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The use of multiple sampling areas in landscape genetic analysis has been recognized as a

useful way to generalize the patterns of environmental effects on gene flow. It allows

reducing the variability of inference, accounting for multiple scales and locations of study

areas. Although several reviews have stressed the importance of this point, few studies

have considered multiple sampling areas in analysis and formally tested their effects on

inference. In this study, we present a method for resampling of study areas at multiple

scales and multiple locations (sliding windows) to track the variation of inference in spatial

genetics. We explored the effects of environmental features on gene flow of a flying long-

horned beetle (Monochamus galloprovincialis) in 3*104 study areas ranging in scale from

220 to 1000 km and spread over 132 locations among the Iberian Peninsula. We show that

there were no general or recurrent effects of environmental features detected among

scales and locations, independent of variation in environmental features. Detection of

environmental features on gene flow generally increased with an increasing scale of study,

and was variable between locations. The resampling method presented here provides the

opportunity to explore the effects of environmental features on gene flow of organisms in

their whole extent and to conclude about general landscape effects on the dispersal of

organisms, while keeping sampling effort to a reasonable level.
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30

31 Abstract

32 The use of multiple sampling areas in landscape genetic analysis has been recognized as a useful 

33 way to generalize the patterns of environmental effects on gene flow. It allows reducing the 

34 variability of inference, accounting for multiple scales and locations of study areas. Although 

35 several reviews have stressed the importance of this point, few studies have considered multiple 

36 sampling areas in analysis and formally tested their effects on inference. In this study, we present 

37 a method for resampling of study areas at multiple scales and multiple locations (sliding windows) 

38 to track the variation of inference in spatial genetics. We explored the effects of environmental 

39 features on gene flow of a flying long-horned beetle (Monochamus galloprovincialis) in 3*104 

40 study areas ranging in scale from 220 to 1000 km and spread over 132 locations among the Iberian 

41 Peninsula. We show that there were no general or recurrent effects of environmental features 

42 detected among scales and locations, independent of variation in environmental features. Detection 

43 of environmental features on gene flow generally increased with an increasing scale of study, and 

44 was variable between locations. The resampling method presented here provides the opportunity 

45 to explore the effects of environmental features on gene flow of organisms in their whole extent 

46 and to conclude about general landscape effects on the dispersal of organisms, while keeping 

47 sampling effort to a reasonable level.

48

49

50

51

52 Introduction 

53 Landscape genetics examines the relationship between landscape and environmental 

54 features and genetic structure (Manel et al., 2003; Manel & Holderegger 2013). It allows which 
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55 environmental features facilitate or hinder gene flow to be inferred (Zeller et al., 2012), which is a 

56 key factor for understanding the persistence and evolution of species and populations and has 

57 significant consequences for conservation planning (Castillo et al., 2014; Van Strien et al., 2014). 

58 As an emerging and fast moving field, the landscape genetic toolbox is far from being established, 

59 and an important effort toward method optimization is still required to make relevant and optimal 

60 inferences (Anderson et al., 2010; Cushman et al., 2013; Manel & Holderegger 2013). Landscape 

61 genetic analyses are usually conducted at a single scale and in a single location (Zeller et al., 2012) 

62 and therefore provide results that are strictly speaking only applicable to the particular area under 

63 study. Indeed, genetic structure is determined by multiple micro- and macro-evolutionary 

64 processes acting at different spatial and temporal scales, rarely homogeneously distributed across 

65 a study species9 distribution range (Waters et al., 2013). For example, in addition to contemporary 

66 or historical environmental effects on dispersal (Zellmer & Knowles 2009), the genetic structure 

67 of organisms is often influenced by historic differentiation due to quaternary climate oscillations 

68 (Hewitt 2000), or by biased dispersal due to local adaptation to specific environmental conditions 

69 (Sexton et al., 2014; Pflüger & Balkenhol 2014). The diverse factors acting at different temporal 

70 and spatial scales may generate genetic patterns that could be inconsistent across locations or 

71 regions, which results in conflicting signals of environmental factors acting on gene flow. This 

72 may drastically impede the ability to infer the general drivers of gene flow. To overcome this 

73 problem, several authors have pointed to the importance of matching study design to the process 

74 investigated (Anderson et al., 2010; Cushman & Landguth 2010; Galpern et al., 2012; Keller et 

75 al., 2013), or have stressed the need to consider landscape-level replications in landscape genetic 

76 analysis (Holderegger & Wagner 2008; Short Bull et al., 2011).

77 The scale of study is fundamental in landscape genetics, because species respond to 

78 environmental features at a continuous range of scales (Anderson et al., 2010; Manel & 

79 Holderegger 2013). This point has been highlighted in several empirical studies and simulation 

80 exercises (Cushman & Landguth 2010; Angelone et al., 2011; Galpern et al., 2012; Dudaniec et 

81 al., 2013; Keller et al., 2013), in particular for organisms exhibiting wide home-ranges like large 

82 mammals (Galpern et al., 2012; Zeller et al., 2014). Despite an increasing number of studies 

83 explicitly accounting for scale effects, landscape genetics studies still rarely consider scale effects 

84 (Zeller et al., 2012) and how it affects inference on the detection of general effects of 

85 environmental features on dispersal and gene flow. Landscape-level replication is another 
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86 fundamental aspect in landscape genetics. The term replication usually refers to the replication of 

87 sampling areas (sampling units; Short Bull et al., 2011). Such experimental design provides a 

88 <quantitative= dimension in landscape genetics analysis, allowing conclusions to be drawn about 

89 the effects of landscape features on the dispersal of organisms. Few studies have included 

90 replication in landscape genetics studies (Driezen et al., 2007; Kindall & Van Manen 2007; 

91 Zalewski et al., 2009; Short Bull et al., 2011), and the number of replications considered is often 

92 low due to the sampling effort required. 

93 There is currently an increasing demand to provide a more complete and comprehensive 

94 picture of the general landscape effects on the dispersal of organisms, including variation across 

95 scale and locations. However, such exploration often remains often limited due to the important 

96 sampling efforts required. In the present study, we assess a method to unify both dimensions in 

97 spatial genetic analysis. This method consists of a multi-site and a multi-scale resampling of sliding 

98 windows (study areas) and therefore has the potential to reduce the versatility of results while 

99 keeping sampling effort to a reasonable level.

100 As a study system, we explored which environmental features foster or hinder gene flow 

101 of a flying insect species, Monochamus galloprovincialis (Coleoptera, Cerambycidae). We 

102 performed an individual-based landscape genetic analysis among 3*104 resampled areas of extent 

103 ranging from 220 to 1000 km and distributed in 132 sampling locations in the Iberian Peninsula. 

104 M. galloprovincialis is the vector of the pinewood nematode (Bursaphelenchus xylophilus, PWN) 

105 in Europe. This species is native to Europe and is structured into several genetic clusters that are 

106 thought to correspond to postglacial recolonization patterns (Koutroumpa et al., 2013, Haran et al., 

107 2015). The life cycle of this beetle occurs in the wood of declining pine trees (Pinus pinaster, P. 

108 sylvestris, P. nigra, P. halepensis, Naves et al., 2006; Hellrigl 1971). M. galloprovincialis is quite 

109 long-lived and shows rather high potential to dispersal in laboratory experiments and in the field 

110 (David et al., 2013; Mas et al., 2013). However, the role of major environmental features and 

111 parameters (elevations, low temperatures and the density of pine cover) as potential barriers to the 

112 dispersal of this species has been weakly explored and remains poorly understood (Haran et al., 

113 2015; Torres-Vila et al., 2015). 

114 Methods: 
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115 Sampling and genotyping

116 The study area covered the entire Iberian Peninsula (582 000 km2) with altitudes ranging 

117 from sea level up to 2444 m. M. galloprovincialis specimens were trapped between 2011 and 2013 

118 at 137 sites spread over the Iberian Peninsula. We used multifunnel traps baited with a volatile 

119 attractant (Galloprotect, SEDQ, Spain) placed during the summer to catch flying adults. The traps 

120 used had a radius of attraction of 100m (Jactel et al., 2015) and were placed in dense pine stands 

121 (were beetle density is high; Jactel et al., 2015) to limit consanguinity among individuals caught. 

122 After collecting, adults were stored in 96.66% ethanol at 4°C. Despite intensive trapping, M. 

123 galloprovincialis was not recorded in five localities in the Central lowlands of Castilla y Leon, 

124 central Galicia and Asturias districts. We obtained a sampling of 1050 individuals at 132 sites. 

125 Seventy-seven sites had a size below 10 and 55 above or equal to this value, with an average 

126 sampling size per location of 7.68 individuals. Details of sampling localities and year of collection 

127 are given in table S1 (supporting information). Individuals collected at the same locality were 

128 considered as one deme. The distribution of sites covered most of the pines forests found in the 

129 Iberian Peninsula (Fig. S1; supporting information). 

130 DNA was isolated from two legs per individuals using a Nucleospin Kit (Macherey-Nagel, 

131 Düren, Germany). Specimens were genotyped at 12 microsatellite loci (Mon01, Mon08, Mon17, 

132 Mon23, Mon27, Mon30, Mon31, Mon35, Mon36, Mon41, Mon42 and Mon44) following the 

133 method of Haran & Roux-Morabito (2014). Details of primer sequences and the protocol for 

134 genotyping are given in Table S2 (supporting information). Results showing negative or 

135 ambiguous amplification of particular loci were repeated once and considered null when still 

136 unsatisfactory. Individuals exceeding two missing loci were removed for analysis. Deviation from 

137 Hardy Weinberg Equilibrium (Fis) was estimated for each deme, each inferred cluster and for the 

138 whole dataset using GENEPOP 4.2 (Raymon & Rousset 1995). The frequency of null alleles at 

139 each locus was tested using FREENA (Chapuis & Estoup 2007) among three large size demes 

140 (n>19). Loci exceeding a rate of 7% of null alleles across populations were discarded from further 

141 analysis. The allelic richness was computed for each deme using rarefaction (HP-RARE, 

142 Kalinowski 2005). The absence of linkage disequilibrium between pairs of loci was already 

143 reported in a previous population-based study (Haran et al., 2015). 

144
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145 Genetic structure

146 We used the Bayesian approach implemented in STRUCTURE 2.3.4 (Pritchard et al., 

147 2000) to identify the main genetic clusters among Iberian demes. STRUCTURE assigns 

148 individuals to a predefined number of clusters based on allelic composition and linkage 

149 disequilibrium. We used the Delta K method (Evanno et al., 2005) to determine the number of 

150 clusters (K) that best fit the data. Genotypes were analyzed using default parameters (admixture 

151 model, correlated alleles frequency). We made ten repeats of a 200,000 burn-in period followed 

152 by 500,000 replicates of Markov Chain Monte Carlo (MCMC), for K values ranging from 1 to 20. 

153 Results were uploaded in STRUCTURE HARVESTER (Earl et al., 2012) to determine the optimal 

154 K. We also explored the existence of genetic clusters among demes using a principal component 

155 analysis (PCA) performed on allele frequencies (package Adegenet, Jombart 2008). To account 

156 for potential confounding effects of differentiated genetic clusters (possibly of evolutionary history 

157 origin) on the inference of gene flow, landscape genetic analyses were performed twice, once 

158 within the main cluster identified by STRUCTURE and PCA, and once with the whole dataset 

159 including all clusters. 

160 The scores of sampling locations upon axis 1 of the PCA are linear descriptors of the allele 

161 frequencies and, as such, can be used as a univariate statistical measure of genetic composition. 

162 The scores may encapsulate relevant spatial information, so we explored this point using a specific 

163 tool borrowed from geostatistics: the variogram (Wagner et al., 2005, Goovaerts, 1997). The 

164 variogram is used in all branches of life sciences in order to explore spatial patterns and determine 

165 the main spatial scales at which structures occur. In the present study, we analyzed the score of 

166 sample points upon axis 1 using a variogram to better understand the spatial component of the 

167 variation encapsulated in the first axis of the PCA. Let z(u³), with ³=1, 2, ... n, be a set of n values 

168 of sample scores upon a PCA axis where u³ is the vector of spatial coordinates of the ³th 

169 observation. In geostatistics, spatial dependence is described in terms of dissimilarity between 

170 observations expressed as a function of the separating distance (Goovaerts 1997). The average 

171 dissimilarity between data separated by a vector h is measured by the empirical semi-variance w(h), 

172 which is computed as half of the average squared difference between the data pairs:

173
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174 where N(h) is the number of data pairs for a given lag vector h, z(u³) and z(u³+h) the score 

175 values of all sample locations separated by a vector h. The more alike the observations at points 

176 separated by h are, the smaller w(h), and vice versa. The plot of w(h) against h is called a variogram 

177 and represents the average rate of change of z with distance. Its shape describes the pattern of 

178 spatial variation in terms of general form, scales and magnitude (Goovaerts 1997).

179 Variograms are good tools to depict spatial structures and analyze nested patterns (Burrough 

180 1983); when structures occurs at different spatial scales, the resulting variogram exhibits different 

181 plateaus in association with different scales (Robertson and Gross 1994; Rossi 2003). The range 

182 of the variogram is the distance at which the plateau occurs. Multi-plateau variograms exhibit 

183 different ranges which provide synthetic information about the spatial scales at play. Readers are 

184 referred to Goovaerts (1997) for a thorough introduction to variograms and geostatistics and to 

185 Wagner et al., (2005) for an introduction of this tool in the field of population genetics. Variograms 

186 were computed using the R package geoR (Ribeiro and Diggle 2001).

187

188 Landscape genetics analysis 

189 We computed genetic distances between pairs of individuals using an individual-based 

190 metric (Shirk et al., 2010; Prunier et al., 2013). We first constructed a matrix where each individual 

191 is a row and alleles are columns and where genotypes were coded for each allele as 0 when absent, 

192 1 when single at a locus (heterozygotes) or 2 for homozygotes (Shirk et al., 2010). Thus, 

193 individuals are represented as a linear vector of size n, where n is the total number of alleles 

194 encountered in all individuals genotyped. We then generated a semi matrix of distance between all 

195 pairs of individuals. We computed the Bray-Curtis percentage of dissimilarity (Legendre & 

196 Legendre 1998) to estimate differentiation between all pairs of individuals. Calculations were 

197 performed using the R package vegan (Oksanen et al., 2016).

198 We selected the environmental features considered to be the most likely to influence the 

199 dispersal of M. galloprovincialis given the existing knowledge of species requirements. Apart from 

200 Euclidian geographic distances (null model), we considered three environmental features to be 

201 potential drivers of dispersal (pine density, temperatures and elevation). 
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202 We modeled environmental resistance as a function of pine density as this parameter 

203 determines the volume of resource available for the M. galloprovincialis and is thought to affect 

204 its foraging dispersal., As the dispersal behavior of this beetle in reaction to pine density is not 

205 known, we modeled this parameter according to two alternative scenarios. (1) High pine densities 

206 are positively correlated with beetle dispersal. In this scenario, a dense pine cover represents a 

207 corridor for dispersal due to the high amount of resources available. Conversely, a low pine density 

208 would represent a barrier. (2) High pine densities are negatively correlated with beetle dispersal. 

209 For this second scenario, it was assumed that a dense pine cover provides sufficient resources for 

210 local populations, which would therefore not need to disperse. This scenario assumes increased 

211 dispersal in low pine cover areas. To model resistance based on pine density, we considered the 

212 sum of densities of all pine species encountered in a grid cell. Indeed, in the Iberian Peninsula, M. 

213 galloprovincialis is performing its life cycle in stressed or fresh dead wood of the most widespread 

214 pine species: Pinus pinaster, P. nigra, P. sylvestris, P. halepensis and P. radiata (Hellrigl 1971; 

215 Naves et al., 2006), and shows no specialization for any of these host species (Haran et al., 2015).

216 Resistance was modeled as a function of mean minimum temperatures, as low summer 

217 temperatures tends to inhibit adults flying activity (Hernández et al., 2011), and because low winter 

218 temperatures are likely to determine survival or the development rate of larval instars in M. 

219 galloprovincialis (Naves & Sousa 2009). This species performs its larval phase during winter, and 

220 instars may stop their development and eventually die after exposure to extended periods of cold 

221 temperatures (Naves and Sousa 2009). As no precise threshold is known for both flying activity 

222 and larvae survival, we consider that resistance increases when the annual mean minimum 

223 temperatures decrease. Elevation is often a proxy for temperature. We hypothesized that resistance 

224 to dispersal increases when elevation increases. We kept temperatures and elevation as distinct 

225 environmental features for the analysis, because temperature and altitude may not co-vary 

226 similarly at large scales (North to South of Spain; for collinearity see below). A summary of 

227 resistance scenarios of environmental features is given in Table 1.

228

229 Resistance distances were computed using the package gdistance (van Etten 2012). Raster 

230 layers of environmental features were imported at a resolution of 10 x 10 km. Such resolution was 

231 chosen because the mean flight distance of M. galloprovincialis reaches 16 km, based on flight 

232 mills experiments (David et al., 2014). Temperature data (1950-2000) were downloaded from 
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233 Hijmans et al., (2005; http://www.worldclim.org; original resolution: 1 x 1 km), the pine density 

234 from Tröltzsch et al., (2009; http://www.efi.int/; original resolution: 1 x 1 km) and elevation from 

235 ARCGIS 9.3 (ESRI, Redlands, CA, USA; original resolution: 1 x 1 km). For control purpose, 

236 resistance distances were also measured on layers with a resolution of 1 x 1 km. As temperature, 

237 elevation and pine density are continuous parameters, we did not assign particular resistances to 

238 particular values, but directly used the values (except for the Pc hypothesis for which values were 

239 set as negative). Pairwise resistance distances were estimated based on random walk probabilities 

240 (Chandra et al., 1997, McRae 2006) and computed using the command commuteDistance (package 

241 gdistance). Resistance distances were chosen instead of least cost distances (LCD) because they 

242 are thought to be more reliable biologically and produce fewer artifacts over long distances 

243 (McRae 2006). We constructed a semi matrix of resistance distance between each pair of 

244 individuals. Values were normalized to a common scale for further analysis. Collinearity was 

245 estimated using the variance inflation factor (VIF) based on the formula VIF = 1/(1-R2), where R2 

246 is the r-squared value of regression between variables. VIF values > 10 are usually considered 

247 evidence for collinearity between environmental features (O9Brien 2007). We did not detect 

248 collinearity between environmental features over the whole area of study (VIF < 1 for all pairwise 

249 comparisons).

250 We tested correlation between the response (genetic distances matrix, G) and resistance 

251 distances (resistance matrices; Isolation By Resistance: IBR) and geographic distances (Euclidian 

252 geographic distance; Isolation By Distance: IBD) using partial Mantel tests (Cushman & Landguth 

253 2010). Partial Mantel tests measure association between two distances matrices while partialling 

254 out a third distance matrix. We first used simple Mantel tests to correlate IBD with G. We then 

255 tested the effect of IBR in partial Mantel tests. Support for IBR was considered when: (1) IBR 

256 should be significantly correlated to G after partialling out IBD (p < 0.05) and IBD should be non-

257 significant with IBR partialled out (p g 0.05; Cushman et al., 2006). Mantel and partial Mantel 

258 tests were performed using the vegan package with 103 permutations. This approach is widely used 

259 in the field of landscape genetics (Cushman et al., 2006; Cushman and Landguth 2010; Galpern et 

260 al., 2012; Castillo et al., 2014) and has been shown to efficiently infer the drivers of gene flow 

261 (Cushman & Landguth 2010b). However, partial Mantel tests have received criticism regarding 

262 their statistical performance (Guillot & Rousset 2013; Diniz-Filho et al., 2013), and are therefore 

263 preferably used together with complementary approaches such as ordination methods (Kierepka 
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264 et al., 2015). To overcome the potential weakness of partial Mantel tests on our dataset, and to 

265 validate the statistical significance of correlations, distance matrices were also regressed using 

266 commonality analysis (Prunier et al., 2014). This method is based on variance-partitioning and 

267 therefore allows the relative importance of the environmental features shaping genetic structure to 

268 be estimated, accounting for covariance in the features tested. For commonality analysis, the 

269 response G was regressed onto each resistance matrices separate and each combination using the 

270 R package yhat (Nimon et al., 2013). 

271

272 Multiple scales and multiple locations analysis

273 We considered various spatial scales and various locations in the above landscape genetic 

274 analysis by generating nested sampling areas spread over the full extent of the Iberian Peninsula. 

275 Sampling areas were constructed as circles of diameters ranging from 220 to 1000 km (steps of 20 

276 km) and centered at each sampling location. Scale dimension was therefore tested only in terms of 

277 the extent for this study (Mayer & Cameron 2003). Mantel tests were performed between all 

278 individuals found within each area defined. Areas of diameter below 220 km were not included, 

279 because it was too small to gather neighboring demes for Mantel tests in the less sampled areas, 

280 unbalancing the analysis. We then tracked the evolution of the number of areas with supported 

281 IBR hypothesis and the mean significant Mantel r with increasing scale. The geographic 

282 distribution of areas with a supported IBR hypothesis was obtained by summing the number of 

283 times that each individual was included in a sampling area with IBR hypothesis support among all 

284 scales. Obtained numbers (frequencies) were corrected accounting for intrinsic variation due to 

285 overlapping sampling areas. Frequencies at each point were interpolated using the Inverse Distance 

286 Weighted method (IDW) in ARCGIS 9.3 (ESRI, Redlands, CA, USA) to visualize variation in 

287 spatial distribution of areas which supported each IBR hypothesis. Landscape genetics analyses 

288 have been shown to perform better in a contrasted landscape (i.e. high amplitudes of values of 

289 resistant features; Jaquiéry et al., 2011; Cushman et al., 2013). We extracted resistance values of 

290 raster cells within each sampling area and computed the standard deviation (SD) of these values 

291 to determine whether support of the IBR hypotheses was due to variation in the environmental 

292 features tested. We then calculated mean standard deviation of areas with supported and non-

293 supported IBR hypotheses among the scales of study. Commonality analyses (see above) were 
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294 performed within each sampling area generated. As for Mantel tests, we tracked the development 

295 of commonality coefficients (percentage of variance explained by unique and cumulated IBR 

296 hypothesis) among scales and locations. The sampling area maximizing commonality coefficients 

297 was chosen for representation of the relative importance of environmental features in shaping 

298 genetic structure. All computations were performed using the R software version 3.0.2 (R 

299 development Core Team 2013).

300

301 Results

302 Genotyping

303 Overall, 1050 individuals were successfully genotyped. Among the 3 populations of larger 

304 sizes tested (n>19), two loci exhibited substantial null allele frequencies (> 7%) and were therefore 

305 not considered for further analysis (Mon 01 and Mon 27). Significant heterozygote deficit was 

306 detected at four loci (Mon 30, 35, 42, 44). Corresponding null allele frequencies were low (<7%), 

307 so these loci were retained. After the removal of incomplete genotypes (n=58) and biased loci, we 

308 obtained a total of 992 individuals genotyped at ten loci. The average number of alleles per locus 

309 was 10.2 (range: 6-24). Number of alleles per deme (using rarefaction) ranged from 1.32 to 1.64 

310 and Fis estimates from -0.27 to 0.38 (Table S1; supporting information).

311

312 Genetic structure

313 Individuals formed two clusters under STRUCTURE analysis (Delta K2= 1274.41; delta 

314 K3 = 73.41, see Figure S3 in supporting information). Clusters showed a clear geographic 

315 structure, exhibiting a split between Portugal and western Galicia (West Iberian cluster) versus the 

316 rest of the Iberian Peninsula (Fig. 1A). PCA gave similar results on the first axis (eigenvalue: 0.494 

317 accounting for 14.3% of the total inertia), splitting demes into two distinct clusters (Fig. 1C). 

318 Estimates of population differentiation (Fst) between the three populations of large size (n>19) 

319 were moderate (Castro Daire /Catsellbell: 0.13; Castro Daire/Vale Feitoso: 0.13; Catsellbell/ Vale 

320 Feitoso: 0.05; p < 0.001).
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321 Data points were grouped into 26 distance classes ranging from 0 to 1252 km, with a 

322 distance interval of 50 km. The variogram reveals that the first axis of PCA corresponds to a highly 

323 spatially structured pattern (Fig. 2). The semi-variance first progressively increased with 

324 increasing lag distance up to a distance of about 190 km and then reached a plateau. For distances 

325 of about 400 km, the semi-variance increased again and leveled off for distances further than 1000 

326 km. The shape of this variogram is typical of the presence of a long-range spatial variation 

327 superimposed over a more local, i.e. short-scale genetic structure occurring at scales of 200 to 400 

328 km. For scales below 200 km, the variogram show that genotypes were strongly spatially auto-

329 correlated (i.e. non-independent).

330

331 Landscape genetics analysis 

332 Analyses were conducted both on the whole dataset (992 individuals, 132 localities) and 

333 within the Spanish cluster (790 individuals, 87 localities), for a total of 116 and 102 alleles 

334 analyzed respectively. Grain sizes of 1 x 1 km and 10 x10 km resulted in similar results. Null 

335 distances were not encountered at grain 10 x 10 km, as none of the sampling sites fell with neighbor 

336 sites in the same grain. Therefore, only the results obtained for grain 10 x 10 km will be reported 

337 below.

338 Over the whole area of study (whole dataset), we generated a total of 30 576 sampling 

339 areas. The mean number of individuals within sampling areas varied from 89.18 (SD: 42.42) at the 

340 smallest scale (220 km) to 644.58 (SD: 158.07) at the largest scale (1000 km; Fig. S2, supporting 

341 information). Significant effects of environmental features were detected for all IBR hypotheses 

342 tested with partial Mantel tests, but the frequency of areas exhibiting an IBR effect varied among 

343 scales and locations. The number of areas showing a significant effects of environmental features 

344 generally increased with increasing scale (Fig. 3A), but each of the four IBR hypotheses showed 

345 a different pattern. Significant effects of environmental features for E, Pr and T hypotheses were 

346 detected in about 15-25% of the areas at smallest scale (220 - 300 km). The frequency of E and Pr 

347 gradually increased to reach 90% and 60% for areas of 1000 km. The frequency of areas with a 

348 supported T hypothesis increased among scale to reach a peak around 600 km (j 80% of areas) 

349 and subsequently decreased again. Significant Pc hypotheses were encountered at a lower 
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350 frequency. The number of positive areas ranged from 0 to 1.11%, for an average number of 4.07 

351 areas for each scale considered. No specific trend was observed when scale increased for the Pc 

352 hypothesis. Significant isolation by distance (IBD) was observed for j 60% of areas at smallest 

353 scale. A first plateau of about 85% of areas was reached for scales ranging between 400 and 700 

354 km, and a second plateau of almost 100% of areas was reached for scales above 700 km. Mean 

355 Mantel r for areas with supported IBR hypothesis ranked between 0.05 and 0.25. Best values of 

356 were observed at small scales and generally decreased when scale increased (Fig. 3B). IBR 

357 hypothesis T showed the best Mantel r among all IBR hypotheses for scales above 360 Km.  

358 Interpolation of supported IBR hypotheses and IBD was based on areas of scales ranging 

359 from 220 to 600 Km, because most of variation in the detection of effects of environmental features 

360 was found at these scales (Fig. 3A). For most IBR hypotheses (E, Pr and T) and IBD, effects were 

361 mainly detected in the northern part of the area of study, corresponding to Cantabrian chain and 

362 the western half of the Pyrenees (Fig. 4). In contrast, these IBR hypotheses were the least 

363 frequently detected in a region comprising the eastern side of the Iberic and Betic mountain 

364 systems. For the IBR hypothesis Pc, significant effects were detected mainly in Andalucía, along 

365 the Betic system. Conversely, low or no effects for this hypothesis were detected in the Northern 

366 half of the Iberian Peninsula. The distribution of supported hypotheses was generally similar 

367 between that performed on the whole dataset and on the Spanish cluster only (Fig. 4).

368 For hypotheses E, Pr and Pc, the variation of environmental features was lower on average 

369 in areas exhibiting significant effects for scales up to 400 - 600 km (whole dataset; Fig. 5). Above 

370 this scale, the mean standard deviation (SD) of significant areas was either equal, or higher than 

371 the mean SD of non-supported areas. For the T hypothesis, mean SD of significant areas was above 

372 the mean for non-supported areas for most of the scales.

373 Regression models gave a maximum explained variance of 24% over all sampling areas 

374 through commonality analysis (Table 2). Best values were obtained in various locations for 

375 medium size scales (520-620 km) and for areas located in the Western and Northwestern part of 

376 the area of study. Relative importance of unique and common effects of IBR hypotheses was 

377 constant between the three areas exhibiting maximum explained variance. The features T and Pr 

378 uniquely contributed to more than 20% of the total variance explained (20.77 to 32.65% and 21.82 
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379 to 35.24%, respectively). The best contribution to the total variance explained was observed for 

380 the common effects of E and T (54.31 to 56.43%). 

381

382 Discussion: 

383 The dispersion of a species to environmental features is generally expected to be consistent 

384 across its distribution range. However, our ability to make inferences about the effect of 

385 environmental features may vary due to multiple evolutionary processes acting on genetic structure 

386 at different spatial and temporal scales. In this study, we explored potential barriers and corridors 

387 to dispersal and gene flow of a flying insect in a large area with dramatic landscape changes, which 

388 occurred at various time scales. Based on multi-scale and multi-site resampling of study areas, we 

389 found evidence for consistent effects of environmental features on gene flow at both local and 

390 large scales, but observed a heterogeneous distribution of these effects among locations, especially 

391 at the lowest spatial scales.

392

393 Effect of scale and location on inference

394 We observed a notable influence of scale on the detection of supported IBR hypotheses 

395 with Mantel tests for most environmental features tested (E, T and Pr). Support was scarcely 

396 detected at the lowest spatial scale (220-400 km) and generally more often detected with increasing 

397 scale. Indeed, 190-400 km corresponded to the distances at which the variogram given in Figure 2 

398 showed an initial plateau of genetic dissimilarity. This correspondence suggested that at this range 

399 of scales, dissimilarity between individuals was often not appropriate to show a significant effect 

400 of environmental features on gene flow. In contrast, the peak (for T) or inflection of curves ( for 

401 Pr, E) of number of areas with supported IBR hypotheses observed at scales ranging from 400 to 

402 600 km corresponded to the increase in dissimilarity in the variogram. Thus, scales above 400 km 

403 seemed more appropriate to gather a genetic structure in M. galloprovincialis that was determined 

404 by the environmental features tested. Interestingly, we observed that the development of the 

405 variation of frequency of areas with support was specific to each environmental feature tested. 
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406 Similar results were observed for a large mammal (Zeller et al., 2014) and for insects (Rasic and 

407 Keyghobadi 2012) when multiple scales were considered.

408 The shape of the variogram showed a drop of dissimilarity of genotypes below scales of 

409 190 km. This drop indicate a lower genetic differentiation between demes distant of up to about 

410 200 km. Weak genetic differentiation at such scale was shown, based on estimates of population 

411 differentiation (Fst), for M. alternatus and M. galloprovincialis in lowland valleys (Kawai et al., 

412 2006; Shoda-Kagaya 2007; Haran et al., 2015). Direct measures of the dispersal ability of 

413 Monochamus species show that adults may fly over distances ranging from 2 to 22 km in the field 

414 (Takasu et al., 2000; Linit & Akbulut 2003; Hernandez et al., 2011; Gallego et al., 2012; Mas et 

415 al., 2013; David et al., 2014). These flight performances are thought to cause intensive gene flow 

416 and generate the weak genetic structure observed in this study at small spatial scales. This weak 

417 genetic structure was sufficient to detect IBD in a large proportion of the areas at small scales 

418 (<220 km), but IBR was rarely supported at such scales. Our results illustrate a general problem 

419 of landscape genetic analysis performed on species with an important potential for dispersal, This 

420 is particularly true for flying species, which are naturally less affected by environmental features 

421 than non-flying species. For such species, the combination of intensive dispersal and gene flow 

422 and a limited number of environmental features affecting dispersal make inference difficult at 

423 small spatial scales (Dreier et al., 2014). Considering a continuous range of scales in analysis 

424 prevented us from basing our conclusions on a scale at which the effect of environmental features 

425 could not be detected. Our observations are consistent with the cases of large mammals for which 

426 multiple scales, including very large scales, have been used to deal with uncertainties regarding 

427 the scale of gene flow (Galpern et al., 2012; Zeller et al., 2014). 

428 Based on resampling of areas of study across the Iberian Peninsula, we have shown the 

429 existence of a heterogeneous distribution of supported resistance models. Most variation in the 

430 distribution of support for IBR was observed at small and intermediate scales (220-600 km). 

431 Supported effects were mainly detected in the north-central part of the Iberian Peninsula. 

432 Conversely, effects were less supported in the rest of Iberian Peninsula (center, south and coasts). 

433 Two hypotheses may explain this spatial heterogeneity in the supported resistance models. A first 

434 hypothesis is that differences in variation of environmental features exist across resampled areas. 

435 An area exhibiting contrasting environmental features is known to affect dispersal more strongly 
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436 and thus increase the chance of detecting their effect (Short Bull et al., 2011; Cushman et al., 

437 2013). However, our results showed that at the smallest spatial scales, variation of environmental 

438 features in areas with supported IBR hypothesis was no higher than for non-supported areas, for 

439 most resistance models. This indicated that the distribution of variation of environmental features 

440 was not the main factor determining heterogeneity in support of resistance models. A second 

441 hypothesis is the existence of a conflicting signal due to the inclusion of two differentiated genetic 

442 clusters, probably of evolutionary history origin, in a study area (West and East Iberian clusters).  

443 In that case, <historical= genetic differentiation can unbalance the analysis by blurring the genetic 

444 structure occurring in response to landscape features, which is expected to be more recent and 

445 weaker. Such an effect probably explained the lack of support along the western Iberian coast. 

446 Indeed, the western Iberian cluster formed a narrow band, and areas of study almost systematically 

447 overlapped with the eastern cluster there. Within the eastern Iberian cluster, however, we observed 

448 a lack of detection of supported IBR hypotheses in areas that covered only one cluster (eastern 

449 Iberian coast). A large part of the heterogeneity was therefore not due to conflicting signal due to 

450 differentiated genetic clusters. 

451 The above results highlighted that at scales between 220 and 600 km, M. galloprovincialis 

452 was structured according to environmental features in some areas but not in others, independent 

453 of artifacts or variations in heterogeneity of the environmental features. This observation is 

454 interesting, because one could expect a native species such as M. galloprovincialis to have a 

455 homogeneous dispersal in response to environmental features, at least within a genetic lineage. 

456 Determining the exact origin of such heterogeneity is challenging. It is suggested that this variation 

457 was a legacy of changes in the distribution of host trees in the Iberian Peninsula. The distribution 

458 and density of pine trees have been strongly affected by anthropogenic activities during the last 

459 centuries (Ruiz-Benito et al., 2012; Lopez-Merino et al., 2014), resulting in local extinction, as 

460 well as the connectivity and fragmentation of pine tree cover across time. For example, Abel-

461 Schaad et al., (2014) showed that pine trees locally disappeared from the Central Iberian System 

462 during the middle ages. In contrast, these areas have been afforested at 80% with pines trees during 

463 1940-1950. It is assumed that such recent modifications have dramatically affected the distribution 

464 and abundance of M. galloprovincialis, and that the time since these modifications occurred is too 

465 short to have affected the genetic structure of the beetle according to the environmental features 

466 tested (Epps & Keyghobadi 2015).
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467

468 Strength of the effects of environmental features 

469 We observed a decrease in the mean Mantel r with increasing scale. Such observation 

470 suggests that in areas exhibiting support for IBR hypotheses, correlation is stronger at small spatial 

471 scales than at larger scales. Such a situation is expected because larger areas in this study (600-

472 1000 km) often harbored two distinct genetic clusters derived from evolutionary history, which 

473 could unbalance analyses. Conversely, small areas with support for IBR hypotheses showed the 

474 highest mean Mantel r values. This result suggests that areas with significant IBR hypotheses 

475 exhibit a <pure= effect with a less conflicting signal (i.e. differentiated genetic clusters). Therefore, 

476 our results show a tradeoff between the sampling of small areas where effects of environmental 

477 features are strong but scarcely detected and the sampling of large surfaces, where this effect is 

478 weaker but often detected.

479

480 Elevated areas and pine cover are barriers to dispersal for M. galloprovincialis

481 One of our hypotheses was that elevated areas constitute barriers to gene flow for M. 

482 galloprovincialis. The two resistance models (T and E) support this hypothesis (Fig. 3) and 

483 corroborate observations made for M. alternatus across the Ohu chain mountain in Japan (Shoda-

484 Kagaya 2007) and on M. galloprovincialis across the Pyrenees (Haran et al., 2015). Several factors 

485 may explain this result. Temperature affects larval development and survival in M. 

486 galloprovincialis (Naves and Sousa 2009) and its ability to complete its development within one 

487 or two years (Tomminen 1993; Naves et al., 2007b; Koutroumpa et al., 2008). In addition, adult 

488 flying activity is affected by low daily temperatures (Hernández et al., 2011). Therefore, low 

489 temperatures likely constitute a factor that prevents migration across elevated areas by impeding 

490 or slowing species dispersal and development. In addition to this effect of temperature, topography 

491 may also explain the effect of elevation on dispersal., Indeed, Torrez-Vila et al., (2015) have shown 

492 that adults tend to fly down-hill using mark-release-recapture experiments. Therefore, it is possible 

493 that slopes represent a break in the dispersal of this species.

494 The effect of pine on dispersal was modeled according to two mutually exclusive 

495 hypotheses: high densities of pines represent barriers (Pr) or corridors (Pc) to dispersal, Our results 
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496 show that M. galloprovincialis is mainly structured according to the first hypothesis. The second 

497 hypothesis (Pc) was not supported in Commonality analysis and scarcely detected through the 

498 Mantel test. This weak signal is thought to correspond to type I errors that have been reported for 

499 Mantel tests (Guillot & Rousset 2013) and the quantitative approach used in this study allowed 

500 such false positive to be rejected. The prevalence of the Pr hypothesis show that M. 

501 galloprovincialis exhibits a limited dispersal when its resource is abundant. This species is known 

502 to develop on dead branches stemming from a self-pruning process encountered in pines (Mäkinen 

503 1999). Dead branches represent a resource that is quite well distributed in space and time. Such 

504 abundance of resource is thought to cause limited dispersal in adults. The philopatric behavior of 

505 M. galloprovincialis in relation to the available resources is consistent with the observation of 

506 flight of this species in the field (Torres-Vila et al., 2015), or with the behavior of the pine 

507 processionary moth (Thaumetopoea pityocampa), another oligophagous pine3associated insect 

508 (Demolin 1969). Conversely, the Pr hypothesis suggests that low pine densities are not barriers to 

509 dispersal, This is in agreement with the suggestions of Torres-Vila et al., (2015) that the dispersal 

510 of M. galloprovincialis tends to be enhanced across open areas. In fact, the Iberian Peninsula 

511 contains several wide areas where pine tree forests are absent (center of Castilla y Leon for 

512 example), and our results suggested that such areas do not represent barriers to dispersal. Rossi et 

513 al., (2016) have shown that areas without pine forests still show a homogeneous distribution of 

514 scattered trees planted for ornamental use using observed and simulated data. We suggest that pine 

515 trees out of forests provide a scattered but homogeneously distributed resource that allows the 

516 dispersal of M. galloprovincialis across non-forested areas. 

517

518 Conclusions 

519 In this study, we highlighted that elevated areas and dense pine cover constitute barriers to 

520 the dispersal of M. galloprovincialis. We also showed that this species exhibit substantial gene 

521 flow at a scale of less than about 200 km. Along with the results related to the species model, our 

522 results exemplify the importance of simultaneously considering a continuous range of scales and 

523 multiple locations when exploring the effect of environmental features on dispersal in highly 

524 mobile species. Multiple scales allow the effect of environmental features at the appropriate extent 
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525 for each features tested to be inferred, while preventing analysis from being focused at an extent 

526 where intensive gene flow makes inference impossible due to the lack of genetic structure. In 

527 addition, resampling of the study area across multiple locations can help to identify variation in 

528 inference due to conflicting signals in genetic structure, and therefore allow for generalizing 

529 conclusions regarding the effects of environmental features on dispersal and gene flow. As a result, 

530 the combination of a resampled study area at multiple spatial scales across various locations in 

531 landscape genetics analysis provides a more general picture of the effects of environmental 

532 features on gene flow and has the power to reduce the versatility of results while limiting the 

533 sampling effort.
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551 Table 2: Commonality coefficients of both unique and common effects for the three sampling 
552 areas with the highest variance explained. Code pop: code of population of the center of sampling 
553 area. Scale: diameter of sampling area (km). N: number of individuals in sampling area. Coef.: 
554 percentage of variance explained by environmental features (IBR hypotheses). % Total: 
555 percentage of contribution of environmental features to the total variance explained.

556

557 Figure captions

558 Figure 1: Genetic clustering of 992 individuals of Monochamus galloprovincialis sampled at 132 
559 locations. A: Assignment of individuals to clusters based on a STRUCTURE analysis for K=2. B: 
560 Assignment of demes to clusters for k=2, displayed in geographic context (Iberian Peninsula, size 
561 of pies refer to the size of demes). C: PCA of individuals on first and second axis.

562 Figure 2: Empirical semi-variogram of genotypes of Monochamus galloprovincialis. The 
563 variogram was fitted with an exponential model to highlight the first plateau. Data points are shown 
564 with a spatial lag distance of 50 km. 

565 Figure 3:  Development of the number of areas with supported IBR hypotheses for Mantel tests 
566 (A) and of mean partial Mantel r (B) of areas with support of IBR hypotheses (p<0.05) with 
567 increasing scale (whole dataset). E: Elevation, T: Mean minimum temperatures, Pr and Pc: pine 
568 densities as a resistant feature and as a corridor respectively, IBD: Isolation by distance.

569 Figure 4: Distribution of supported IBR hypotheses through Mantel tests for all environmental 
570 features tested (Euclidian distances, IBD; mean minimum temperatures, T; elevation, E; high pine 
571 densities as barriers, Pr; high pine densities as corridors, Pc). Grey maps refer to the distribution 
572 of environmental features associated with resistance models. Colored maps refer to interpolations 
573 of supported IBR hypotheses on the whole dataset (central column) and within the western Iberian 
574 cluster only (right column). From blue to red: low to high frequency of supported resistance 
575 models.  

576 Figure 5: Development of spatial heterogeneity (mean standard deviation, SD) of environmental 
577 features in areas with supported and non-supported resistance hypotheses through Mantel test 
578 with increasing scale. Mean SD: mean standard deviation, T, E, Pr and Pc refer to IBR 
579 hypotheses tested, sign: significant, non-sign: non-significant.

580
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789 Appendices

790 Appendix 1: R script detailing the approach used in this study.

791 # Simplified version of the script used in this study. Provide an overview of the general method employed.
792 #------------------------------------------------------------------------
793 # create and plot background matrix with artificial barrier in middle
794 m <- matrix(1, nrow=10, ncol=10) ; m
795 m[,5] <- 4
796

797 library(raster)
798 r <- raster(m)
799 plot(r)
800

801 # create and plot transition matrix
802 library(gdistance)
803 t <- transition(r, transitionFunction=mean, 4, symm=TRUE, intervalBreaks=3)
804 plot(raster(t))
805

806 # create and plot sampling points and genetic data associated.
807 # (x coordinates, y coordinates, genetic data for 3 loci)
808 matG2 <- matrix(c(0.21, 0.22, 0.82, 0.23, 0.81, 0.83, 0.81, 0.21, 0.50, 0.51, 0.23, 0.83, 0, 0, 2, 0, 1, 1, 1, 2, 1, 1,
809 1, 0, 2, 1, 0, 1, 0, 0), ncol=5)
810 xcoord<- matG2[, 1] ; ycoord <- matG2[, 2]
811 P<-cbind(xcoord,ycoord)
812 points(P)
813

814

815 # construction of moving windows (sampling areas)
816 library("ade4") ; library("vegan")
817

818 # Define the extent of sampling areas and the interval wanted
819 Min <- 0.7 # Minimum radius of areas wanted
820 Max <- 0.9 # Maximum radius of areas wanted
821 Step <- 0.1 # interval wanted
822

823 # Loops to test correlations in sampling area at multiple scales and locations
824 resultsfinal <- cbind(1,1,1,1,1)
825 colnames(resultsfinal) <- c("xcoord","Ycoord", "Radius", "MantelR", "Pval")
826 for(Radius in seq(Min, Max, by = Step)){
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827      results = NULL
828      for(i in 1:length(xcoord)){
829          Xcircle <- ( xcoord [i] + Radius*cos(seq(0,2*pi,length.out=100)))
830          Ycircle <- ( ycoord [i] + Radius*sin(seq(0,2*pi,length.out=100)))
831          polygon(Xcircle, Ycircle)
832

833          # extract individuals data in each sampling are constructed
834          expr <- point.in.polygon(xcoord,ycoord,Xcircle,Ycircle)
835          xcoord[expr==1]
836          ycoord[expr==1]
837          coordPoly <- cbind (xcoord[expr==1],ycoord[expr==1])
838

839          # sort data and compute matrix of basic pairwise euclidian distances (not used further in this example)
840          CoordOrder<- coordPoly[order(coordPoly[,1],decreasing=FALSE),]
841          locOrder<-data.frame(CoordOrder)
842          DisGeoEucl<-dist(locOrder, method = "euclidean", diag = TRUE, upper = TRUE)
843

844          # compute corresponding matrix of genetic distances
845          listcoord = (1:6)[expr==1]
846          Genet = NULL ## fichier vide pour collage des données
847

848          for(h in listcoord){
849              tmp <- matG2[(matG2[, 1]==xcoord[h])and(matG2 [, 2]== ycoord[h]), ]
850              Genet = rbind(Genet,tmp)
851                         }
852     GenetOrder<- Genet[order(Genet[,1],decreasing=FALSE),]
853     GenetOrderSanscoord <- GenetOrder[,-c(1,2)]
854     MatdistGenet<- vegdist(GenetOrderSanscoord, method="bray", binary=FALSE, diag=FALSE, upper=TRUE, na.rm = TRUE)
855     MatdistGenet <- as.dist(MatdistGenet)
856

857     # Compute matrix landscape "resistance" distances based on raster
858     spatiallocX <-  locOrder[,1] ## extraction des colonnes pour repasser en spatial
859     spatiallocY <-  locOrder[,2]
860     SpaLoc <- SpatialPoints(cbind(spatiallocX, spatiallocY))
861     Resdis<- commuteDistance(t, SpaLoc)
862     Resdis<-as.dist(Resdis, diag = TRUE, upper=TRUE)
863

864     # simple mantels test between genetic and landscape "resistance" distances
865     MantelpRes <- mantel.rtest(MatdistGenet, Resdis, nrepet = 99)
866     results <- rbind (results, cbind (xcoord [i], ycoord [i],Radius, MantelpRes[2], MantelpRes[4]))
867      }
868      resultsfinal <- rbind(resultsfinal,results)
869  }
870

871 # display result file with for each individual: x and y coordinates, radius of sampling area, mantel output and associated p-value
872 Resultsfinal
873

874

875

876

877

878

879

880
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895 Supplementary Material

896 Table S1: Sampling details of the 132 demes. (Long. and Lat. refer to geographic coordinates of sampling 
897 sites; N. is the number of individuals of demes; A. mean allelic richness; AR. corrected allelic richness, 
898 accounting to variation in deme size; Fis. Fis estimate of deme, computed without Mon01 and Mon 27) 

899 Table S2: Details of primer sequence and genotyping. 

900 Protocol 

901 Multiplexed PCR were performed in a 10 µL reaction volume using 25 ng of genomic DNA,  0.4 U of 
902 DreamTaq DNA Polymerase (Thermo Scientific®), 0.75 µL Dream Taq Green Buffer (including 20 mM 
903 MgCl2, Thermo Scientific®), 1 µM Betaine, 0.24 µL dNTP (10 µM) and deionized H2O. PCR 
904 amplifications were run on a Veriti® 96 well fast Thermal cycler (Applied Biosystems®) using the following 
905 settings: a first denaturation step at 95 °C during 10 min; 40 cycles of denaturation (30 s at 95 °C), 
906 hybridization (30 s at 55 °C) and elongation (1 min at 72 °C), and a final elongation step at 72 °C 
907 during 10 min. One µL of PCR products were denatured within a mix of 10 µL of formamide and 0.3 µL 
908 of 600 Liz marker before being run on an ABI PRISM 3500 sequencer (Life Technologies®). Genotypes 
909 were read using the software GENEMAPPER V 4.1 (Applied Biosystems®).

910 Table S3: Sampling locations and microsatellite genotypes. 

911 Figure S1: Distribution of sampling sites in the Iberian Peninsula. Black dots refer to populations of size 
912 > 19 individuals. Green background refers to elevation (from pale to dark green: low to high elevation).

913 Figure S2: Number of individuals in sampling areas across spatial scale (Mean: black; +/- SD: grey).

914 Figure S3: Evolution of DeltaK among an increasing number of K (2 -20).

915
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Figure 1(on next page)

Genetic clustering of 992 individuals of Monochamus galloprovincialis sampled at 132

locations.

A: Assignment of individuals to clusters based on a STRUCTURE analysis for K=2. B:

Assignment of demes to clusters for k=2, displayed in geographic context (Iberian Peninsula,

size of pies refer to the size of demes). C: PCA of individuals on first and second axis.
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Figure 2(on next page)

Empirical semi-variogram of genotypes of Monochamus galloprovincialis.

The variogram was fitted with an exponential model to highlight the first plateau. Data points

are shown with a spatial lag distance of 50 km.
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Figure 3(on next page)

Development of the number of areas with supported IBR hypotheses for Mantel tests (A)

and of mean partial Mantel r (B) of areas with support of IBR hypotheses (p<0.05) with

increasing scale (whole dataset).

E: Elevation, T: Mean minimum temperatures, Pr and Pc: pine densities as a resistant feature

and as a corridor respectively, IBD: Isolation by distance.
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Figure 4(on next page)

Distribution of supported IBR hypotheses through Mantel tests for all environmental

features teste.

Euclidian distances: IBD; mean minimum temperatures: T; elevation: E; high pine densities as

barriers: Pr; high pine densities as corridors: Pc. Grey maps refer to the distribution of

environmental features associated with resistance models. Colored maps refer to

interpolations of supported IBR hypotheses on the whole dataset (central column) and within

the western Iberian cluster only (right column). From blue to red: low to high frequency of

supported resistance models.
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Figure 5(on next page)

Development of spatial heterogeneity (mean standard deviation, SD) of environmental

features in areas with supported and non-supported resistance hypotheses through

Mantel test with increasing scale.

Mean SD: mean standard deviation, T, E, Pr and Pc refer to IBR hypotheses tested, sign:

significant, non-sign: non-significant.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2968v1 | CC BY 4.0 Open Access | rec: 6 May 2017, publ: 6 May 2017



200 400 600 800 1000

1
8

2
0

2
2

2
4

2
6

2
8

Mean SD of areas with significant and non−significant T among scale

scale

M
e

a
n

 S
D

Mean SD sign

Mean SD non−sign

200 400 600 800 1000

3
0

0
3

5
0

4
0

0
4

5
0

Mean SD of areas with significant and non−significant E among scale

scale

M
e

a
n

 S
D

200 400 600 800 1000

1
4

1
5

1
6

1
7

Mean SD of areas with significant and non−significant Pr among scale

scale

M
e
a
n
 S

D

200 400 600 800 1000

1
2

1
4

1
6

1
8

2
0

Mean SD of areas with significant and non−significant Pc among scale

scale

M
e
a
n
 S

D

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2968v1 | CC BY 4.0 Open Access | rec: 6 May 2017, publ: 6 May 2017



Table 1(on next page)

Summary of environmental features tested in isolation by resistance (IBR) models.
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Environmental features Code Associated IBR hypotheses

Elevation E High elevations = resistance to dispersal

Pine density Pc High pine density = corridors to dispersal

Pr High pine density = resistance to dispersal

Mean min. temperatures T Low min. temperatures = resistance to dispersal
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Table 2(on next page)

Commonality coefficients of both unique and common effects for the three sampling

areas with the highest variance explained.

Code pop: code of population of the center of sampling area. Scale: diameter of sampling

area (km). N: number of individuals in sampling area. Coef.: percentage of variance

explained by environmental features (IBR hypotheses). % Total: percentage of contribution of

environmental features to the total variance explained.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2968v1 | CC BY 4.0 Open Access | rec: 6 May 2017, publ: 6 May 2017



Code pop

Scale

N

IBR SypotSeses Coef. % Total Coef. % Total Coef. % Total

E 0,008 3,408 0,001 0,351 0,002 0,803

T 0,050 20,335 0,030 32,651 0,059 28,108

Pc 0,004 1,806 0,008 3,638 0,008 3,811

Pr 0,085 35,235 0,043 21,813 0,046 22,214

E,T 0,136 56,426 0,113 54,314 0,115 54,953

E,Pc -0,003 -1,255 -0,001 -0,243 -0,001 -0,430

T,Pc 0,001 0,426 0,003 3,236 0,010 4,893

E,Pr -0,002 -0,893 0,031 14,335 0,020 9,321

T,Pr -0,013 -5,398 0,018 8,406 0,014 6,540

Pc,Pr 0,024 10,049 0,008 3,539 0,011 5,333

E,T,Pc 0,014 5,324 -0,005 -2,311 -0,001 -0,434

E,T,Pr -0,023 -9,312 -0,069 -32,003 -0,043 -22,356

E,Pc,Pr 0,003 1,313 0,026 12,118 0,030 14,509

T,Pc,Pr -0,009 -3,395 0,006 2,961 0,010 4,950

E,T,Pc,Pr -0,034 -14,106 -0,049 -22,926 -0,068 -32,581

Sum 0,240 100 0,216 100 0,209 100

520

225 254 244

85 130 131
1
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