

A peer-reviewed version of this preprint was published in PeerJ on 17 August 2017.

[View the peer-reviewed version](https://doi.org/10.7717/peerj.3683) (peerj.com/articles/3683), which is the preferred citable publication unless you specifically need to cite this preprint.

Gress E, Andradi-Brown DA, Woodall L, Schofield PJ, Stanley K, Rogers AD. 2017. Lionfish (*Pterois* spp.) invade the upper-bathyal zone in the western Atlantic. PeerJ 5:e3683 <https://doi.org/10.7717/peerj.3683>

1 Title:

2 Lionfish (*Pterois* sp.) invade the upper bathyal zone in the western Atlantic.

3

4 Authors:

5 Erika Gress^{1¶}, Dominic A Andradi-Brown^{2,3¶*}, Lucy Woodall^{1,2}, Pamela J. Schofield⁴,

6 Karl Stanley⁵, Alex D Rogers^{1,2}

7

8 ¹Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road,

9 Begbroke, Oxfordshire OX5 1PF United Kingdom

10 ²Department of Zoology, University of Oxford, The Tinbergen Building, South Parks
11 Road, Oxford OX1 3PS United Kingdom

12 ³Operation Wallacea, Wallace House, Old Bolingbroke, Spilsby, Lincolnshire, PE23
13 4EX United Kingdom

14 ⁴U.S. Geological Survey, 7920 NW 71st Street, Gainesville, Florida 32653 United
15 States

16 ⁵Roatan Institute of Deepsea Exploration, Submarine Dr, West End, Roatan, 34101
17 Honduras

18

19 [¶]These authors contributed equally and are joint first author.

20

21 ^{*}Corresponding author: DAAB

22 dominic.andradi-brown@zoo.ox.ac.uk

23 **Abstract**

24 Non-native lionfish have been widely recorded throughout the western Atlantic on
25 both shallow and mesophotic reefs, where they have been linked to declines in reef
26 health. In this study we report the first lionfish observations from the deep sea (>200
27 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of
28 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the
29 context of other deeper lionfish observations and records, our results imply that
30 lionfish may be found more widely in the 200-300 m depth range of the upper bathyal
31 zone across the western Atlantic, but currently are under sampled compared to
32 shallow habitats. We highlight the need for considering deep-sea lionfish populations
33 in future invasive lionfish management.

34 **Introduction**

35

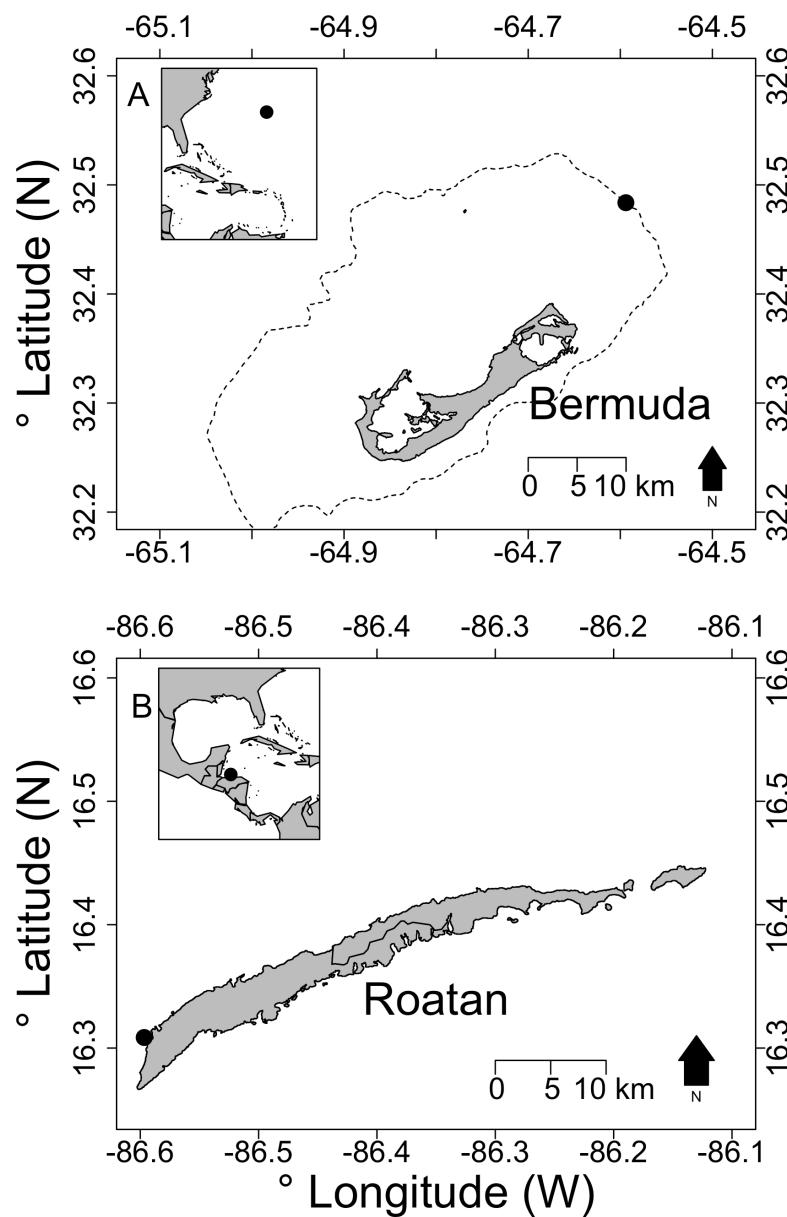
36 Non-native lionfish, first documented in the western Atlantic region in the 1980s
37 (Schofield, 2009; 2010), are considered a major threat to western Atlantic reef
38 communities (Sutherland et al., 2010). Lionfish are benthic generalist predators, and
39 their presence on shallow coral reefs has been associated with up to 65% decline in
40 their prey fish biomass (Green et al., 2012), leading to overall declines in fish
41 recruitment of up to 79% (Albins & Hixon, 2008). In some cases lionfish have been
42 observed to feed on critically-endangered reef fish (Rocha et al., 2015). On both
43 shallow reefs and mesophotic coral ecosystems (MCEs, reefs from 30 to
44 approximately 150-180 m depth; Hinderstein et al., 2010), non-native lionfish are
45 thought to cause increased algal cover by consuming herbivores and causing trophic
46 cascades (Lesser & Slattery, 2011; Slattery & Lesser, 2014; Kindinger & Albins,
47 2017). Native to the Indian and Pacific oceans and Red Sea, lionfish in the western
48 Atlantic have now been recorded from New York, USA in the north (Meister et al.,
49 2005), to as far south as the southeastern coast of Brazil (Ferreira et al., 2015). In
50 addition, there is a second lionfish invasion currently underway in the Mediterranean
51 Sea (Kletou, Hall-Spencer & Kleitou, 2016). Two species of non-native lionfish have
52 been recorded in the western Atlantic: *Pterois volitans* (Linnaeus, 1758) and *P. miles*
53 (Bennett, 1828), though they are believed to be ecologically synonymous in their
54 impacts to western Atlantic marine communities (Morris et al., 2009).

55 The majority of research on lionfish invasions has focused on shallow coral
56 reefs (<30 m), mangroves and seagrass beds (Morris et al., 2009; Claydon, Calosso &
57 Traiger, 2012). However, recent studies have highlighted their widespread presence
58 on MCEs across the western Atlantic invaded range (Andradi-Brown et al., 2017).

59 With one exception (see next paragraph), MCEs represent the deepest depths lionfish
60 have been previously reported from locations across the western Atlantic. For
61 example, from remote operated vehicle (ROV) surveys: 112 m in the northwestern
62 Gulf of Mexico (Nuttall et al., 2014), 100 m off North Carolina, USA (Meister et al.,
63 2005), 126 m on the Desecheo Ridge west of Puerto Rico (Quattrini et al., 2017), and
64 167 m on the Conrad Seamount in the Anegada Passage (Quattrini et al., 2017).
65 Lionfish have also been observed at 120 m from submersible dives in Honduras
66 (Schofield, 2010), and collected from trawl surveys >80 m depth in the eastern Gulf
67 of Mexico (Switzer et al., 2015). In addition, diver-based surveys on MCEs have
68 widely reported sightings in the 30-100 m range in Puerto Rico (Bejarano,
69 Appeldoorn & Nemeth, 2014), Bermuda (Pinheiro et al., 2016), and the Lesser
70 Antilles (de León et al., 2013). Therefore it has been suggested that lionfish have
71 widely colonised MCEs across the western Atlantic (Andradi-Brown et al., 2017).

72 In August 2010, while conducting submersible surveys off Lyford Cay,
73 Nassau, The Bahamas, lionfish were observed at 300 m (pers. comm. from R.G.
74 Gilmore in: Albins & Hixon, 2013; McGuire & Hill, 2014). To our knowledge this
75 sighting represents the maximum known depth distribution of lionfish in the western
76 Atlantic, and the only record of lionfish in the deep sea (defined as >200 m depth;
77 Rogers, 2015). It is not clear whether this sighting represents an isolated incident of a
78 lionfish reaching these depths, or whether lionfish more regularly use habitats in the
79 >200 m depth range, but they have not previously been recorded because of limited
80 surveys within this depth range.

81 In this study we report visual observations of lionfish >200 m depth in two
82 new locations within the western Atlantic region: Bermuda and Roatan, Honduras.


83 We also consider other lionfish records that could potentially indicate that lionfish
84 may widely be found >200 m depth across the western Atlantic range.

85

86 **Methods**

87

88 Bermuda is a series of islands located far off the continental shelf in the northwestern
89 Sargasso Sea (Fig 1A). The islands exist on a large shallow-water platform
90 (approximately 20 m depth, 623 km² area) which are the eroded remains of a Meso-
91 Cenozoic volcanic peak (Coates et al., 2013). The platform is surrounded by a
92 shallow slope, which transitions into near-vertical walls at around 100 m (Coates et
93 al., 2013). While deep reef areas of Bermuda are poorly studied, with few
94 observations below mesophotic depths, there are established MCE communities
95 around Bermuda to at least 80 m (Pinheiro et al., 2016). MCE to deep-sea benthic
96 organisms and benthic-associated fish surveys were undertaken during daylight hours
97 using the *Nemo* and *Nomad* Triton 1000-2 class submersibles (Vero Beach, Florida,
98 USA) down to 300 m depth around the edge of the Bermuda platform during July and
99 August 2016 as part of the Nekton Foundation/XL-Catlin Deep-Ocean Survey –
100 Mission 1 (www.nektonmission.org).

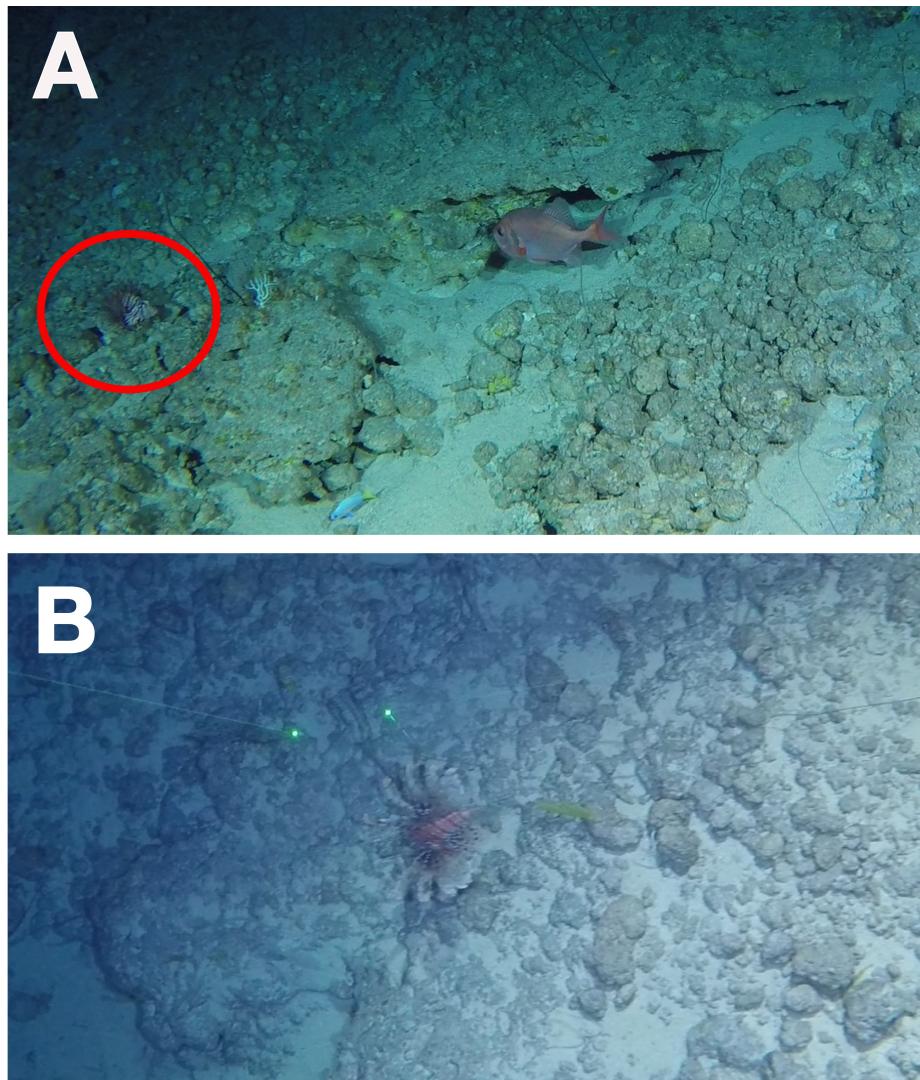
101

102 Figure 1. Map of survey locations for (A) Bermuda and (B) Roatan, Honduras. The
103 locations of lionfish observations >200 m depth are marked. Inset maps indicate the
104 locations of Bermuda and Roatan respectively relative to the western Atlantic region.
105 In (A) the dashed line indicates the 50 m depth contour to show the outline of the
106 Bermuda platform.

107 In contrast, Roatan is an island in the Caribbean Sea located off the north coast
108 of mainland Honduras (Fig 1B). Roatan is approximately 50 km long and 2-4 km
109 wide, and has a total land area of about 200 km². This island is surrounded by shallow
110 fringing coral reefs, which transition into MCEs at increased depths. The Roatan
111 Institute of Deepsea Exploration conducts commercial submarine tourism, using the
112 *Idabel* submarine allowing tourists to observe deep-sea habitats to 610 m depth. With
113 year-round operations from Half Moon Bay, West End, Roatan, *Idabel* conducted 224
114 dives \geq 300 m between Jan 2015–April 2017. During March 2017 visual observations
115 of benthic communities and their associated fish communities were conducted on a
116 night dive to 300 m depth.

117 To identify other records of lionfish we examined 6,814 lionfish records from
118 the US Geological Survey Nonindigenous Aquatic Species database (USGS-NAS,
119 2017). Lionfish records in the database have been gathered from media reports,
120 scientific publications and direct reports to the database managers. All records contain
121 a GPS location, and in some cases a short description of the conditions under which
122 the lionfish was observed and/or a photo of the lionfish. In some cases the
123 descriptions accompanying records included depth information, though this is not
124 formatted in a consistent way (for example using different units such as metres, feet,
125 fathoms) and contained within a larger text record description. We initially viewed
126 these descriptions to identify any records directly stating lionfish observations at
127 depths \geq 200 m. To further identify potential lionfish records from \geq 200 m depth, we
128 downloaded the 2014 General Bathymetric Chart of the Oceans
129 (<http://www.gebco.net>) 30 arc-second interval grid bathymetry for the western
130 Atlantic region. We used the raster package (Hijmans, 2015) in R (R Core Team,
131 2013) to identify approximate depths of all lionfish records based on GPS location.

132 All records associated with bathymetry ≥ 200 m depth were individually reviewed and
133 classified as potential deep-sea individuals, or excluded. Records were excluded for
134 any of the following reasons: (i) specific depth information was available in the
135 record indicating the fish was < 200 m depth, (ii) the record reports that the
136 observation was made by a diver or snorkeler, (iii) the location of the record is a well
137 known/established shallow reef diving/snorkelling site, or (iv) the lionfish were
138 collected by hook-and-line making it highly unlikely they were from ≥ 200 m depth.

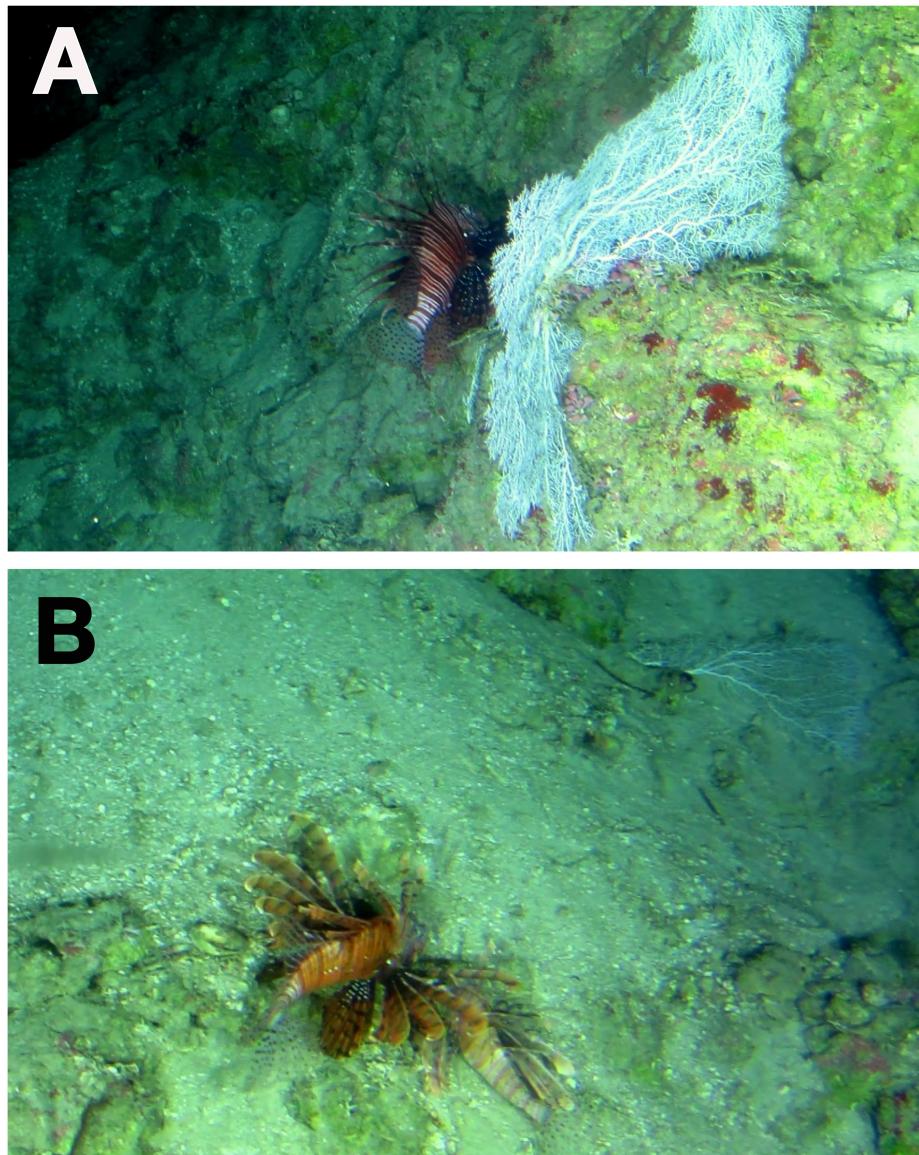

139

140 **Results**

141

142 In Bermuda during daytime dives on 28 July 2016 off the northeastern edge of the
143 Bermuda platform at 32.483683 N, 64.59395 W (Fig 1A; GPS coordinates in WGS84
144 format), multiple lionfish were observed. The deepest lionfish was an individual
145 observed at 304 m depth and another at 297 m (Fig 2). Water temperature was
146 recorded on the submersible during the dive as 19.7 °C at 300 m. The laser points in
147 Fig 2B are 0.25 m apart, suggesting an approximate total length of 21 cm for this
148 individual at 297 m.

149 In Roatan, on 11 March 2017 off Half Moon Bay, West End at 16.308565 N,
150 86.596681 W (Fig 1B) multiple lionfish were observed and photographed down to a
151 depth of 240 m (Fig 3). Water temperature was recorded on this dive as
152 approximately 15 °C at 240 m. However, with year-round tourist submarine dives
153 operating from Half Moon Bay visiting deep reef habitats ≥ 300 m (224 dives between
154 Jan 2015–April 2017), the *Idabel* has regularly observed lionfish to a maximum depth
155 of 250 m.

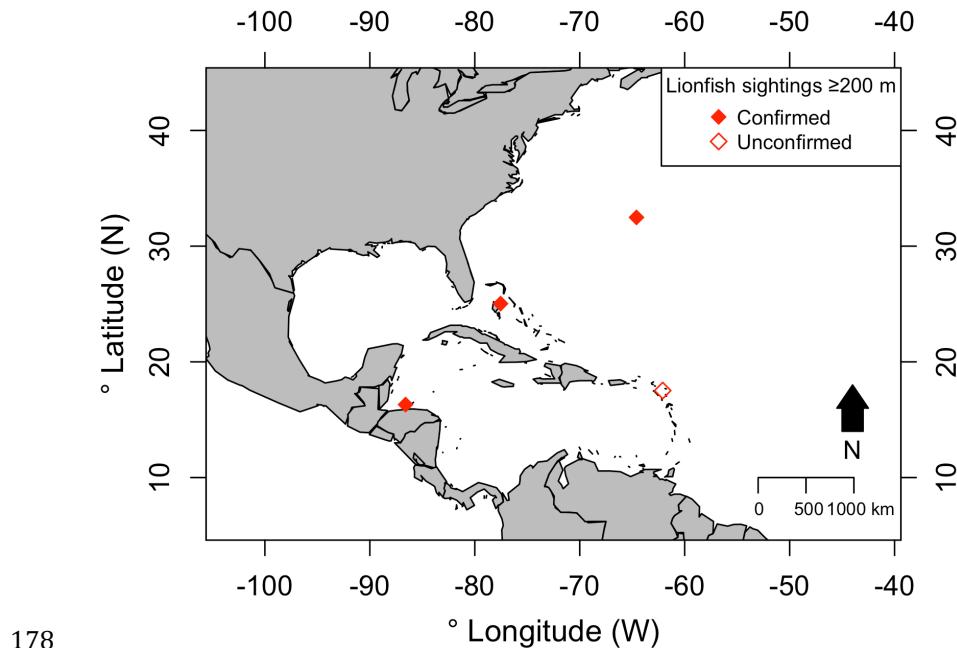

156

157 Figure 2. Lionfish at 297 m depth off the northeastern slope of the Bermuda platform.

158 (A) The lionfish resting on the reef is indicated within the red circle. Other fish

159 species shown are *Gephyroberyx darwini* and *Pronotogrammus martinicensis*. (B)

160 Lionfish swimming over the benthos. The laser dots are separated by 0.25 m.


161

162 Figure 3. Lionfish off Half Moon Bay, West End, Roatan, Honduras. (A) Lionfish

163 swimming over the benthos at 180 m depth, and (B) two lionfish resting at 240 m

164 depth.

165 When analysing records from the US Geological Survey Nonindigenous
166 Aquatic Species database, no records were found explicitly stating a depth of
167 observation ≥ 200 m. However, 186 records out of the 6,814 records were associated
168 with bathymetry ≥ 200 m. Of these, after scrutinising the text descriptions we
169 excluded 185 records as being too shallow. Many of these records represented sites
170 with steep walls spanning from shallow reefs to >200 m depth, and while the
171 resolution of the available bathymetry suggested these were ≥ 200 m, when checking
172 the associated meta-data for the record often it clearly indicated that the lionfish was
173 <200 m. The one record that we retained did not contain enough detail to confirm
174 whether it was a sighting >200 m. Figure 4 shows the locations of this unconfirmed
175 record, the previously confirmed 300 m lionfish observation in the Bahamas (Albins
176 & Hixon, 2013; McGuire & Hill, 2014), and the locations of our deep-sea lionfish
177 observations in Bermuda and Roatan.

178

179 Figure 4. Locations of confirmed and possible lionfish observations ≥ 200 m depth in
180 the western Atlantic. The confirmed sightings represent our observations in Bermuda
181 and Roatan, and the previously reported observation in the Bahamas. The
182 unconfirmed sighting represent a record from the US Geological Survey
183 Nonindigenous Aquatic Species database associated with bathymetry ≥ 200 m, though
184 there is no direct information on the depth of the lionfish observation for this record.

185

186 Discussion

187

188 In this study we report deep-sea lionfish observations from the upper bathyal in two
189 new locations within the invaded western Atlantic lionfish range. In Bermuda, close
190 to the northern limit of the lionfish invaded range (Eddy et al., 2016) we recorded
191 lionfish down to 304 m, the deepest we surveyed. While in Roatan, within the centre

192 of the lionfish invaded range (Schofield, 2010), lionfish are reported down to 250 m.
193 Because of the large geographical distance between our observations, combined with
194 the previous confirmed observation of lionfish at 300 m from the Bahamas (pers.
195 comm. from R.G. Gilmore in: Albins & Hixon, 2013; McGuire & Hill, 2014), our
196 results suggest that lionfish may be widely using deep-sea habitats in the 200-300 m
197 depth range, and that this deeper aspect of the lionfish invasion has been under
198 sampled.

199 When searching the US Geological Survey Nonindigenous Aquatic Species
200 database we found no lionfish records explicitly stating a depth of observation of
201 ≥ 200 m. However, one lionfish record was located over bathymetry ≥ 200 m without
202 stating a depth or giving any indication of depth. While these records have been
203 placed over bathymetry in previous studies, leading to the suggestion that lionfish
204 may extend their maximum depth to 610 m (Johnston & Purkis, 2011), our results
205 indicate depth records generated in this way must be treated with caution. The grid
206 resolution of bathymetry available at a regional level is not sufficient to generate
207 precise lionfish depth information over undersea structures such as walls and steep
208 slopes, where large differences in depth occur within one raster grid square. For this
209 reason despite identifying 186 records associated with deeper bathymetry, when
210 scrutinised, 185 of these were able to be excluded for containing either specific depth
211 details or enough information to suggest that they were most likely shallower reef or
212 MCE observations. Some of these excluded observations were from lionfish
213 associated with oil and gas rigs, where lionfish were associated with the rig structure
214 at shallower depths rather than actually with seabed benthic habitats. Therefore from a
215 simple matching of GPS location with bathymetry these records would appear to be

216 >200 m and far from any shallower habitat, yet they actually represent shallower
217 lionfish.

218 It is not clear why differences in the maximum depth of observation exist between
219 Roatan and our observations in Bermuda and previous observations in the Bahamas.
220 While in Bermuda we observed lionfish to the maximum survey depth (304 m), in
221 Roatan, despite 224 submarine dives to ≥ 300 m over the past 2.3 years, lionfish have
222 not been observed deeper than 250 m. There are many possible explanations related to
223 changing environmental conditions such as temperature and light or availability of
224 prey. For example, lionfish are limited by temperature (Whitfield et al., 2014;
225 Dabruzzi, Bennett & Fangue, 2017), with lab experiments suggesting they are unable
226 to survive temperatures < 10 °C, but crucially they ceased feeding at temperatures
227 < 16.1 °C (Kimball et al., 2004). While detailed temperature data across the depth
228 gradient is not available for the locations we surveyed, water temperature was
229 approximately 15 °C at 240 m in Roatan when we photographed lionfish in March
230 2017. Therefore it is possible that the 250 m maximum depth of lionfish observations
231 around Roatan may be caused by temperature limitation. In contrast, water
232 temperature was 19.7 °C in Bermuda at 300 m, so above the temperature of feeding
233 cessation for lionfish (Kimball et al., 2004). This suggests if temperature is the main
234 limiting factor for maximum lionfish depth, we may expect lionfish to extend even
235 deeper than 304 m in Bermuda. Other factors such as light could also influence the
236 maximum depth for lionfish. Lionfish are visual predators (Cure et al., 2012),
237 therefore despite previous studies indicating reef fish have high visual system
238 plasticity to adapt to low light levels at depth (Brokovich et al., 2010), it is likely they
239 will be limited by light. Bermuda has high light penetration (Fricke & Meischner,
240 1985; Coates et al., 2013), while Roatan suffers from higher sedimentation rates

241 (Mehrtens et al., 2001; Harborne, Afzal & Andrews, 2001), likely reducing light
242 penetration to lower levels than Bermuda. Further research is required to understand
243 the ecological and physiological constraints on maximum lionfish depths.

244 Little is known about the potential impacts of invasive lionfish on the upper
245 bathyal zone. However, shallow reef research has suggested large declines in native
246 reef fish abundance and recruitment are caused by lionfish (Albins & Hixon, 2008;
247 Green et al., 2012), and increases in algal cover through trophic cascades are caused
248 by lionfish predation on native fish on both shallow reefs and MCEs (Lesser &
249 Slattery, 2011; Slattery & Lesser, 2014; Kindinger & Albins, 2017). Shallow reef fish
250 species generally have higher individual and population growth rates when compared
251 to deep sea fish species (Rogers, 1994; Norse et al., 2012). Therefore, predation by
252 lionfish may have greater potential for damage to native fish communities in the
253 upper bathyal zone. With so few records of bathyal lionfish and no quantitative
254 estimates of lionfish densities, the ecological impacts at >200 m depth is unknown.

255 Current lionfish management is highly biased towards shallow reef habitats, with
256 diver-conducted culling the major control measure implemented in the western
257 Atlantic (Morris et al., 2009). While shallow reef culling has been found to reduce
258 lionfish densities (Frazer et al., 2012) and help native fish populations recover (Green
259 et al., 2014), a recent study has suggested strong depth-specific effects of culling on
260 lionfish densities, with substantial lionfish populations remaining on MCEs despite
261 shallow culling (Andradi-Brown et al., in press). Previous modelling studies have
262 highlighted that substantial deep refuges for lionfish have the potential to undermine
263 current management programmes (Arias-González et al., 2011). Therefore if lionfish
264 are widely distributed in the 200-300 m depth range across the western Atlantic this
265 raises further challenges for lionfish management. There are currently few effective

266 methods for lionfish removal in water too deep for diving, with trapping being the
267 only widely used method. In Bermuda, traps have been used to remove lionfish from
268 MCEs (Pitt & Trott, 2015), though measures of trapping effectiveness for reducing
269 deep lionfish populations are still lacking. Traps could be trialled deeper for lionfish
270 control in the 200-300 m range, and cameras used to monitor effects on lionfish
271 densities.

272 This study documents non-native lionfish in the upper bathyal zone in Bermuda,
273 and Roatan, Honduras for the first time. Our observations, combined with other
274 lionfish records, suggest that lionfish may widely be using 200-300 m depth habitat in
275 the western Atlantic. Our results therefore highlight the need to consider deeper
276 lionfish populations in management programmes.

277

278 **Acknowledgments**

279 We wish to thank P. Stefanoudis, G. Rowlands and D. Gregoire-Lucente for help with
280 this study. Nekton would like to thank S. R. Smith, J. Pitt, T. Trott and C. Flook
281 from the Bermudan Government, and G. Goodbody-Gringley from the Bermuda
282 Institute of Ocean Sciences, for their assistance, advice and participation in the XL-
283 Catlin Deep-Ocean Survey Bermuda Mission. We would also like to thank the crew
284 and technicians of the Baseline Explorer, Brownies Global Logistics and Triton
285 Submersibles. This is Nekton contribution No 1. Any use of trade, product or firm
286 names is for descriptive purposes only and does not imply endorsement by the US
287 Government.

288

289 **Funding**

290 DAAB is funded by a Fisheries Society of the British Isles (FSBI) Ph.D. Studentship.
291 EG wishes to thank the Student Conference on Conservation Science Miriam
292 Rothschild Travel Bursary Programme for funding. This research was undertaken as
293 part of the XL Catlin Deep Ocean Survey - Nekton's Mission to the North West
294 Atlantic and Bermuda. Nekton gratefully acknowledges the support of XL Catlin and
295 the Garfield Western Foundation. This project was supported by the US Geological
296 Survey's Invasive Species Program. This project has received funding from the
297 European Union's Horizon 2020 research and innovation programme under grant
298 agreement No 678760 (ATLAS). This output reflects only the author's view and the
299 European Union cannot be held responsible for any use that may be made of the
300 information contained therein.

301

302 **References**

303 Albins MA, Hixon MA 2008. Invasive Indo-Pacific lionfish *Pterois volitans* reduce
304 recruitment of Atlantic coral-reef fishes. *Marine Ecology Progress Series*
305 367:233–238.
306 Albins MA, Hixon MA 2013. Worst case scenario: potential long-term effects of
307 invasive predatory lionfish (*Pterois volitans*) on Atlantic and Caribbean coral-reef
308 communities. *Environmental Biology of Fishes* 96:1151–1157. DOI:
309 10.1007/s10641-011-9795-1.
310 Andradi-Brown DA, Vermeij MJA, Slattery M, Lesser M, Bejarano I, Appeldoorn R,
311 Goodbody-Gringley G, Chequer AD, Pitt JM, Eddy C, Smith SR, Brokovich E,
312 Pinheiro HT, Jessup ME, Shepherd B, Rocha LA, Curtis-Quick J, Eyal G, Noyes
313 TJ, Rogers AD, Exton DA 2017. Large-scale invasion of western Atlantic
314 mesophotic reefs by lionfish potentially undermines culling-based management.

315 *Biological Invasions* 19:939–954. DOI: 10.1007/s12237-007-9031-6.

316 Andradi-Brown D, Grey R, Hendrix A, Hitchner D, Hunt C, Gress E, Madej K, Parry
317 R, Régnier-McKellar C, Jones O, Arteaga M, Izaguirre A, Rogers AD, Exton DA
318 in press. Depth-dependent effects of culling – do mesophotic lionfish populations
319 undermine current management? *Royal Society Open Science*.

320 Arias-González JE, González-Gándara C, Luis Cabrera J, Christensen V 2011.
321 Predicted impact of the invasive lionfish *Pterois volitans* on the food web of a
322 Caribbean coral reef. *Environmental Research* 111:917–925. DOI:
323 10.1016/j.envres.2011.07.008.

324 Bejarano I, Appeldoorn RS, Nemeth M 2014. Fishes associated with mesophotic coral
325 ecosystems in La Parguera, Puerto Rico. *Coral Reefs* 33:313–328. DOI:
326 10.1007/s00338-014-1125-6.

327 Brokovich E, Ben-Ari T, Kark S, Kiflawi M, Dishon G, Iluz D, Shashar N 2010.
328 Functional changes of the visual system of the damselfish *Dascyllus marginatus*
329 along its bathymetric range. *Physiology & Behavior* 101:413–421. DOI:
330 10.1016/j.physbeh.2010.07.006.

331 Claydon J, Calosso MC, Traiger SB 2012. Progression of invasive lionfish in
332 seagrass, mangrove and reef habitats. *Marine Ecology Progress Series* 448:119–
333 129. DOI: 10.3354/meps09534.

334 Coates KA, Fourqurean JW, Kenworthy WJ, Logan A, Manuel SA, Smith SR 2013.
335 Introduction to Bermuda: Geology, Oceanography and Climate. In: Sheppard
336 CRC ed. *Coral Reefs of the United Kingdom Overseas Territories, Coral Reefs of*
337 *the World* 4. Springer, 115–133.

338 Cure K, Benkwitt CE, kinson, Pickering EA, Pusack TJ, McIlwain JL, Hixon MA
339 2012. Comparative behavior of red lionfish *Pterois volitans* on native Pacific

340 versus invaded Atlantic coral reefs. *Marine Ecology Progress Series* 467:181–
341 192. DOI: 10.3354/meps09942.

342 Dabruzzi TF, Bennett WA, Fangue NA 2017. Thermal ecology of red lionfish *Pterois*
343 *volitans* from southeast Sulawesi, Indonesia, with comparisons to other
344 Scorpidae. *Aquatic Biology* 26:1–14. DOI: 10.3354/ab00668.

345 de León R, Vane K, Bertuol P, Chamberland VC, Simal F, Imms E, Vermeij M 2013.
346 Effectiveness of lionfish removal efforts in the southern Caribbean. *Endangered
347 Species Research* 22:175–182. DOI: 10.3354/esr00542.

348 Eddy C, Pitt J, Morris JA Jr, Smith S, Goodbody-Gringley G, Bernal D 2016. Diet of
349 invasive lionfish (*Pterois volitans* and *P. miles*) in Bermuda. *Marine Ecology
350 Progress Series* 558:193–206. DOI: 10.3354/meps11838.

351 Ferreira CEL, Luiz OJ, Floeter SR, Lucena MB, Barbosa MC, Rocha CR, Rocha LA
352 2015. First record of invasive lionfish (*Pterois volitans*) for the Brazilian Coast.
353 *PLoS ONE* 10:e0123002. DOI: 10.1371/journal.pone.0123002.g002.

354 Frazer TK, Jacoby CA, Edwards MA, Barry SC, Manfrino CM 2012. Coping with the
355 lionfish invasion: can targeted removals yield beneficial effects? *Reviews in
356 Fisheries Science* 20:185–191. DOI: 10.1080/10641262.2012.700655.

357 Fricke H, Meischner D 1985. Depth limits of Bermudan scleractinian corals: a
358 submersible survey. *Marine Biology* 88:175–187. DOI: 10.1007/BF00397165.

359 Green SJ, Akins JL, Maljković A, Côté IM 2012. Invasive lionfish drive Atlantic
360 coral reef fish declines. *PLoS ONE* 7:e32596. DOI:
361 10.1371/journal.pone.0032596.

362 Green SJ, Dulvy NK, Brooks AML, Akins JL, Cooper AB, Miller S, Côté IM 2014.
363 Linking removal targets to the ecological effects of invaders: a predictive model
364 and field test. *Ecological Applications* 24:1311–1322. DOI: 10.1890/13-0979.1.

365 Harborne AR, Afzal DC, Andrews MJ 2001. Honduras: Caribbean Coast. *Marine*
366 *Pollution Bulletin* 42:1221–1235. DOI: 10.1016/S0025-326X(01)00239-9.

367 Hijmans RJ 2015. raster: Geographic Data Analysis and Modeling. R package version
368 2.3-33. <http://CRAN.R-project.org/package=raster>

369 Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL,
370 Zawada DG, Appeldoorn R 2010. Theme section on “Mesophotic Coral
371 Ecosystems: Characterization, Ecology, and Management.” *Coral Reefs* 29:247–
372 251. DOI: 10.1007/s00338-010-0614-5.

373 Johnston MW, Purkis SJ 2011. Spatial analysis of the invasion of lionfish in the
374 western Atlantic and Caribbean. *Marine Pollution Bulletin* 62:1218–1226. DOI:
375 10.1016/j.marpolbul.2011.03.028.

376 Kimball ME, Miller JM, Whitfield PE, Hare JA 2004. Thermal tolerance and
377 potential distribution of invasive lionfish (*Pterois volitans/miles* complex) on the
378 east coast of the United States. *Marine Ecology Progress Series* 283:269–278.

379 Kindinger TL, Albins MA 2017. Consumptive and non-consumptive effects of an
380 invasive marine predator on native coral-reef herbivores. *Biological Invasions*
381 19:131–146. DOI: 10.1073/pnas.1417301112.

382 Kletou D, Hall-Spencer JM, Kleitou P 2016. A lionfish (*Pterois miles*) invasion has
383 begun in the Mediterranean Sea. *Marine Biodiversity Records* 9:46. DOI:
384 10.1371/journal.pone.0021510.

385 Lesser MP, Slattery M 2011. Phase shift to algal dominated communities at
386 mesophotic depths associated with lionfish (*Pterois volitans*) invasion on a
387 Bahamian coral reef. *Biological Invasions* 13:1855–1868. DOI: 10.1007/s10530-
388 011-0005-z.

389 McGuire M, Hill J 2014. Invasive Species of Florida's Coastal Waters: The Red

390 Lionfish (*Pterois volitans*) and Devil Firefish (*P. miles*) (IFAS Publication SGEF
391 208). *Gainesville: University of Florida Institute of Food and Agricultural*
392 *Sciences:SGEF 208.* <https://edis.ifas.ufl.edu>

393 Mehrdens CJ, Rosenheim B, Modley M, Young RS 2001. Reef morphology and
394 sediment attributes, Roatan, Bay Islands, Honduras. *Carbonates and Evaporites*
395 16:131–140. DOI: 10.1007/BF03175831.

396 Meister HS, Wyanski DM, Loefer JK, Ross SW, Quattrini AM, Sulak KJ 2005.
397 Further evidence for the invasion and establishment of *Pterois volitans* (Teleostei:
398 Scorpidae) along the Atlantic Coast of the United States. *Southeastern*
399 *Naturalist* 4:193–206. DOI: 10.1656/1528-
400 7092(2005)004[0193:FEFTIA]2.0.CO;2.

401 Morris JA, Akins JL, Barse A, Cerino D, Freshwater DW, Green SJ, Muñoz RC, Paris
402 C, Whitfield PE 2009. Biology and ecology of the invasive lionfishes, *Pterois*
403 *miles* and *Pterois volitans*. *Proceedings of the Gulf and Caribbean Fisheries*
404 *Institute* 61:409–414.

405 Norse EA, Brooke S, Cheung W, Clark MR, Ekeland I, Froese R, Gjerde KM,
406 Haedrich RL, Heppell SS, Morato T, Morgan L, Pauly D, Sumaila R, Watson R
407 2012. Sustainability of deep-sea fisheries. *Marine Policy* 36:307–320.

408 Nuttall MF, Johnston MA, Eckert RJ, Embesi JA, Hickerson EL, Schmahl GP 2014.
409 Lionfish (*Pterois volitans* [Linnaeus, 1758] and *P. miles* [Bennett, 1828]) records
410 within mesophotic depth ranges on natural banks in the Northwestern Gulf of
411 Mexico. *BioInvasions Records* 3:111–115.

412 Pinheiro HT, Goodbody-Gringley G, Jessup ME, Shepherd B, Chequer AD, Rocha
413 LA 2016. Upper and lower mesophotic coral reef fish communities evaluated by
414 underwater visual censuses in two Caribbean locations. *Coral Reefs* 35:139–151.

415 DOI: 10.1007/s00338-015-1381-0.

416 Pitt JM, Trott TM 2015. Trapping Lionfish in Bermuda, Part II: Lessons learned to
417 date. In: Christ Church, Barbados, 221–224.

418 Quattrini AM, Demopoulos AWJ, Singer R, Roa-Varon A, Chaytor JD 2017.
419 Demersal fish assemblages on seamounts and other rugged features in the
420 northeastern Caribbean. *Deep-Sea Research Part I-Oceanographic Research*
421 *Papers*. DOI: 10.1016/j.dsr.2017.03.009.

422 R Core Team 2013. R: A language and environment for statistical computing. *R-*
423 *project.org*.

424 Rocha LA, Rocha CR, Baldwin CC, Weigt LA, McField M 2015. Invasive lionfish
425 preying on critically endangered reef fish. *Coral Reefs* 34:803–806. DOI:
426 10.1007/s00338-015-1293-z.

427 Rogers AD 1994. The biology of seamounts. *Advances in Marine Biology* 30:305–
428 350. DOI: 10.1016/S0065-2881(08)60065-6.

429 Rogers AD 2015. Environmental change in the deep ocean. *Annual Review of*
430 *Environment and Resources* 40:1–38. DOI: 10.1146/annurev-environ-102014-
431 021415.

432 Schofield PJ 2009. Geographic extent and chronology of the invasion of non-native
433 lionfish (*Pterois volitans* [Linnaeus 1758] and *P. miles* [Bennett 1828]) in the
434 Western North Atlantic and Caribbean Sea. *Aquatic Invasions* 4:473–479.

435 Schofield PJ 2010. Update on geographic spread of invasive lionfishes (*Pterois*
436 *volitans* [Linnaeus, 1758] and *P. miles* [Bennett, 1828]) in the Western North
437 Atlantic Ocean, Caribbean Sea and Gulf of Mexico. *Aquatic Invasions* 5:S117–
438 S122.

439 Slattery M, Lesser MP 2014. Allelopathy in the tropical alga *Lobophora variegata*

440 (Phaeophyceae): mechanistic basis for a phase shift on mesophotic coral reefs?
441 *Journal of Phycology* 50:493–505. DOI: 10.1111/jpy.12160.

442 Sutherland WJ, Clout M, Côté IM, Daszak P, Depledge MH, Fellman L, Fleishman E,
443 Garthwaite R, Gibbons DW, De Lurio J, Impey AJ, Lickorish F, Lindenmayer D,
444 Madgwick J, Margerison C, Maynard T, Peck LS, Pretty J, Prior S, Redford KH,
445 Scharlemann JPW, Spalding M, Watkinson AR 2010. A horizon scan of global
446 conservation issues for 2010. *Trends in Ecology & Evolution* 25:1–7. DOI:
447 10.1016/j.tree.2009.10.003.

448 Switzer TS, Tremain DM, Keenan SF, Stafford CJ, Parks SL, McMichael RH Jr.
449 2015. Temporal and spatial dynamics of the lionfish invasion in the eastern Gulf
450 of Mexico: perspectives from a broadscale trawl survey. *Marine and Coastal
451 Fisheries* 7:10–17. DOI: 10.1080/19425120.2014.987888.

452 USGS-NAS 2017. US Geological Survey Nonindigenous Aquatic Species database.
453 Available at: <https://nas.er.usgs.gov> Accessed: April 2017.

454 Whitfield PE, Muñoz RC, Buckel CA, Degan BP, Freshwater DW, Hare JA 2014.
455 Native fish community structure and Indo-Pacific lionfish *Pterois volitans*
456 densities along a depth-temperature gradient in Onslow Bay, North Carolina,
457 USA. *Marine Ecology Progress Series* 509:241–254. DOI: 10.3354/meps10882.