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Most biological processes within a cell are carried out by protein-protein interaction (PPI)

networks, or so called interactomics. Therefore, identification of PPIs is crucial to

elucidating protein functions and further understanding of various cellular biological

processes. Currently, a series of high-throughput experimental technologies for detect PPIs

have been presented. However, the time-consuming and labor-driven characteristics of

these methods forced people to turn to virtual technology for PPIs prediction. Herein, we

developed a new predictor which uses stacking algorithm with information extraction by

wavelet transform. When applied on the Saccharomyces cerevisiae PPI dataset, the

proposed method got a prediction accuracy of 83.35% with sensitivity of 92.95% at the

specificity of 65.41%. An independent data set of 2726 Helicobacter pylori PPIs was also

used to evaluate this prediction model, and the prediction accuracy is 80.39%, which is

better than that of most existing methods.
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12 Abstract

13 Most biological processes within a cell are carried out by protein-protein interaction (PPI) 

14 networks, or so called interactomics. Therefore, identification of PPIs is crucial to elucidating 

15 protein functions and further understanding of various cellular biological processes. Currently, a 

16 series of high-throughput experimental technologies for detect PPIs have been presented. 

17 However, the time-consuming and labor-driven characteristics of these methods forced people to 

18 turn to virtual technology for PPIs prediction. Herein, we developed a new predictor which uses 

19 stacking algorithm with information extraction by wavelet transform. When applied on the 

20 Saccharomyces cerevisiae PPI dataset, the proposed method got a prediction accuracy of 83.35% 

21 with sensitivity of 92.95% at the specificity of 65.41%. An independent data set of 2726 

22 Helicobacter pylori PPIs was also used to evaluate this prediction model, and the prediction 

23 accuracy is 80.39%, which is better than that of most existing methods.

24

25 Introduction

26 Proteins play critical roles in almost all important biological processes of living cells, for 

27 example, metabolic cycles, replication and DNA transcription. However, proteins rarely act 

28 alone, but achieve most of their work through PPI networks [1]. Currently, a series of high-

29 throughput experimental technologies for PPI detection are developed, such as yeast two-hybrid 

30 screen (Y2H), protein chip technology, and tandem affinity purification tagging (TAP) [1-3]. 

31 Although these methods have successfully identified a large number of PPIs [1-3], the relatively 

32 time-consuming and labor-driven characteristics lead researchers to looking for more efficient 

33 and cost-effective alternative tools [4].

34 Up to date, a number of bioinformatics method for PPI prediction have been developed, among 

35 which algorithms based primarily on sequence conservation, phylogenetic profiles, literature 

36 mining, etc. [5-7]. Although these methods give high predictive accuracy, most of the protein 

37 information needed by these methods for predict PPIs is normally inaccessible, especially for 

38 those less well-characterized proteins. Fundamentally, however, many of the functions and 

39 properties of proteins can be informed by the low frequency signals in the amino acid sequence 

40 [8]. As reported by recent studies based on protein primary sequence can also achieve 

41 satisfactory accuracy for predicting PPIs [4-6]. Meanwhile, wavelet transform [9], an effective 

42 feature extraction method, has been widely used in signal extraction of amino acid sequences and 

43 achieved good performance. For instance, wavelet transform was utilized for membrane protein 

44 prediction [10], protein structural prediction [11], protein classification [12], and PPI prediction 

45 [13]. It is well known that wavelet transform takes the advantage over Fourier transform in the 

46 extraction of location information, however, none of the above studies had paid attention to 

47 simultaneous extraction of both signal strength information and the position information.

48 On the other side, there were also studies using ensemble classifiers significantly improve the 

49 overall performance of the classifier in predicting membrane protein types [14], subcellular 

50 localization of protein [15], and of course, in predicting PPIs [8,13].

51 Inspired by previous researches, here we report a new method that improves the prediction 

52 performance in predicting PPIs. The method operates stacking algorithm with information 
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53 extracted from protein primary sequences by wavelet transform. First, the physicochemical 

54 property of each protein sequence is transformed into series of vectors. Then, stacking algorithm 

55 with two layers was adopted to carry out the PPI prediction, first layer of stacking algorithm 

56 including four independent classifiers and logistic regression [16] was applied to stacking 

57 algorithm as the second layer. Finally, the proposed method was tested on two PPI datasets. The 

58 results demonstrated that the proposed approach offers a better performance than any of the 

59 current programs under various statistical standards in the two widely-used data-sets by a 5-fold 

60 cross validation. 

61

62 Materials & Methods

63 Generation of benchmark data sets

64 Saccharomyces cerevisiae dataset

65 The PPI data sets employed in this paper are collected from Saccharomyces cerevisiae database 

66 of interacting proteins (DIP), version 20160731, and it is customized to the standards almost the 

67 same way as in Jia et al. [13] The only difference is that in order to get reasonable length of 

68 coefficients arrays after the original sequence process from discrete wavelet transform (DWT), 

69 proteins in this dataset must contain at least 64 residues. The non-interactive data comprised of 

70 two parts: proteins which located at different subcellular localizations and that located at same 

71 subcellular localizations but did not appear in the positive dataset. In this case, 17333 positive 

72 pairs and additional 32568 negative pairs are generated. The Saccharomyces cerevisiae dataset 

73 used in this paper can be obtained in https://github.com/deltawing/master_experiment_stacking.

74 Helicobacter pylori dataset

75 The Helicobacter pylori PPI dataset is also corroborated the effectiveness of the method we 

76 proposed. The dataset is prepared just as Martin et al. [17] described, except the series we used 

77 must contain at least 64 residues. The final dataset contains 1307 protein pairs that have 

78 interactive relationship and 1419 protein pairs without interactive relationship at the same time. 

79 This dataset can also be accessed in https://github.com/deltawing/master_experiment_stacking.

80

81 Feature vector construction

82 When identifying protein characteristics using some specific methods, it is valuable to formulate 

83 the sequence with an effective mathematical expression, which not only encompasses its 

84 sequence order information but also gain the key features [18]. As mostly, the length of protein 

85 sequence varies a lot, the formula must transform the original sequence to a vector of features 

86 that have unified length which is needed by ordinary machine learning models. The learning 

87 models using amino acid sequence to classify the subcellular localization of protein, classify 

88 interactive or no-interactive relationship of proteins or identify function of protein, have been 

89 developed in recent years [6-8,19-23]. A large part of these studies adopted pseudo amino acid 

90 composition [24] method or also known as Chou's PseAAC [25-26].

91 According to a recent review [27], the general form of Chou’s PseAAC for a protein or peptide P 

92 can be formulated as:

93

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2964v1 | CC BY 4.0 Open Access | rec: 5 May 2017, publ: 5 May 2017



94 P = [𝜓1 𝜓2… 𝜓𝑛… 𝜓Ω]𝑇
                                                   (1)

95

96 where T is the transpose operator, Ω indicate the vector's dimension. The value of Ω together 

97 with  in Eq. (1) are changed with the means of extract methods. In the 𝜓𝑛(𝑛 = 1,2,…,  Ω)

98 following, we are about to depict how to analysis principal component in the benchmark dataset.

99 As described in [8`28], a protein’s low-frequency spectrum reflects its overall sequence 

100 eigenvalues. Therefore, an effective way to extract low-frequency spectrum information may 

101 help heighten the success rate in predicting PPIs.

102 Since introduced by Mallet S. G. in 1989 [9], wavelet transform has been used as an impressive 

103 method by scholars in various researches, such as the prediction of promoters [29], predicting 

104 protein classify cation [12], protein structural classes [30], G-protein-coupled receptor classes 

105 [31], enzyme family classes [32], homo-oligomeric proteins [33], membrane protein classes [34], 

106 protein quaternary structural attributes [35], etc. Within this work, we also use the wavelet 

107 transform method to extract information from protein sequence.

108

109 Physicochemical properties

110 The physicochemical property of proteins may have a great impact on protein–protein 

111 interactions. In this study, seven physicochemical properties of amino acids were selected to 

112 reflect the natural features of proteins, which are: hydrophobicity [36], hydrophilicity [37], side-

113 chain volume [38], polarity [39], polarizability [40], solvent-accessible surface area or SASA 

114 [41], and side-chain net charge index or NCI [42], respectively. Please note that all these 

115 constants are transformed as the following before use:

116

117 𝛷𝑖,𝑗'
=

𝛷𝑖,𝑗 ‒ 𝛷𝑗𝑆𝐷(𝛷𝑗)                                                             (2) 

118

119 where  represents the j-th physicochemical properties for i-th amino acid,  is the mean of j-𝛷𝑖,𝑗 𝛷𝑗
120 th physicochemical property over the 20 amino acids, and  means the corresponding 𝑆𝐷(𝛷𝑗)
121 standard deviation of j-th physicochemical property. 

122 After transformation, normalized values of each kind physicochemical property of a protein 

123 sequence are formed into one vector, thus each sequence have seven vectors representing its 

124 character. 

125

126
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127 Discrete wavelet transform

128 As a multiresolution analysis tool for decompose signal and determining component frequencies, 

129 wavelet transform overcomes the resolution shortcoming of Fourier analysis, for it not only 

130 analyzing the spectrum of the signal but also taking into account the specific location of the 

131 signal in the time domain, especially in a nonstationary process. The nature of DWT analysis 

132 make it reflect the sequence-order series more effectively than other techniques. By applying the 

133 DWT on any of these seven numerical vectors of a protein, each sequence-order vector is 

134 considered as a discrete time series and will put into one half band high-pass filter and one half 

135 band low-pass filter. The approximation coefficient series that output from high-pass filter 

136 removed all signals which frequency below half of the highest frequency in the sequence 

137 represents the high frequency components, while the coefficient series output from low-pass 

138 filter removed signals have frequency above half of the highest represents the high-scale 

139 components [29]. At every decomposition level, after passed through filters, numerical vector 

140 will discard every other sample, in other words subsampling by 2. The length of output from 

141 either filter is then half of the length than that of original sequence, and the output signal from 

142 the low-pass filter will continue to pass through the same two kinds of filters for some other 

143 decomposition until the intended number of iterations is reached, Fig. 1 illustrated a schematic 

144 diagram of the procedure of multi-level DWT, and the length of output series from each 

145 decomposition level can be described as follows:

146

147 𝓁 = 𝑓𝑙𝑜𝑜𝑟( ℒ
2

n)                                                               (3)

148

149 where  represents the length of output series,  represents the length of input original numerical 𝓁 ℒ
150 vectors of the physicochemical property of protein, n means decomposition level,  𝑓𝑙𝑜𝑜𝑟()
151 represents the largest integral value that is not greater than the value in parentheses.

152 The frequencies that contain essential information in the original series show high amplitudes in 

153 those output series. While those are not protruding in the original series show relatively low 

154 values, these values decomposed can be omitted without losing the major part of the information, 

155 which allows DWT to lessen the dimensions of the original series effectively. Besides, the 

156 locations of these remarkable sample point and the position of these key features in original 

157 series have a one-to-one relationship. Given an output vector series with  sample points as 𝓁
158 expressed by

159

160 𝑆𝑒𝑟𝑖𝑒𝑠 = 𝜑1 𝜑2 𝜑3… 𝜑𝑚… 𝜑𝓁                                              (4)

161

162 Where  represents the 1st sample point of output vector series,  represents the 2nd residue, 𝜑1 𝜑2

163 and so forth. In this study, we use Daubechies db1 wavelet as our wavelet algorithm and use four 

164 decomposition level. Consequently, five subsequences can be obtained from the output of the 

165 algorithm. In each subsequence, 10 coefficients are extracted to reflect the internal information 
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166 of the subsequence, these are (1) mean of the wavelet coefficients in the subsequence, (2) 

167 standard deviation of the wavelet coefficients in the subsequence, (3) 4 samples which have the 

168 biggest absolute value in the subsequence and their locations. In this paper, we process the 

169 original location number to the location value that we use as follows:

170

171 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 = 𝓀 × (𝑚𝓁 )                                                   (5)

172

173 where  is the sample point of output vector series in Eq. (4), m is the original 𝑚 = 1,2,…,𝓁
174 location number of samples which have the biggest absolute value,  represents the length of 𝓁
175 vector series just as in Eq. (4),  represents a coefficient, to make sure the , as 𝓀 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
176 well as four most remarkable sample point, are in the same order of magnitude. In this study,  𝓀
177 is equal to 3. Therefore, the vector's dimension of a protein in Eq. (4) is . Ω = 7 × 5 × 10 = 350

178 For two proteins described as  and , the descriptors of the protein pair are formulated by P
1

P
2

179 their orthogonal sum [42]; i.e.,

180

181 P
1⨁P

2
= [𝜓1

1
 𝜓2

1
… 𝜓𝑛1

… 𝜓350
1
 𝜓1

2
 𝜓2

2
… 𝜓𝑛2

… 𝜓350
2]𝑇

                    (6)

182

183 thus, a total 700-dimensional vector has been built to represent a pair of proteins.

184

185

186 Figure 1. Illustrate of multi-level DWT procedure

187

188 Stacking algorithm

189 The ensemble method used in the present paper is called stacked generalization, or stacking, 

190 which is a two-step method. Firstly, subsets of the original data are used to produce a series of 

191 ordinary classifiers, the output values of these models are formed as input coefficients of the 

192 second step. Then the predictor form the second layer collect coefficients from every former 

193 model together and aimed at deciding what models perform well and what badly given these 

194 input data [43]. 

195 In this paper, each of the datasets used is divided into two groups, one for whole training process 
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196 called “the big training set”, the other for the testing process called “the big testing set”. In the 

197 first step, for the different classification model, the training set is divided into five parts, with  N

198 times of iteration, whereas  equals to the number of predictors in the first step. In each iteration, N

199 four data parts are formed as a training set for each classification model training while one data 

200 part is left for classification model prediction. When the iterations complete, a result matrix of 

201  is obtained, where  represented the number of samples of the training set. After all  M × 1 M N

202 classification models have had their prediction result, a  output matrix can be gotten. This M × N

203 output matrix is sent to second step of the algorithm as coefficient. This matrix, together with the 

204 real label list are sent to the th algorithm for training a model. When it comes to (N + 1)

205 prediction process of the model, “the big testing set” also iterated  times for the same  N N

206 individual models as in the training process, the output matrix is sent to the same th (N + 1)

207 model to predict the final result. To offer an intuitive picture, three overview pictures are given 

208 in Fig. 2~4 to illustrate how the training process and testing process works.

209 For each algorithm of the first layer may shows a better prediction than other algorithms in some 

210 specific data, model of the second layer can evaluate the performance of these predictors and 

211 find the correspondence between the predictor and the specific data which it has a good 

212 performance [43]. Considering this work is easier than the job done by the algorithm of the first 

213 layer, logistic regression [16] is chosen as the algorithm for the second layer, for its simplicity 

214 and has a fast calculation speed.

215

216

217 Figure 2. An overview of the first step of the stacking algorithm when learning “the big training 

218 set”

219
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220

221 Figure 3. The second step of the stacking algorithm when learning “the big training set”

222

223

224 Figure 4. A flowchart to show how the stacking algorithm works when predicting “the big 

225 testing set”

226

227 Evaluation of the predictive performance

228 To evaluation the proposed method, 5-fold cross validation as well as several metrics which are 

229 widely used are adopted in this paper, which are (1) sensitivity, (2) specificity, (3) overall 

230 accuracy, (4) F-score, (5) Mathew's correlation coefficient, and (6) the area under ROC curve or 

231 AUC. Some of these measures are calculated by:

232
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233 {
Sn =

TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

F1 =
2TP

2TP + FP + FN

Mcc =
TP × TN ‒ FP × FN

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

�                           (7)

234

235 where  represents the true positive; , the true negative; , the false positive; , the false TP TN FP FN

236 negative; , the sensitivity; , the specificity; , the overall accuracy; and , the Sn Sp Acc Mcc

237 Mathew’s correlation coefficient.

238

239 Results and discussion

240 Predictors used for the first layer of the stacking algorithm

241 The predictor for the first layer of stacking algorithm can be any of the widely-used machine 

242 learning algorithms, including simple classifiers likewise some noted ensembled classifications, 

243 or the assembly of these algorithms. To avoid overfitting, herein 5-fold cross-validation is used 

244 to assess the performances of eight widely-used algorithms. The data used by algorithms is 

245 obtained from the Saccharomyces cerevisiae dataset by the method mentioned above. 

246 Algorithms include random forest classifier [44], gradient boosting classifier [45], extra-trees 

247 algorithm [46], adaboost classifier [47], k-nearest neighbors [48], linear discriminant analysis, 

248 quadratic discriminant analysis [49], and support vector machine [50].

249

250
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251 Table 1

252 Comparison of the performance by some widely used method of the yeast dataset. The definition 

253 of Acc, Mcc, F1, Sn and Sp, please refer to Eq (7)

Method
Acc 

(%)

Mcc 

(%)

Sn 

(%)

Sp 

(%)

F1 

(%)

AUC 

(%)

Time 

consumption(s)

Random forest 

classifier
81.75 58.59 94.39 58.02 68.85 62.32 159.83

Gradient boosting 

classifier
82.85 61.23 84.03 80.02 73.23 69.01 2506.97

Extra trees classifier 82.89 61.23 82.38 84.38 71.67 70.28 91.20

Adaboost classifier 73.29 37.80 75.46 66.51 54.75 68.77 330.66

K-neighbors classifier 79.10 52.71 81.73 72.98 67.76 51.30 513.83

Linear discriminant 

analysis
70.39 29.98 72.82 61.69 47.71 50.68 43.75

Quadratic discriminant 

analysis
81.23 72.88 85.46 73.18 58.54 61.51 54.10

Support vector 

machine
83.75 50.13 81.74 79.86 60.02 73.18 13564.35

254 As we can see from Table 1, six of the eight algorithms have a predict accuracy above or around 

255 80%. Considering that the algorithm should be different from one another, and the final method 

256 should have a reasonable time consumption, finally four algorithms are chosen: gradient 

257 boosting classifier, extra trees classifier, k-neighbors classifier, and quadratic discriminant 

258 analysis. The essential parameters of these estimators are set as follows: number of boosting 

259 stages in gradient boosting classifier is set to 150, contribution of each tree is set to 0.3, 

260 maximum depth of the individual regression estimators is set to 7; number of trees in the extra 

261 trees classifier is set to 200, use Gini impurity to measure the quality of a split; in k-neighbors 

262 classifier, points in each neighborhood has a weighting decided by the inverse of their distance; 

263 while quadratic discriminant analysis does not have any particular parameters that need to set.
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264

265 Figure 5. Schematic diagram of the overview algorithm process used in this work
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266

267 Prediction performance of proposed model

268 The proposed method was firstly tested on the Saccharomyces cerevisiae dataset. The methods 

269 from other published papers are used as contrasts. Under 5-fold cross-validation, the method 

270 proposed in this paper achieved higher scores in evaluation criterions like Acc, Mcc, F1, Sn and 

271 Sp, than some state-of-the-art methods. Fig. 5 illustrated a schematic diagram of the overall 

272 prediction process performed in this work and the results are given in Table 2. Additionally, as 

273 recommended by majority literatures, the proposed method was also tested using the H. pylori 

274 dataset (the results are given in Table 3). As shown Table 3, the algorithm presented herein 

275 achieved outstanding performance on the H. pylori data set, and the test scores are significantly 

276 higher than the other methods available at this stage. The above test results demonstrate that the 

277 proposed novel approach can effectively improve the predictive performance of protein 

278 interaction and has good robustness as well.

279

280 Table 2

281 Comparison of the performance by the proposed method and other available methods on the 

282 yeast dataset*. The definition of Acc, MCC, Sn, Sp and F1, refer to Eq (7)

Method Test set Acc (%) Mcc (%) Sn (%) Sp (%) F1 (%)

This work 83.35 63.77 92.95 65.41 73.24

Jia et al. [12] iPPI-Esml 78.74 50.98 83.33 45.77 62.65

Yang et al. 

[51]
LD (Cod4) 78.54 51.52 86.38 63.69 67.23

Guo et al. [52] AC+ SVM 67.37 17.74 98.33 9.22 16.42

283 * 5-fold cross-validation was used

284

285 Table 3

286 Comparison with other available methods on the H. pylori dataset**. 

Method Test set Acc (%) Mcc (%) Sn (%) Sp (%) F1 (%)

This paper 80.39 61.15 76.57 84.54 80.50

Jia et al. [12] iPPI-Esml 78.62 57.13 81.22 75.79 77.25

Yang et al. 

[51]
LD (Cod4) 70.21 42.51 89.26 49.47 61.39

Guo et al. [52] AC+ SVM 63.31 32.14 95.01 28.81 42.92

287 ** 5-fold cross-validation was used

288

289 Conclusion

290 Prediction of the protein-protein interactions (PPIs) is nowadays a critical research issue, as it 

291 can facilitate revealing the biological processes within living cells. In this work, a novel classifier 

292 is developed for predicting PPIs based on the stacking algorithm and information extraction by 

293 wavelet transform. Our results on the PPI data of Saccharomyces cerevisiae showed that the 

294 proposed method with the assistance of wavelet transform is capable of extracting maximum 
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295 information from primary protein sequence. Meanwhile, the combination of stacking algorithm 

296 can significantly improve on the performance of single classifier in distinguishing interacting and 

297 non-interacting protein pairs. In addition, the results on the independent data set of the H. pylori 

298 PPIs further demonstrated the stable performance of our classifier. In conclusion, this new 

299 classifier model might be another effective tool for the prediction of PPIs.

300
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