 1

2 tn)

= [V w + op(1)]
T
Σ(βw)

[

Uw
n (β0)− V wn− 1

2 tn

]

= 0.

Then we have247

tn =
√
n(βw − β0) =

√
n
[

(V w)TΣ(βw)V
w
]−1

(V w)TΣ(βw)U
w
n (β0) + op(1). (24)
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Next we examine the behavior of
√
nUw

n (β0), which can be written as248

√
nUw

n (β0) = n− 1

2

n
∑

i=1

ui(β0)wi(β0)

= n− 1

2

n
∑

i=1

ui(β0) {wi(β0)− w∗
i (β0)} (25)

+ n− 1

2

n
∑

i=1

ui(β0)w
∗
i (β0). (26)

Note that the term (25) is asymptotically negligible in probability due the the triangle inequality and249

Assumption W1. The term (26) is stationary sequence of absolutely random variables. By Assumption250

I3 and F2, (26) have zero mean and finite second moments. So the central limit theorem can be applied251

on (26), giving
√
nUw

n (β0) ∼ N(0, Sw) [28, Section 25.3].252

With Equation (24), we have asymptotic normality of βw, and its asymptotic variance is given by253

MTSwM [28].254
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