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The bleaching susceptibility of 28 coral taxa around southern Phuket was examined in four

natural major bleaching events, in 1991, 1995, 2010, and 2016. Surveys were conducted

by line intercept and belt transect methods. All coral colonies were identified to genus or

species-level and their pigmentation status was assessed as: (1) fully pigmented (i.e. no

bleaching), (2) pale (loss of colour), (3) fully bleached, and (4) recently dead as a result of

bleaching-induced mortality. Bleaching and mortality indices were calculated to compare

bleaching susceptibility among coral taxa. In 2016 some of the formerly bleaching

susceptible coral taxa (e.g. Acropora, Montipora, Echinopora, and Pocillopora damicornis)

showed far greater tolerance to elevated sea water temperature than in previous years. In

P. damicornis the higher bleaching resistance encompassed all sizes from juveniles (<5cm)

to adults (>30cm). In contrast, some of the formerly bleaching-resistant corals (e.g. the

massive Porites, Goniastrea, Dipsastraea, and Favites) became more susceptible to

bleaching over repeated thermal stress events. Our results support the hypothesis that

some of the fast-growing branching corals (Acropora, Montipora, and Pocillopora) may

have life-history traits that lead to more rapid adaptation to a changed environment than

certain growing massive species.
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Abstract 29 

  30 

Methods. The bleaching susceptibility of 28 coral taxa around southern Phuket was 31 

examined in four natural major bleaching events, in 1991, 1995, 2010, and 2016. Surveys were 32 

conducted by line intercept and belt transect methods. All coral colonies were identified to genus 33 

or species-level and their pigmentation status was assessed as: (1) fully pigmented (i.e. no 34 

bleaching), (2) pale (loss of colour), (3) fully bleached, and (4) recently dead as a result of 35 

bleaching-induced mortality. Bleaching and mortality indices were calculated to compare 36 

bleaching susceptibility among coral taxa.  37 

Results. In 2016 some of the formerly bleaching susceptible coral taxa (e.g. Acropora, 38 

Montipora, Echinopora, and Pocillopora damicornis) showed far greater tolerance to elevated sea 39 

water temperature than in previous years. In P. damicornis the higher bleaching resistance 40 

encompassed all sizes from juveniles (<5cm) to adults (>30cm). In contrast, some of the formerly 41 

bleaching-resistant corals (e.g. the massive Porites, Goniastrea, Dipsastraea, and Favites) became 42 

more susceptible to bleaching over repeated thermal stress events.  43 

Discussion. Our results support the hypothesis that some of the fast-growing branching 44 

corals (Acropora, Montipora, and Pocillopora) may have life-history traits that lead to more rapid 45 

adaptation to a changed environment than certain growing massive species. 46 

 47 

Introduction 48 

Coral bleaching is a phenomenon involving the breakdown of the coral-alga1 symbiosis, resulting 49 

in the loss of symbiotic algae and/or their pigments (Brown 1997; Jokiel 2004). The symptoms of 50 

bleaching include a gradual loss of colour which may culminate in death if environmental stresses 51 

persist. Various physical parameters account for bleaching such as low salinity(Coles & Jokiel 52 

1978; Scott et al. 2013), high light intensity(Dunne & Brown 2001), increased and decreased sea 53 

water temperature (Brown et al. 1996; Lesser 1996; Lirman et al. 2011; Rodríguez-Troncoso et al. 54 

2014), and high CO2 (Anthony et al. 2008). Elevated temperature and light have been regarded as 55 

the major agents triggering bleaching and it is well accepted that they cause widespread bleaching 56 

events (Berkelmans & Oliver 1999; Bruno et al. 2001; Eakin et al. 2010; van Hooidonk et al. 57 

2012).  58 

 59 
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Not all coral taxa are equally susceptible to bleaching under the same stress and not all corals are 60 

able to recover to the same extent after bleaching (Baird & Marshall 2002; McClanahan 2004; 61 

Obura 2005). In general, slow growing coral taxa with massive or columnar morphologies are less 62 

susceptible to bleaching than fragile, fast growing taxa with branching or plating morphologies 63 

(Furby et al. 2013; Hongo & Yamano 2013; Loya et al. 2001; Marshall & Baird 2000; McClanahan 64 

2004). Nevertheless, bleaching susceptibility of a coral species can change over time. There are 65 

studies documenting an improved bleaching tolerance in corals that previously experienced 66 

thermal/light stresses (Bellantuono et al. 2012; Fang et al. 1997; Maynard et al. 2008; Middlebrook 67 

et al. 2008; Schoepf et al. 2015). But there are also reports showing a decrease in bleaching 68 

tolerance in corals after repeated thermal/light stress (Brown et al. 2014; Hongo & Yamano 2013). 69 

The bleaching responses of corals to combined heat/light stressors will depend very much on the 70 

intensity of each stressor and their prior exposure to these stressors in the period leading up to 71 

bleaching (Brown et al. 2002a). 72 

 73 

The capacity of corals to adapt to elevated temperatures has received increased attention in recent 74 

years. Adaptation can involve both host and/or symbiont. Different symbiont types are known to 75 

confer different thermal tolerance to a given coral host. In corals associating with more than one 76 

symbiont type, the switching and/or shuffling of symbionts differentially adapted to thermal and/or 77 

light stress may increase the proportion of thermally tolerant symbionts and improve the bleaching 78 

tolerance of the coral holobiont (Berkelmans & van Oppen 2006; Oliver & Palumbi 2011; Ulstrup 79 

et al. 2006). Selection for temperature tolerance in algal symbionts is well documented along 80 

environmental gradients from the scale of the colony (LaJeunesse et al. 2007) to the coral 81 

community scale (Jones et al. 2008). In addition to the symbionts, the coral host can play an 82 

important role in thermal tolerance through physiological acclimatization, e.g. by enhancing 83 

cellular antioxidant defence pathways in response to stress (Bellantuono et al. 2012; Brown et al. 84 

2002b; Wicks et al. 2012).  85 

  86 

In 2016, a relatively moderate bleaching event took place in the Andaman Sea in response to 87 

temperature anomalies above the bleaching threshold, which affected about 50% of coral cover 88 

and led to very limited bleaching-induced mortality as a result. Bleaching occurred across the area 89 

from May to early July. Interestingly, during this event we observed contrasting bleaching patterns 90 
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to those observed in earlier bleaching years. Unexpectedly, we found the previously bleaching-91 

susceptible branching corals Acropora and Pocillopora to show very limited bleaching, whereas 92 

the formerly bleaching-resistant massive Porites corals bleached extensively. Here, we investigate 93 

the bleaching susceptibility of various coral taxa around the southern Phuket sea area, by 94 

comparing recent coral bleaching patterns with those identified in the historical bleaching events 95 

of 1991, 1995, and 2010.  96 

 97 

Materials and methods 98 

Study site 99 

Bleaching surveys were conducted around southeastern Phuket (Fig. 1) during peak periods of 100 

major bleaching events when degree heating weeks (DHW) initially reached the maximum in 101 

1991, 1995, 2010 and 2016, respectively. Mass coral mortality followed the 2010 bleaching event, 102 

the largest so far on record (Phongsuwan & Chansang 2012). Minor to moderate bleaching events, 103 

defined as events where bleaching affects about 10% and 50% of coral cover, respectively, (Oliver 104 

et al. 2004) were observed in 1998, 2003, 2005, and 2007. Survey methodologies included 105 

permanent line intercept transects and belt transects. For the line intercept transects, a 100m 106 

measuring tape was laid out at each site at about 5 m depth. The corals below the transect line were 107 

identified to the genus or species level (total 28 taxa) and the corresponding section of each taxon 108 

intercepting the transect line was measured to the nearest centimeter (Loya 1972). Coral taxa and 109 

corresponding morphologies are provided in Table S1. For the belt transects, three 30 × 1m areas 110 

were investigated at each site by laying out a 30m measuring tape at about 5 m depth and recording 111 

the corals located within 0.5m left and right of the tape. The change from line transects (before 112 

2016) to belt surveys (only in 2016) was necessary to accommodate the strongly reduced coral 113 

cover after the mass mortality following the 2010 bleaching event. In all surveys, the bleaching 114 

status of coral colonies was classified according to the following categories: (1) fully pigmented 115 

or no bleaching, (2) pale (loss of colour), (3) fully bleached, and (4) recently dead as a result of 116 

bleaching-induced mortality. In addition to the taxon-specific differences in bleaching 117 

susceptibilities, we determined the size-specific bleaching susceptibilities for one of the species 118 

(Pocillopora damicornis) at one of the sites (Tang-khen Bay). The size classes were categorized 119 

as follows: (1) primary polyp (2mm) to small colony (5cm), (2) juvenile colony (6-10cm), (3) 120 

subadult colony (11-30cm), and (4) large colony (>30cm diameter). A bleaching and mortality 121 
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index (BMI) was used to assess the bleaching susceptibilities of different coral taxa and sizes. BMI 122 

was calculated by weighting the proportion of colonies that bleached by the severity of bleaching 123 

and adding bleaching-induced mortality as follows: BMI = (0c1+1c2+2c3+3c4)/3 where c1 is fully 124 

pigmented; c2 is pale; c3 is fully bleached; and c4 is recently dead, all calculated as percent per 125 

year (McClanahan 2004).  126 

 127 

To account for differences in the number and location of sites between survey years (Table 1), 128 

bleaching susceptibilities were computed for each survey separately, acknowledging that spatial 129 

variability in coral communities between sites may have biased the results (cf.  Supplementary 130 

Information).  131 

 132 

Figure 1 The location of Phuket Island in the Andaman Sea, Thailand (inset), and positions of 133 

bleaching survey sites.  134 
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Table 1 Number of sites, surveying methods, and surveying periods in different bleaching years.  135 

Year Station Location Method 
Surveying 

Period 
1991 Panwa 1, Lone, Hae, Racha Yai  Permanent line 

intercept transect 
Jun 

1995 Panwa 1, Panwa 2, Aeo, Hae 1, Hae 2 Jun 
2010 Panwa 1, Aeo, Lone, Hae, Racha Yai  May 
2016 Panwa 1, Tang-khen, Aeo, Lone, Hae, Racha 

Yai, Maiton 
Belt transect May 

Note: the distance between Panwa 1and Panwa 2, Hae 1 and Hae 2 was about 100 meters and 136 

500 meters, respectively  137 

 138 

Thermal history and stress 139 

Daily mean sea surface temperature (SST) was derived from the 4km2 NOAA High Resolution 140 

SST AVHRR (1981-2016), data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 141 

USA, from their Web site at http://www.esrl.noaa.gov/psd/. To assess the thermal stress level, 142 

degree heating weeks (DHW) were calculated using the NOAA Coral Reef Watch (CRW) 143 

methodology (Liu et al. 2006) for major bleaching years in this area, in 1991, 1995, 2010, and 144 

2016. Briefly, the average maximum of the hottest month (maximum of the monthly mean SST 145 

climatology, or MMM climatology) served as a basis for the calculation of coral bleaching 146 

HotSpots (HS), defined as the temperature exceeding the MMM climatology (Liu et al. 2003). 147 

DHW was calculated by accumulating daily HS as follows: 148 𝐷𝐻𝑊 = 17 ∑  𝐻𝑆𝑖, 𝑖𝑓 𝐻𝑆𝑖 ≥ 1℃84𝑖=1  149 

where HSi is the sea surface temperature (°C) above MMM for each day i over a 84 day (or 12 150 

week) rolling window. As HS values less than 1 °C were found to be insufficient to cause bleaching 151 

stress on corals, only HSi values larger than 1 °C were accumulated (Liu et al. 2003). 152 

 153 

Results and discussion 154 

Several bleaching events have taken place in the Andaman Sea over the last 25 years (Phongsuwan 155 

& Chansang 2012). The thermal conditions in terms of DHW in bleaching years that bleaching 156 

surveying data were available from 1991 to 2016 are shown in Figure 2. DHW initially reached 157 

the maximum at the different times of the years, i.e. late June in 1991 and 1995, and mid May in 158 

2010 and 2016. The heat stress in 2010 was the highest ever encountered, when DHW was over 159 
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8C-weeks, resulting in extensive bleaching across the Andaman Sea and subsequent mass coral 160 

mortality (Phongsuwan & Chansang 2012). In 2016, DHW were higher than 1991 and 1995, but 161 

the actual bleaching response was lower than expected from the levels of temperature stress. 162 

Bleaching susceptibility varied among coral taxa and also in different years (Fig. 3). In 2016 some 163 

coral taxa appeared to show increased thermal tolerance than previously, other taxa showed the 164 

reverse pattern. Corals that appeared to be bleaching resistant in 2016 included Acropora, 165 

Echinopora, Montipora, and P. damicornis. Corals that bleached extensively in 2016 included 166 

Hydnophora, Fungia, Pectinea, Goniastrea, Herpolitha, Dipsastraea (formerly known as Favia), 167 

Merulina, Platygyra, and Podabacia. Moreover, P. damicornis appeared to be bleaching resistant 168 

across all size classes measured, with 92-99% of colonies exhibiting no bleaching (Fig. 4).  169 

 170 

 171 

Figure 2 Daily sea surface temperature and degree heating week (DHW) at Panwa, southern 172 

Phuket in bleaching years 1991 (blue), 1995 (green), 2010 (red), and 2016 (black). Orange 173 

hatched lines indicate where DHW is 4 and 8oC-weeks which results in widespread bleaching 174 

and subsequent mortality, respectively.  175 

 176 
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 177 

Figure 3 Bleaching susceptibility of coral taxa in 1991, 1995, 2010, and 2016 around the 178 

southern Phuket sea region, displayed as percent cover of four categories of bleaching status: 179 

unbleached (black), pale (gray), bleached (white), and recently dead (black stripe). Number to 180 

the right of each bar indicates bleaching and mortality indices of each taxon. Bleaching 181 

susceptibility of coral taxa is arranged from top to bottom with highest to lowest bleaching and 182 

mortality indices in 2016. Data presents only species represented by 5 or more 183 

colonies/representatives. nd indicates where no data are available. 184 

 185 
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 186 

Figure 4 Bleaching susceptibility of Pocillopora damicornis at Tang-khen Bay during elevated 187 

sea water temperatures in 2016, displayed as percent cover of four categories of bleaching status: 188 

unbleached (black), pale (gray), bleached (white), and recently dead (black stripe) for four 189 

different size classes (maximum diameters) of corals. Number in brackets indicate colony 190 

numbers monitored in four different size classes.  191 

 192 

Corals that showed decreased bleaching susceptibility in 2016 were branching or plating 193 

morphologies. These corals are commonly considered to be some of the most bleaching sensitive 194 

taxa (Furby et al. 2013; Marshall & Baird 2000; McClanahan 2004) suffering extensive mortality 195 

at the study sites after the 2010 bleaching event (Fig. S1). Results suggest that these coral taxa 196 

were more resistant to bleaching in 2016 than other typical bleaching-resistant coral taxa (Fig. 5). 197 

This is the first report of reduced bleaching susceptibility in formerly bleaching susceptible coral 198 

taxa in the Andaman Sea. Similar results have previously been observed in Singapore and 199 

Peninsular Malaysia during a bleaching event in 2010 (Guest et al. 2012; Guest et al. 2016) and 200 

also in 2016 (J. T. I. Tanzil, pers. comm.), during the 2002 bleaching event in Sir Abu Nuair, 201 

Arabian Gulf (Riegl 2003) and on the Great Barrier Reef (Maynard et al. 2008). A recent analysis 202 

of repeatedly surveyed reefs in the Great Barrier Reef indicates, however, that effects of prior 203 

bleaching may be masked by the severity of the event (Hughes et al. 2017). Many factors may 204 

affect the environmental adaptation of coral taxa through historical temperature stresses, including 205 
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changes in the symbiotic associations with coral hosts (Baird et al. 2007; Baker 2003), natural 206 

selection adjusting the frequency of genes that code for traits resisting thermal stress (Weis 2010), 207 

age of corals (Brown et al. 2014), physiological acclimatization (Bellantuono et al. 2012) and 208 

previous environmental experience (Brown et al. 2002a) 209 

 210 

 211 

Figure 5 Unusual bleaching responses to increased temperature in May 2016. Bleached Porites 212 

(Po) and Dipsastraea (Dips) adjacent to colonies of Acropora (Ac), Montipora (Monti), and P. 213 

damicornis (Poc), which appear unaffected. 214 

 215 

Prior to the rise in SST in early 2016, there were two significant factors that may have affected the 216 

responses of corals at the study site. First, was the severe thermal stress in 2010 followed by 217 

widespread coral mortality (Phongsuwan & Chansang 2012). Lower bleaching susceptibility in 218 

some taxa may have been the result of acclimatization as reported by Maynard et al. (2008), where 219 

prior major bleaching events can lead to increased thermal tolerance in corals. Second, was the 220 

astronomically low tide associated with the 19 year tidal cycle noted in early 2015 followed by a 221 

positive Indian Ocean Dipole (IOD) (Webster et al. 1999) from August to December in late 2015. 222 

As a result of lowered sea levels during these times, corals on the shallow reef front would have 223 

experienced high light levels during low spring tides, a factor previously shown to have had an 224 

important impact on coral thermal tolerance in similar circumstances in this region prior to the 225 
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1998 bleaching (Dunne & Brown 2001). It seems possible that symbionts which had 226 

photoacclimated to high light radiation were more easily able to counter photoinhibition than 227 

nonacclimated symbionts (Brown et al. 2002a). This was further supported by the finding of 228 

(Schoepf et al. 2015), who showed higher bleaching tolerance of corals inhabiting highly 229 

fluctuating environments (solar radiation and temperature). However, such thermal tolerance was 230 

not exhibited by all coral taxa in our study.  231 

 232 

Observed changes in bleaching susceptibility may relate to coral life history traits and evolutionary 233 

potential. Species with “competitive” life history traits such as Acropora tend to bleach and suffer 234 

high whole-colony mortality, whereas stress tolerant and generalist species tend to suffer partial 235 

mortality and take a long time to bleach and recover. Colonies of stress tolerant and generalist 236 

species will remain in the population while susceptible genotypes of competitive species will be 237 

selected out of the population much more efficiently (Day et al. 2008). One such example is P. 238 

damicornis, which was absent from some surveying sites for many years after the 2010 severe 239 

bleaching event, before observing the re-appearance of juveniles in 2014 (L. Putchim, unpublished 240 

data). Our study shows that the present P. damicornis population was bleaching resistant across 241 

all size classes in 2016, including the adults that survived from the last bleaching. It is possible 242 

that the new resistant recruits may never have experienced bleaching, but may have inherited 243 

thermal tolerance from their parents (Dixon et al. 2015). Since the growth rate of a juvenile 244 

colonies of P. damicornis is about 1.5- 3cm/year (Jerker 2002; Richmond 1987; Trapon et al. 245 

2013), 5 cm corals are approximately one to three years old depending on the environmental 246 

conditions.  247 

 248 

Another factor improving the thermal tolerance of competitive species could be their association 249 

with diverse genetic varieties of their Symbiodinium symbionts. Different Symbiodinium 250 

genotypes have been found to respond differently to thermal stress (Kinzie et al. 2001; Sampayo 251 

et al. 2008). Pocillopora and Acropora in the Indian Ocean were found to associate with 6-7 types 252 

of Symbiodinium, while Porites displayed a much higher symbiont fidelity with only 2 types of 253 

Symbiodinium (LaJeunesse et al. 2010). Pocillopora showed different bleaching responses in 254 

relation to Symbiodinium types during a thermal stress event in the southern Gulf of California 255 

(LaJeunesse et al. 2007), and the high proportion of stress-resistant clade D Symbiodinium in 256 
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Andaman Sea corals was taken as an indication of an adaptive response in the coral community to 257 

previous thermal stress events (LaJeunesse et al. 2010). The eroding resilience of the massive 258 

Porites over the 25 year period, by contrast, may reflect the lower adaptive potential of corals that, 259 

for good or evil, enjoy only one or two symbiont options.  260 

 261 

Our findings underscore the importance of long-term and fine-grain monitoring of local and 262 

regional bleaching responses to underpin appropriate management action to conserve coral reefs 263 

in the face of recurrent thermal stress events. 264 
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