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ABSTRACT8

Robotic Labs, in which experiments are carried out entirely by robots, have the potential to provide a

reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this

article, we investigate whether these labs are applicable in current experimental practice. We do this

by text mining 1628 papers for occurrences of methods that are supported by commercial robotic labs.

We find that 62% of the papers have at least one of these methods. This and our other results provide

indications that robotic labs can serve as the foundation for performing many lab-based experiments.
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INTRODUCTION15

The reproducibility of a scientific experiment is an important factor in both its credibility and overall16

usefulness to a given field. In recent years there has been an up-tick in discussion surrounding scientific17

reproducibility, and it is increasingly being called into question. For example, Baker conducted a 201618

survey of 1500 researchers for Nature in which 70% were unable to reproduce their colleagues experiments19

(Baker, 2016). Furthermore, over 50% of the same researchers agreed that there was a significant crisis in20

reproducibility. While these issues arise in all fields, special attention has been paid to reproducibility in21

cancer research. Major pharmaceutical companies like Bayer and Amgen have reported the inability to22

reproduce results in preclinical cancer studies, potentially explaining the failure of several costly oncology23

trials (Begley and Ellis, 2012).24

Munafò et al. (2017) outline several potential threats to reproducible science including p-hacking,25

publication bias, failure to control for biases, low statistical power in study design, and poor quality26

control. To address these issues, the Reproducibility Project: Cancer Biology in its reproduction of 5027

cancer biology papers, used commercial contract research organizations (CROs) as well as a number of28

other interventions, such as registered reports (Errington et al., 2014). They argue that CROs provide a29

better basis for replication as they are both skilled in the expertise area and independent, in turn reducing30

risk of bias.31

Extending this approach to providing an industrialized basis for performing experiments, is the32

introduction of large amounts of automation into experimental processes. At the forefront of this33

move towards automation is the introduction of “robotic labs”. These are labs in which the entire34

experimental process is performed by robots and available remotely in the cloud (Bates et al., 2016). A35

pioneering example of this is King’s Robot Scientist (King et al., 2009), which completely encapsulates and36

connects all the necessary equipment in order to perform microbial batch experiments; only needing to be37

provided consumables. Companies such as Transcriptic (http://transcriptic.com) and Emerald38

Cloud Lab (http://emeraldcloudlab.com) are beginning to make this same infrastructure in a39

commercial form.40

The promise of these labs is that they remove the issues of quality control from individual labs and41

provide greater transparency in their operation. Additionally, they allow for biomedical experiments to42

become more like computational experiments where code can be re-executed, interrogated, analyzed43

and reused. This ability to have a much more detailed computational view is critical for reproducibility44

as narrative descriptions of methods are known to be inadequate for this task as summarized in (Gil45

and Garijo, 2017). This lack of detail is illustrated compellingly in the work on reproducibility maps46
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where it took 280 hours to reproduce a single computational experiment in computational biology (Garijo47

et al., 2013). While there are still challenges to reproducibility even within computational environments48

(Fokkens et al., 2013), robotic labs potentially remove an important variable around infrastructure. They49

provide, in essence, a programming language for biomedical research.50

While this promise is compelling, a key question is whether robotic labs would be widely applicable51

to current methods used in biomedical research. This question can be broken down into two parts:52

1. does basic lab-based biomedical research reuse and assemble existing methods, or is it primarily53

focused on the development of new techniques? and;54

2. what existing methods are covered by robotic labs?55

To answer this question, we use an approach inspired by Vasilevsky (Vasilevsky et al., 2013) that used56

text analysis of the literature to identify resources (e.g. cell lines, reagents). Concretely, we automatically57

extract methods from a corpus of 1628 open access papers from a range of journals covering basic58

biomedical research. We identify which of those methods are currently supported by robotic labs. Our59

results show that that 62% of these papers have some methods that are currently supported by cloud-based60

robotic labs. 1
61

MATERIALS & METHODS62

Article Corpus Construction63

Our aim was to construct a meaningfully sized corpus that covered representative papers of basic lab-based64

biomedical research. Additionally, for reasons of processing efficiency we selected papers from Elsevier65

because we had access to the XML versions of the paper in a preprocessed fashion. To build our corpus,66

we first selected journals categorized under ”Life Sciences” in ScienceDirect2, specifically those marked67

under ”Biochemistry, Genetics and Molecular Biology”. We then filtered for journals categorized as68

”Biochemistry”, ”Biochemistry, Genetics and Molecular Biology”, ”Biophysics”, ”Cancer Research”,69

”Cell Biology”, ”Developmental Biology”, ”Genetics”, or ”Molecular Biology”. This returned a list of70

412 journals. We then manually inspected each journal on this list. Journals were excluded if they were71

comprised of seminars or reviews, were non-English, primarily clinical studies, primarily new methods,72

population studies or a predecessor to another journal. ISSNs were returned for each title, for a final list73

of 143 journals. The list of journals selected with their ISSN are available at Groth and Cox (2017).74

From these journals, we selected CC-BY licensed papers. The list of papers and their DOIs is available75

at Groth and Cox (2017) which includes a script to download the corpus.76

Method Space Definition77

To define the space of methods, we relied upon the 2015 edition of the National Library of Medicine’s78

Medical Subject Headings (MeSH) controlled vocabulary. MeSH provides a number of benefits: One,79

it provides an independent definition of a set of possible methods. Two, it provides a computationally80

friendly definition covering multiple synonyms for the same method concept that researchers could81

potentially use. For example, it defines synonyms for Polymerase Chain Reaction such as PCR, Nested82

PCR, and Anchored Polymerase Chain Reaction. Third, because it is arranged hierarchically, it captures83

methods at different levels of granularity. For example, a researcher may use PCR but not identify the84

specific variant like Amplified Fragment Length Polymorphism Analysis. Thus, we took the Investigative85

Techniques [E05] branch of MeSH as defining the total space of methods. For use in our analysis, we86

extracted that branch from the Linked Data version of MeSH3 using a SPARQL query. This branch of87

MeSH contained 1036 total concepts. The SPARQL query, the branch reformated as a CSV file and a link88

to the specific linked data version are available in Groth and Cox (2017).89

To define what methods could be automated by a robot lab, we built a list of available and soon to be90

available methods from the Transcriptic and Emerald Cloud Lab websites as of March 10, 2017. This list91

contained 107 methods. We term methods that can be executed within a robotic lab a robotic method.92

We manually mapped those lists to MeSH concepts from the Investigative Techniques [E05] branch. We93

were able to map 71 methods to MeSH concepts. During the mapping procedure, we selected leaf nodes94

1Data and Code are available at http://dx.doi.org/10.17632/gy7bfzcgyd.1 and referenced throughout.
2http://sciencedirect.com
3https://id.nlm.nih.gov/mesh/
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Figure 1. The distribution of the count of unique methods per paper categorized by type.

of the tree and used the MeSH preferred concept as the target. In some cases, this meant that a particular95

method was mapped to a more general method type. Our final list of robotic methodsmapped to MeSH96

contains 59 concepts. The complete mapping is also available at Groth and Cox (2017).97

Those methods that were not mapped to a robotic methodbut were tagged with a MeSH investigative98

technique are termed a non-robotic method.99

Method Identification100

To identify methods mentioned in the corpus, we use Solr Dictionary Annotator (SoDA) (Pal, 2015) -101

a flexible, scalable lexicon based annotator that provides convenient integrations with Apache Spark102

(a distributed computing environment). Using SoDA, we annotated all content paragraphs (excluding103

abstracts, titles, section headings, figures, and references) against the whole of MeSH 2015 using104

SoDA’s exact setting. Adopting such a dictionary based approach translates to high precision in method105

identification, sacrificing recall. Using this approach means that we cannot determine complete coverage106

of all methods used in a paper.107

After annotation, analysis was performed by matching the lists detailed above with the output108

annotations. The analysis procedure code is available in Groth and Cox (2017).109

RESULTS110

Within our 1628 article corpus, 1165 of those articles were identified to have at least one method as111

defined by matching to an MeSH investigative technique. In total, we identified 151 unique methods used112

across the corpus.113

Using the mapping to robotic labs discussed above, we identified 1011 articles or roughly 62% of the114

total corpus have at least one method that can be executed within a known robotic lab. Of the 1165 papers115

where the procedure recognized a method, the mean number of arobotic methodswithin an article is 1.5.116

Figure 1 shows the number of times a robotic methodor a non-robotic methodoccur within a paper. For117

example, in roughly 19 papers, an robotic methodoccurs 4 times.118
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Table 1. Occurrence of robotic methods

Method Name Count

Polymerase Chain Reaction 746

Enzyme-Linked Immunosorbent Assay 165

Chromatography, High Pressure Liquid 110

Transfection 101

Immunoprecipitation 71

Real-Time Polymerase Chain Reaction 67

Microscopy 64

Flow Cytometry 47

Cell Culture Techniques 39

Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization 32

Crystallization 25

Microscopy, Electron 23

Blotting, Western 21

Table 2. Occurrence of non-robotic methods

Method Name Count

Passive Cutaneous Anaphylaxis 47

Immunohistochemistry 45

In Situ Nick-End Labeling 36

Immunoblotting 34

Mass Spectrometry 31

Mutagenesis, Site-Directed 22

Animal Experimentation 22

Data Collection 19

Electrophoresis 15

Insemination, Artificial, Heterologous 15

Table 1 lists robotic methodsthat occur in more than 15 papers. Of the 59 potential robotic methods,119

33 occurred within our corpus. We analyze this list in more detail later in the discussion section.120

Additionally, as discussed we identified the most common non-robotic methods. There were 118121

unique non-robotic methodsin total, and methods appearing in at least 15 papers are presented in ta-122

ble:nonautomethodnum.123

We note that robotic methodsappear more frequently in articles. For example, the most frequently124

occurring robotic methodoccurs in 15 times more articles than the most frequently occurring non-robotic125

method.126

DISCUSSION127

We return to our initial questions: 1) do basic biomedical papers reuse existing methods and, 2) if so, are128

those methods supported by robotic labs.129

With respect to our first question, our analysis suggests that biomedical research papers do reuse130

existing methods. 71% of the papers had at least one known method as listed within MeSH. Interestingly,131

of the potential 1035 methods only 151 were recognized. One could take this skew as evidence that a132

small number of highly common methods are being employed in practice. However, this skew could be133

the result of a number of other variables including the recognition algorithm used, the level of reporting134

by scientists in their papers (e.g. ignoring methods that are widely used), and the coverage of method135

synonyms by MeSH. From a more qualitative perspective, we see that common techniques are recognized.136

For example, it is unsurprising that the most common robotic methodis PCR, shown in Table 1. PCR is a137

relatively standardized and cost-effective method used ubiquitously in biomedical research. Its elegant138

yet straightforward protocol lends itself to be used in a variety of contexts within a biomedical lab: from139

gene expression measurement to cloning. Current thermocycler technology enables easy adjustment of140
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experimental parameters, relatively little sample handling and the use of commercialized master mixes.141

Combined with its pervasiveness in biomedical research labs, these factors make PCR an attractive choice142

for automation.143

With the exception of cell culture, the other methods in Table 1 are also comprised of highly au-144

tomatable tasks. Just as thermocycler technology is relatively standardized, so too are the equipments,145

kits and protocols used for methods like HPLC and ELISAs. Biomedical labs are using nearly identical146

protocols in many instances, yet introducing their own variability due to human use. In these cases,147

robotic automation would facilitate quick execution of the same method for all of these labs, increasing148

transparency and reproducibility. This argument can be extended to nearly all of the methods within the149

table. Simply stated, robots can pipette, measure and handle samples better than humans can, and in turn150

facilitate reproducible science.151

Table 2 represents the most commonly identified non-robotic methods. We combed through the list of152

119 unique methods and crossed them with the list of methods currently provided by Transcriptic and153

Emerald. Twenty-six of these methods (2̃2%) are in fact supported by one of these cloud labs, exposing154

some ”leakiness” in our procedure. Our annotation procedure does not attempt to generalize: the MeSH155

ID a method is labeled with is exactly what is returned in a search for the method without traversing the156

hierarchy of the method tree. This explains why Real-Time Polymerase Chain Reaction appears in this157

list, and is not grouped in with Polymerase Chain Reaction, the most common robotic methodin Table 1.158

Additionally, many of the methods tagged are not applicable in the context of a biomedical laboratory159

pipeline. For example, ”passive cutaneous anaphylaxis” refers to a clinical event, but reflects the nature of160

MeSH as a information management vocabulary as well as potential outliers in our document corpus.161

In terms of the second question, our analysis suggests that the research represented by this corpus of162

literature has the potential for using robotic labs in at a least some aspects of the described experimental163

processes. Indeed, looking at the coverage of methods found, one sees that over half of the methods164

indexed have some automated equivalent. This figure is striking in that robotic labs are still just becoming165

available for use. This large overlap could have to do with what the skewed distribution of recognized166

methods as described above.167

Looking more deeply at the actual methods identified, the top robotic methodsin Table 1 are a mix of168

both workflow techniques (i.e. cell culture, transfection) and endpoint measurements (i.e. qPCR, ELISA).169

Roughly 6% of our corpus had more than 3 robotic methodswithin one paper, which we believe to be170

an underestimation. This qualitative view provides some support that robotic methodscan execute the171

majority of an end to end biomedical workflow. One may argue that robotic labs do not lend themselves172

to the building of a disease model. Building a model requires extensive experimentation and parameter173

tweaking, and some argue that this kind of platform is more conducive to endpoint analysis after a174

model has been rigorously developed and tested, and not its actual development. However, we contend175

that with some more work, a robotic lab that does support every part of the workflow would actually176

accelerate model system development and allow researchers to spend more time testing and developing177

new hypotheses. This outcome would be the consequence of allowing essentially what is parameter search178

to be performed by the robot with minimal human interaction during experimental execution. This could179

accelerate the pace of discovery in entire fields, all while maintaining reproducibility.180

While these results provide salient indicators for the ability to move towards robotic labs, there are a181

number areas where our analysis could be improved.182

Our analysis does not provide information about whether the given automated methods cover all183

aspects of the protocols described within an article. This incompleteness comes from four sources:184

1. the identification algorithm biases towards precision rather than recall (e.g. it does not perform185

fuzzy matching);186

2. the identification relies on a manually created list (i.e. MeSH that is necessarily incomplete;187

3. the recognition algorithm does not determine how the methods/steps that are recognized join up to188

form a total protocol, this includes how materials are physically transferred between steps;189

4. papers will frequently not mention steps or smaller parts of protocols that are necessary but are190

well known to trained researchers;191
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To address the above, we would need much more complex natural language processing techniques. Indeed,192

the state of the art in process/task detection (a similar task to method recognition) is only 0.44 F14 that193

is not including recognizing the dependency relations between the tasks. In biology specific method194

extraction state-of-the-art ranges between roughly 0.6 and .7 F1 (Burns et al., 2016). Recent work by195

Dasigi et al. (2017) shows the effectiveness of deep learning approaches on the larger scientific discourse196

extraction, however, this was applied only to a small number of papers. In future work, we aim to apply197

these recent advances to deepen our analysis. Based on the challenges listed above, we believe that the198

numbers presented here are an underestimation of the total number of robotic methodsthat can be applied199

in biomedical research.200

Finally, While we believe the selected corpus reflects the body of literature that would most likely use201

robotic labs, it could be argued that a much larger corpus would be more informative. This investigation202

is also left to future work.203

CONCLUSION204

Reproducibility is of increasing concern across the sciences. Robotic labs, particularly in biomedicine,205

provide the potential for reducing the quality control issues between experiments while increasing the206

transparency of reporting. In this article, we analyzed a subset of the biomedical literature and find that207

greater than 60% of the papers have some methods that are supported by existing commercial robotic208

labs. Furthermore, we find that basic methods are indeed “popular” and are increasingly being covered by209

robotic labs.210

While there will always be labs that specialize in the development of new methods, given these211

indicators, we believe that robotic labs can provide the basis for performing a large percentage of basic212

biomedical research in a reproducible and transparent fashion.213
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