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Abstract 23	

Non-native lionfish have been widely recorded throughout the western Atlantic on 24	

both shallow and mesophotic reefs, where they have been linked to declines in reef 25	

health. In this study we report the first lionfish observations from the deep sea (>200 26	

m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 27	

304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the 28	

context of other deeper lionfish observations and records, our results imply that 29	

lionfish may be found more widely in the 200-300 m depth range of the upper bathyal 30	

zone across the western Atlantic, but currently are under sampled compared to 31	

shallow habitats. We highlight the need for considering deep-sea lionfish populations 32	

in future invasive lionfish management.  33	
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Introduction 34	

 35	

Non-native lionfish, first documented in the western Atlantic region in the 1980s 36	

(Schofield, 2009; 2010), are considered a major threat to western Atlantic reef 37	

communities (Sutherland et al., 2010). Lionfish are benthic generalist predators, and 38	

their presence on shallow coral reefs has been associated with up to 65% decline in 39	

their prey fish biomass (Green et al., 2012), leading to overall declines in fish 40	

recruitment of up to 79% (Albins & Hixon, 2008). In some cases lionfish have been 41	

observed to feed on critically-endangered reef fish (Rocha et al., 2015). On both 42	

shallow reefs and mesophotic coral ecosystems (MCEs, reefs from 30 to 43	

approximately 150-180 m depth; Hinderstein et al., 2010), non-native lionfish are 44	

thought to cause increased algal cover by consuming herbivores and causing trophic 45	

cascades (Lesser & Slattery, 2011; Slattery & Lesser, 2014; Kindinger & Albins, 46	

2017). Native to the Indian and Pacific oceans and Red Sea, lionfish in the western 47	

Atlantic have now been recorded from New York, USA in the north (Meister et al., 48	

2005), to as far south as the southeastern coast of Brazil (Ferreira et al., 2015). In 49	

addition, there is a second lionfish invasion currently underway in the Mediterranean 50	

Sea (Kletou, Hall-Spencer & Kleitou, 2016). Two species of non-native lionfish have 51	

been recorded in the western Atlantic: Pterois volitans (Linnaeus, 1758) and P. miles 52	

(Bennett, 1828), though they are believed to be ecologically synonymous in their 53	

impacts to western Atlantic marine communities (Morris et al., 2009). 54	

 The majority of research on lionfish invasions has focused on shallow coral 55	

reefs (<30 m), mangroves and seagrass beds (Morris et al., 2009; Claydon, Calosso & 56	

Traiger, 2012). However, recent studies have highlighted their widespread presence 57	

on MCEs across the western Atlantic invaded range (Andradi-Brown et al., 2017). 58	
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With one exception (see next paragraph), MCEs represent the deepest depths lionfish 59	

have been previously reported from locations across the western Atlantic. For 60	

example, from remote operated vehicle (ROV) surveys: 112 m in the northwestern 61	

Gulf of Mexico (Nuttall et al., 2014), 100 m off North Carolina, USA (Meister et al., 62	

2005), 126 m on the Desecheo Ridge west of Puerto Rico (Quattrini et al., 2017), and 63	

167 m on the Conrad Seamount in the Anegada Passage (Quattrini et al., 2017). 64	

Lionfish have also been observed at 120 m from submersible dives in Honduras 65	

(Schofield, 2010), and collected from trawl surveys >80 m depth in the eastern Gulf 66	

of Mexico (Switzer et al., 2015). In addition, diver-based surveys on MCEs have 67	

widely reported sightings in the 30-100 m range in Puerto Rico (Bejarano, 68	

Appeldoorn & Nemeth, 2014), Bermuda (Pinheiro et al., 2016), and the Lesser 69	

Antilles (de León et al., 2013). Therefore it has been suggested that lionfish have 70	

widely colonised MCEs across the western Atlantic (Andradi-Brown et al., 2017). 71	

In August 2010, while conducting submersible surveys off Lyford Cay, 72	

Nassau, The Bahamas, lionfish were observed at 300 m (pers. comm. from R.G. 73	

Gilmore in: Albins & Hixon, 2013; McGuire & Hill, 2014). To our knowledge this 74	

sighting represents the maximum known depth distribution of lionfish in the western 75	

Atlantic, and the only record of lionfish in the deep sea (defined as >200 m depth; 76	

Rogers, 2015). It is not clear whether this sighting represents an isolated incident of a 77	

lionfish reaching these depths, or whether lionfish more regularly use habitats in the 78	

>200 m depth range, but they have not previously been recorded because of limited 79	

surveys within this depth range. 80	

In this study we report visual observations of lionfish >200 m depth in two 81	

new locations within the western Atlantic region: Bermuda and Roatan, Honduras. 82	
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We also consider other lionfish records that could potentially indicate that lionfish 83	

may widely be found >200 m depth across the western Atlantic range. 84	

 85	

Methods 86	

 87	

Bermuda is a series of islands located far off the continental shelf in the northwestern 88	

Sargasso Sea (Fig 1A). The islands exist on a large shallow-water platform 89	

(approximately 20 m depth, 623 km2 area) which are the eroded remains of a Meso-90	

Cenozoic volcanic peak (Coates et al., 2013). The platform is surrounded by a 91	

shallow slope, which transitions into near-vertical walls at around 100 m (Coates et 92	

al., 2013). While deep reef areas of Bermuda are poorly studied, with few 93	

observations below mesophotic depths, there are established MCE communities 94	

around Bermuda to at least 80 m (Pinheiro et al., 2016). MCE to deep-sea benthic 95	

organisms and benthic-associated fish surveys were undertaken during daylight hours 96	

using the Nemo and Nomad Triton 1000-2 class submersibles (Vero Beach, Florida, 97	

USA) down to 300 m depth around the edge of the Bermuda platform during July and 98	

August 2016 as part of the Nekton Foundation/XL-Catlin Deep-Ocean Survey – 99	

Mission 1 (www.nektonmission.org). 100	
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 101	

Figure 1. Map of survey locations for (A) Bermuda and (B) Roatan, Honduras. The 102	

locations of lionfish observations >200 m depth are marked. Inset maps indicate the 103	

locations of Bermuda and Roatan respectively relative to the western Atlantic region. 104	

In (A) the dashed line indicates the 50 m depth contour to show the outline of the 105	

Bermuda platform. 106	
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In contrast, Roatan is an island in the Caribbean Sea located off the north coast 107	

of mainland Honduras (Fig 1B). Roatan is approximately 50 km long and 2-4 km 108	

wide, and has a total land area of about 200 km2. This island is surrounded by shallow 109	

fringing coral reefs, which transition into MCEs at increased depths. The Roatan 110	

Institute of Deepsea Exploration conducts commercial submarine tourism, using the 111	

Idabel submarine allowing tourists to observe deep-sea habitats to 610 m depth. With 112	

year-round operations from Half Moon Bay, West End, Roatan, Idabel conducted 224 113	

dives g300 m between Jan 2015–April 2017. During March 2017 visual observations 114	

of benthic communities and their associated fish communities were conducted on a 115	

night dive to 300 m depth. 116	

To identify other records of lionfish we examined 6,814 lionfish records from 117	

the US Geological Survey Nonindigenous Aquatic Species database (USGS-NAS, 118	

2017). Lionfish records in the database have been gathered from media reports, 119	

scientific publications and direct reports to the database managers. All records contain 120	

a GPS location, and in some cases a short description of the conditions under which 121	

the lionfish was observed and/or a photo of the lionfish. In some cases the 122	

descriptions accompanying records included depth information, though this is not 123	

formatted in a consistent way (for example using different units such as metres, feet, 124	

fathoms) and contained within a larger text record description. We initially viewed 125	

these descriptions to identify any records directly stating lionfish observations at 126	

depths g200 m. To further identify potential lionfish records from g200 m depth, we 127	

downloaded the 2014 General Bathymetric Chart of the Oceans 128	

(http://www.gebco.net) 30 arc-second interval grid bathymetry for the western 129	

Atlantic region. We used the raster package (Hijmans, 2015) in R (R Core Team, 130	

2013) to identify approximate depths of all lionfish records based on GPS location. 131	
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All records associated with bathymetry g200 m depth were individually reviewed and 132	

classified as potential deep-sea individuals, or excluded. Records were excluded for 133	

any of the following reasons: (i) specific depth information was available in the 134	

record indicating the fish was <200 m depth, (ii) the record reports that the 135	

observation was made by a diver or snorkeler, (iii) the location of the record is a well 136	

know/established shallow reef diving/snorkelling site, or (iv) the lionfish were 137	

collected by hook-and-line making it highly unlikely they were from g200 m depth. 138	

 139	

Results 140	

 141	

In Bermuda during daytime dives on 28 July 2016 off the northeastern edge of the 142	

Bermuda platform at 32.483683 N, 64.59395 W (Fig 1A; GPS coordinates in WGS84 143	

format), multiple lionfish were observed. The deepest lionfish was an individual 144	

observed at 304 m depth and another at 297 m (Fig 2). Water temperature was 145	

recorded on the submersible during the dive as 19.7 °C at 300 m. The laser points in 146	

Fig 2B are 0.25 m apart, suggesting an approximate total length of 21 cm for this 147	

individual at 297 m. 148	

In Roatan, on 11 March 2017 off Half Moon Bay, West End at 16.308565 N, 149	

86.596681 W (Fig 1B) multiple lionfish were observed and photographed down to a 150	

depth of 240 m (Fig 3). Water temperature was recorded on this dive as 151	

approximately 15 °C at 240 m. However, with year-round tourist submarine dives 152	

operating from Half Moon Bay visiting deep reef habitats g300 m (224 dives between 153	

Jan 2015–April 2017), the Idabel has regularly observed lionfish to a maximum depth 154	

of 250 m.  155	
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 156	

Figure 2. Lionfish at 297 m depth off the northeastern slope of the Bermuda platform. 157	

(A) The lionfish resting on the reef is indicated within the red circle. Other fish 158	

species shown are Gephyroberyx darwinii and Pronotogrammus martinicensis. (B) 159	

Lionfish swimming over the benthos. The laser dots are separated by 0.25 m. 160	
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 161	

Figure 3. Lionfish off Half Moon Bay, West End, Roatan, Honduras. (A) Lionfish 162	

swimming over the benthos at 180 m depth, and (B) two lionfish resting at 240 m 163	

depth.  164	
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 When analysing records from the US Geological Survey Nonindigenous 165	

Aquatic Species database, no records were found explicitly stating a depth of 166	

observation g200 m. However, 186 records out of the 6,814 records were associated 167	

with bathymetry g200 m. Of these, after scrutinising the text descriptions we 168	

excluded 185 records as being too shallow. Many of these records represented sites 169	

with steep walls spanning from shallow reefs to >200 m depth, and while the 170	

resolution of the available bathymetry suggested these were g200m, when checking 171	

the associated meta-data for the record often it clearly indicated that the lionfish was 172	

<200 m. The one record that we retained did not contain enough detail to confirm 173	

whether it was a sighting >200 m. Figure 4 shows the locations of this unconfirmed 174	

record, the previously confirmed 300 m lionfish observation in the Bahamas (Albins 175	

& Hixon, 2013; McGuire & Hill, 2014), and the locations of our deep-sea lionfish 176	

observations in Bermuda and Roatan.  177	
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 178	

Figure 4. Locations of confirmed and possible lionfish observations g200 m depth in 179	

the western Atlantic. The confirmed sightings represent our observations in Bermuda 180	

and Roatan, and the previously reported observation in the Bahamas. The 181	

unconfirmed sighting represent a record from the US Geological Survey 182	

Nonindigenous Aquatic Species database associated with bathymetry g200 m, though 183	

there is no direct information on the depth of the lionfish observation for this record. 184	

 185	

Discussion 186	

 187	

In this study we report deep-sea lionfish observations from the upper bathyal in two 188	

new locations within the invaded western Atlantic lionfish range. In Bermuda, close 189	

to the northern limit of the lionfish invaded range (Eddy et al., 2016) we recorded 190	

lionfish down to 304 m, the deepest we surveyed. While in Roatan, within the centre 191	
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of the lionfish invaded range (Schofield, 2010), lionfish are reported down to 250 m. 192	

Because of the large geographical distance between our observations, combined with 193	

the previous confirmed observation of lionfish at 300 m from the Bahamas (pers. 194	

comm. from R.G. Gilmore in: Albins & Hixon, 2013; McGuire & Hill, 2014), our 195	

results suggest that lionfish may be widely using deep-sea habitats in the 200-300 m 196	

depth range, and that this deeper aspect of the lionfish invasion has been under 197	

sampled. 198	

When searching the US Geological Survey Nonindigenous Aquatic Species 199	

database we found no lionfish records explicitly stating a depth of observation of 200	

g200 m. However, one lionfish record was located over bathymetry g200 m without 201	

stating a depth or giving any indication of depth. While these records have been 202	

placed over bathymetry in previous studies, leading to the suggestion that lionfish 203	

may extend their maximum depth to 610 m (Johnston & Purkis, 2011), our results 204	

indicate depth records generated in this way must be treated with caution. The grid 205	

resolution of bathymetry available at a regional level is not sufficient to generate 206	

precise lionfish depth information over undersea structures such as walls and steep 207	

slopes, where large differences in depth occur within one raster grid square. For this 208	

reason despite identifying 186 records associated with deeper bathymetry, when 209	

scrutinised, 185 of these were able to be excluded for containing either specific depth 210	

details or enough information to suggest that they were most likely shallower reef or 211	

MCE observations. Some of these excluded observations were from lionfish 212	

associated with oil and gas rigs, where lionfish were associated with the rig structure 213	

at shallower depths rather than actually with seabed benthic habitats. Therefore from a 214	

simple matching of GPS location with bathymetry these records would appear to be 215	
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>200 m and far from any shallower habitat, yet they actually represent shallower 216	

lionfish. 217	

It is not clear why differences in the maximum depth of observation exist between 218	

Roatan and our observations in Bermuda and previous observations in the Bahamas. 219	

While in Bermuda we observed lionfish to the maximum survey depth (304 m), in 220	

Roatan, despite 224 submarine dives to g300 m over the past 2.3 years, lionfish have 221	

not been observed deeper than 250 m. There are many possible explanations related to 222	

changing environmental conditions such as temperature and light or availability of 223	

prey. For example, lionfish are limited by temperature (Whitfield et al., 2014; 224	

Dabruzzi, Bennett & Fangue, 2017), with lab experiments suggesting they are unable 225	

to survive temperatures <10 °C, but crucially they ceased feeding at temperatures 226	

<16.1 °C (Kimball et al., 2004). While detailed temperature data across the depth 227	

gradient is not available for the locations we surveyed, water temperature was 228	

approximately 15 °C at 240 m in Roatan when we photographed lionfish in March 229	

2017. Therefore it is possible that the 250 m maximum depth of lionfish observations 230	

around Roatan may be caused by temperature limitation. In contrast, water 231	

temperature was 19.7 °C in Bermuda at 300 m, so above the temperature of feeding 232	

cessation for lionfish (Kimball et al., 2004). This suggests if temperature is the main 233	

limiting factor for maximum lionfish depth, we may expect lionfish to extend even 234	

deeper than 304 m in Bermuda. Other factors such as light could also influence the 235	

maximum depth for lionfish. Lionfish are visual predators (Cure et al., 2012), 236	

therefore despite previous studies indicating reef fish have high visual system 237	

plasticity to adapt to low light levels at depth (Brokovich et al., 2010), it is likely they 238	

will be limited by light. Bermuda has high light penetration (Fricke & Meischner, 239	

1985; Coates et al., 2013), while Roatan suffers from higher sedimentation rates 240	
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(Mehrtens et al., 2001; Harborne, Afzal & Andrews, 2001), likely reducing light 241	

penetration to lower levels than Bermuda. Further research is required to understand 242	

the ecological and physiological constraints on maximum lionfish depths. 243	

Little is known about the potential impacts of invasive lionfish on the upper 244	

bathyal zone. However, shallow reef research has suggested large declines in native 245	

reef fish abundance and recruitment are caused by lionfish (Albins & Hixon, 2008; 246	

Green et al., 2012), and increases in algal cover through trophic cascades are caused 247	

by lionfish predation on native fish on both shallow reefs and MCEs (Lesser & 248	

Slattery, 2011; Slattery & Lesser, 2014; Kindinger & Albins, 2017). Shallow reef fish 249	

species generally have higher individual and population growth rates when compared 250	

to deep sea fish species (Rogers, 1994; Norse et al., 2012). Therefore, predation by 251	

lionfish may have greater potential for damage to native fish communities in the 252	

upper bathyal zone. With so few records of bathyal lionfish and no quantitative 253	

estimates of lionfish densities, the ecological impacts at >200 m depth is unknown. 254	

Current lionfish management is highly biased towards shallow reef habitats, with 255	

diver-conducted culling the major control measure implemented in the western 256	

Atlantic (Morris et al., 2009). While shallow reef culling has been found to reduce 257	

lionfish densities (Frazer et al., 2012) and help native fish populations recover (Green 258	

et al., 2014), a recent study has suggested strong depth-specific effects of culling on 259	

lionfish densities, with substantial lionfish populations remaining on MCEs despite 260	

shallow culling (Andradi-Brown et al., in press). Previous modelling studies have 261	

highlighted that substantial deep refuges for lionfish have the potential to undermine 262	

current management programmes (Arias-González et al., 2011). Therefore if lionfish 263	

are widely distributed in the 200-300 m depth range across the western Atlantic this 264	

raises further challenges for lionfish management. There are currently few effective 265	
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methods for lionfish removal in water too deep for diving, with trapping being the 266	

only widely used method. In Bermuda, traps have been used to remove lionfish from 267	

MCEs (Pitt & Trott, 2015), though measures of trapping effectiveness for reducing 268	

deep lionfish populations are still lacking. Traps could be trialled deeper for lionfish 269	

control in the 200-300 m range, and cameras used to monitor effects on lionfish 270	

densities. 271	

This study documents non-native lionfish in the upper bathyal zone in Bermuda, 272	

and Roatan, Honduras for the first time. Our observations, combined with other 273	

lionfish records, suggest that lionfish may widely be using 200-300 m depth habitat in 274	

the western Atlantic. Our results therefore highlight the need to consider deeper 275	

lionfish populations in management programmes. 276	
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