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Abstract: The involvement of the right and left hemispheres in mediating language 

functions has been measured in a variety of ways over the centuries since the 

relative dominance of the left hemisphere was first known. Functional magnetic 

resonance imaging (fMRI) presents a useful non-invasive method of assessing 

lateralisation that is being increasingly used in clinical practice and research. 

However, the methods used in the fMRI laterality literature currently are highly 

variable, making systematic comparisons across studies difficult. Here we consider 

the different methods of quantifying and classifying laterality that have been used in 

fMRI studies since 2000, with the aim of determining which give the most robust and 

reliable measurement. Recommendations are made with a view to informing future 

research to increase standardisation in fMRI laterality protocols. In particular, the 

findings reinforce the importance of threshold-independent methods for calculating 

laterality indices, and the benefits of assessing heterogeneity of language laterality 

across multiple regions of interest and tasks. 

This systematic review was registered as a protocol on Open Science Framework: 

https://osf.io/hyvc4/.  
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A wealth of evidence has demonstrated that language is predominantly mediated by 

the left cerebral hemisphere in the majority of individuals, a phenomenon known as 

hemispheric specialisation. This has been recently defined by Tzourio-Mazoyer and 

Seghier (2016) as “the hosting by a given hemisphere of specialized networks that 

have specific functional properties and interact interhemispherically in a way that 

optimizes brain processing.” However, our understanding of the nature and 

correlates of such lateralisation is relatively limited. Many questions remain, such as 

the functional relevance of such hemispheric specialisation and the significance of 

individual variation in language dominance.  

Non-invasive techniques for assessment of language lateralisation make it 

possible to probe the characteristics of language lateralisation in neurologically intact 

populations. Functional magnetic resonance imaging (fMRI) is a prominent non-

invasive method that has been used to assess laterality. A laterality index (LI) is 

calculated based on a comparison of activation measures from each hemisphere, 

according to the following formula:  

𝐿𝐼 =  
𝐿 − 𝑅

𝐿 + 𝑅
 

This calculates laterality as the difference between activity in each hemisphere 

(L and R) divided by the total activity across the hemispheres. The LI gives a single 

value indicating the relative strength of left and right hemisphere activation for an 

individual. LI measurement may be required for clinical purposes in order to establish 

an individual’s hemispheric dominance for language prior to surgery, as in patients 

with intractable epilepsy. Alternatively, a study may measure an LI to assess the 

strength or variability in lateralisation for a given language function in order to make 

inferences about the neural organisation of the language system. That is, studies 
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may vary in whether the aim of LI measurement is to classify or to quantify 

lateralisation. This will have important implications for which methods of LI 

calculation are optimal for laterality measurement. 

Interpretation of fMRI lateralisation research has been problematic due to a lack 

of standardisation of fMRI laterality protocols. Multiple arbitrary decisions must be 

made when calculating the L and R terms for use in the LI equation which might 

affect the LI value obtained (Jansen et al., 2006; Seghier, 2008). Such variability in 

methodology can preclude systematic study of language lateralisation.  

For example, when calculating an LI from active voxels in each hemisphere or 

region of interest (ROI), a decision must be made as to the threshold p value at 

which to view and analyse the images. Multiple studies have documented the 

dependence of the LI obtained on the threshold chosen (Rutten, Ramsey, van Rijen 

& van Veelen, 2002; Adcock, Wise, Oxbury, Oxbury & Matthews, 2003; Seghier et 

al., 2004; Abbott, Waites, Lillywhite & Jackson, 2010; Nadkarni et al., 2015). As 

illustrated in Fig. 1, as the threshold value is increased, the number of voxels 

surviving thresholding decreases, typically leading to an increase in the LI. 

Ultimately, above a certain threshold, no active voxels will remain in the non-

dominant hemisphere, resulting in an LI of 1; and below a certain threshold many 

voxels will survive across both hemispheres, resulting in an LI of 0. Indeed, there are 

even reports of individuals whose LI shows a switch in dominance with a change in 

threshold level (Jansen et al., 2006; Suarez, Whalen, O’Shea & Golby, 2007; Wilke 

& Lidzba, 2007; Ruff et al., 2008).  
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Figure 1: Threshold dependent laterality curve. Plot of LI as a function of 

threshold (t-value).  

This illustrates just one preliminary issue that must be addressed when 

considering how to quantify lateralisation from fMRI data. Further decisions have to 

be made as to tasks used in an activation paradigm, whether the analysis focuses on 

a specific region of interest (ROI) or the whole hemisphere, and whether the 

quantification of activation is based on magnitude or extent of activity. If the LI is 

used to categorise individuals as left-, bilateral or right-lateralised, a suitable cut-off 

for categorisation must also be determined. 

The purpose of this review is to assess different protocols for fMRI measurement 

of language lateralisation used by studies published between 2000 and 2016. We 

aimed to (1) look at the methods used by different studies over this time period in 

order to consider whether the field is converging on common criteria for evaluating 

language lateralisation, and (2) consider evidence for the robustness and reliability of 
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these different methods in order to make recommendations for future research in this 

field.  

Materials and Methods 

A protocol for this review has been registered on Open Science Framework and can 

be found at https://osf.io/hyvc4/.  This paper addresses those objectives outlined in 

the protocol relating to assessment of the methods used to quantify lateralisation in 

fMRI studies of language lateralisation. Assessment of the impact of language task 

and baselining methods will be considered in a companion paper.  

Eligibility criteria 

We reviewed studies of fMRI language lateralisation published between 2000 and 

2016. Papers were selected if they met the following inclusion criteria: (1) the paper 

calculated and reported LIs for language using fMRI; (2) participants were healthy 

monolingual adults; and (3) if participants included both patients and healthy control 

groups, the data for controls were reported separately. Papers were excluded if: (1) 

they exclusively studied structural asymmetries, children or bilingualism; or (2) they 

used language tasks with non-European languages. The rationale for restricting the 

search to studies on healthy, monolingual, adult participants was to reduce 

heterogeneity within our study sample.   

Search strategy and selection process 

The search and selection process is illustrated in in Fig. 2. We searched Web of 

Science for studies published between 2000 and 2016 using the following search 

terms: laterali* OR asymmetr* OR dominance; AND language OR reading; AND 

fMRI OR functional MRI OR functional magnetic resonance imaging OR functional 

MR OR function MRI; NOT schizophrenia; NOT development*; NOT child*; NOT 
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bilingual*. This was last searched on 05/12/16. Two of the study authors (Abigail 

Bradshaw and Zoe Woodhead) screened the titles and abstracts of the resulting 90 

papers to assess their eligibility then conducted full-text scans to determine whether 

the inclusion criteria were met. Selected lists were compared between reviewers and 

any discrepancies discussed and a mutual decision made. This yielded a total of 34 

papers selected from the original 90. To ensure thorough coverage of the literature, 

papers citing these 34 articles were searched to look for additional articles that met 

criteria. From this, 50 additional papers were selected, bringing the total to 84 

papers. A final search to re-check all 84 papers against search criteria identified 7 

ineligible papers. During the review, a further paper was judged to not meet criteria. 

A list of the final 76 selected papers can be found in Appendix S1.  

 

 

 

 

 

 

 

 Figure 2: Search strategy and selection process. Flow diagram illustrating the 

search and selection process for obtaining articles for inclusion in the review. 

Adapted from Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group 

(2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The 

PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097.  
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Data collection and data summary 

For each paper, we recorded the following parameters relating to the protocol used: 

the type of fMRI design used, the activity measures used for LI calculation, the 

threshold level chosen, the use of global or regional LI calculation, the specific 

regions considered, the language and baseline tasks used, the use of a single or a 

combined task analysis and the task difficulty. We also recorded sample size and 

sample handedness for each study. Information on these measures for each paper 

was collected and managed using REDCap electronic data capture tools (Harris et 

al., 2009) hosted at Oxford University. REDCap (Research Electronic Data Capture) 

is a secure, web-based application designed to support data capture for research 

studies, providing: 1) an intuitive interface for validated data entry; 2) audit trails for 

tracking data manipulation and export procedures; 3) automated export procedures 

for seamless data downloads to common statistical packages; and 4) procedures for 

importing data from external sources. The full database can be found in Appendix 

S2. A summary table drawn from this database with the key outcomes of interest for 

this paper is provided in Appendix S3.  

The variable nature of the methods used and measures reported by different 

fMRI studies of language lateralisation means the data are not suitable for a meta-

analysis. Instead, this review will document the range of methods used, and provide 

a qualitative summary of information from these studies that is relevant for our 

understanding of the robustness and reliability of LI measurement.  
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Results 

Methods for calculating LI 

As shown in Fig. 3, a range of methods have been used to compute a laterality index 

in the set of studies that we considered. These will be briefly described before 

moving to consider the relative advantages and disadvantages of each. Note that the 

majority of studies used the standard LI ratio approach using the LI formula as 

previously outlined (55 within our search), but use of bootstrapping approaches 

started to be seen in 2010 and has gained in popularity since that time. Relatively 

few studies (3) explicitly compared different methods for calculating the LI: we will 

cover those that did so in more detail in the following sections. 

Figure 3: Methods of calculating an LI. Plot shows the frequency of papers within 

our search using each method of LI calculation across the years from 2000 to 2016.   
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Thresholding 

Figure 4 illustrates the different thresholding approaches used by studies, and how 

these have changed over time. As can be seen, the majority of studies (33) used a 

single fixed threshold approach for determining the LI in which a single threshold 

level is chosen at which either extent of activation, or magnitude of activation in a 

given region is measured for left and right, and entered into the LI formula. As noted 

above however, use of a single threshold when calculating an LI is likely to yield an 

unreliable and inadequate measure of an individual’s pattern of laterality. Awareness 

of this has led to a decline of the single fixed threshold approach in more recent 

years, in favour of approaches that aim to address the problem of threshold 

dependence. Each of these will be described and evaluated in term in the following 

sections.  

Figure 4: Thresholding methods. Plot shows the frequency of papers using each 

method of thresholding when calculating an LI across the years from 2000 to 2016.  
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Multiple thresholds and threshold dependent laterality curves 

One way to address the problem of threshold dependence is to calculate the LI 

across multiple thresholds. One can then produce a plot of LI as a function of 

threshold (see Fig.1), also known as threshold dependent laterality curves (Seghier 

et al., 2004; Jansen et al., 2006; Ruff et al., 2008; Suarez et al., 2008; Abbott et al., 

2010). Such curves can allow one to decipher an individual’s general tendency 

towards one pattern of dominance, often showing a transition point at which the 

increase in laterality plateaus at a particular laterality level. However, such curves 

are not always informative, since in some cases they may fail to reach a plateau, or 

are not reproducible within a subject (Rutten et al., 2002; Jansen et al., 2006). 

Variable thresholds 

A second approach uses a variable or adaptive threshold, in which the threshold is 

set according to subject-specific parameters. One such method involves choosing 

that threshold which yields a fixed number of active voxels for each individual 

participant (Knecht et al., 2003; Jansen et al., 2006; Abbott et al., 2010; Fesl et al., 

2010). Using simulated data, Abbott et al. (2010) demonstrated that thresholding at a 

fixed number of voxels was more robust against variability in signal strength than the 

standard thresholding method. They advocated plotting the LI as a function of the 

number of active voxels, similar to threshold dependent curves; these curves are 

however tighter and more stable. Furthermore, Fesl et al. (2010) reported improved 

reliability of LI measurement when using this variable threshold method as opposed 

to a single fixed threshold. However, this approach does not remove the need for 

arbitrary decisions, since a ‘reasonable’ fixed number of active voxels must be 

decided on. Interestingly, when using this method Jansen et al. (2006) set the 
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criterion number of activated voxels at a different level for each language task; this 

can thus enable one to take into account the fact that different tasks may require 

different threshold levels. 

Other adaptive thresholding methods are based on setting the threshold in 

proportion to the maximum or mean intensity of voxels in an image. Methods include 

identifying the highest 5% of voxels with the highest t-values, and setting the 

threshold at half of their mean value (Fernandez et al., 2001; Van Veelen et al., 

2011); alternatively, the mean intensity of voxels within an area of interest can be 

used (Stippich et al, 2003; Wilke & Lidzba, 2007; Partovi et al., 2012a; Partovi et al., 

2012b; Allendorfa, Hernando, Hossain, Nenert, Holland & Szaflarski, 2016). Using 

this latter method, Wilke and Lidzba (2007) reported more stable LIs using variable 

threshold methods as compared to fixed thresholding, suggesting that this may make 

LIs more robust. This study also demonstrated a flattening of laterality curves when 

only those voxels that formed a significant cluster or that had a sufficiently low level 

of variability were included in the LI calculation. These clustering and variance 

weighting methods thus allow calculation of LIs to become more stable across 

threshold levels.  

T-weighting and threshold independent methods 

Alternatively, the issue of threshold dependence can be avoided by the use of a 

‘threshold-independent’ method. One such widely used threshold-independent 

method is t-weighting (Branco, et al., 2006; Suarez et al., 2007; Propper et al., 2010; 

Zaca, Jarso & Pillai, 2013), illustrated in Fig. 5. This involves plotting a histogram for 

each hemisphere of the number of active voxels against t-score threshold, and then 

multiplying this distribution by a weighting function that assigns weight in a way 
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directly proportional to t-score. The integrated areas under each hemisphere’s curve 

can then be used as the input for the standard LI equation. Suarez et al. (2007) 

reported that such a method yielded reduced within-subject and between-subject 

variability in LI compared to fixed thresholding, resulting in clear left lateralisation 

across subjects.   

Figure 5: Illustration of the t-weighting method. A plot of voxel count as a function 

of t-score threshold (top) is multiplied with a weighting function (middle) in which 

higher thresholds are given greater weight, to obtain a weighted distribution (bottom). 

The integrated areas under the right and left hemisphere curves can then be used 

for the standard LI equation.  

Other threshold-independent methods have been developed, but these have 

been less widely used. Harrington, Buonocore and Farias (2006) reported that taking 

the average signal magnitude within activated voxels across multiple thresholds 

yielded higher and more reproducible LIs than a single threshold approach. Seghier, 

Kherif, Josse and Price (2011) used a method developed by Nagata, Uchimura, 

Hirakawa and Kuratsu (2001) in which the L and R terms are calculated by taking the 

regression of the curve obtained by plotting the number of activated voxels against 

threshold for each hemisphere separately. This provides a fixed term for each 
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hemisphere that is independent of threshold for use in the LI calculation, providing a 

more robust measure.  

Bootstrapping 

A further method developed to remove the issue of threshold dependence is 

bootstrapping (Wilke & Schmithorst, 2006). This involves iterative resampling and 

calculation of LIs across multiple threshold levels, illustrated in Fig. 6. At each 

threshold, a vector containing all voxel values is created from an image (b), one for 

each hemisphere. Multiple random samples of values (e.g. 100 samples) from these 

vectors are then taken (c) and an LI calculated for all possible right/left sample 

combinations (d). All LIs are then plotted in a histogram (e) and a trimmed mean is 

taken by selecting the central 50% of the data in order to reduce the effect of 

outliers. A weighted overall mean is then calculated from this resulting data by 

assigning a higher weight to higher thresholds. This method has been widely 

adopted in recent research on measuring language lateralisation (Häberling, 

Badzakova-Trajkov & Corballis, 2011; Van der Haegen, Cai, Seurinck & Brysbaert, 

2011; Van der Haegen, Cai & Brysbaert, 2012; Perlaki et al., 2013; Berl et al., 2014; 

Mazoyer et al., 2014; Miro et al., 2014; Tzourio-Mazoyer et al., 2015; Häberling, 

Steinemann & Corballis, 2016; Sepeta et al., 2016). As well as being threshold-

independent, its key strengths include greater resistance to outliers and built-in 

markers for detecting the presence of outliers within the process of LI calculation 

(Wilke & Schmithorst, 2006), making it a robust method for assessing language 

laterality from fMRI data.  
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Figure 6: Illustration of the bootstrapping method. (a) Thresholding: contrast 

images are created across a range of thresholds from 0 to the maximum t-value. (b) 

Sampling: for each threshold level, a sample of t-values (size i) are randomly 

selected from the left and right ROIs . (c) Resampling: values from the sample 

vectors are randomly resampled n times, each with size r . (d) LI calculation: LI 

values are calculated for all possible combinations of right and left resamples, 

creating n2 LI values in total. (e) Histogram: steps (b)-(c) are repeated for all 

threshold levels, and all of the resulting LI values are plotted in one histogram. A 

trimmed mean, taken from the middle 50% of the data (shaded area), is used as the 

final LI measure. 

Activity measure 

A key decision in calculation of a laterality index from fMRI data concerns which 

activity measure to use; signal extent (i.e. the number of suprathreshold voxels in 

each hemisphere) or signal magnitude (i.e. the average intensity of suprathreshold 

voxels in each hemisphere). Figure 7 documents the different activity measures used 

by studies within our search. It can be seen that the majority of studies opt for an 
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extent measure, although in recent years there has been an increased use of 

magnitude measures.  

Figure 7: Activation measure used for LI calculation. Plot shows the frequency of 

papers within our search using each type of activation measure across the years 

from 2000 to 2016. 

Of the studies that compare both methods, many have reported finding similar 

laterality indices and curves (Jansen et al., 2006; Bethman, Tempelmann, De Bleser, 

Scheich & Brechmann, 2007; Wilke & Lidzba, 2007; Ocklenburg, Hugdahl & 

Westerhausen, 2013). Others have reported differences in LI strength, with reports 

of both higher LIs for magnitude measures (Harrington et al., 2006) and higher LIs 

for extent measures (Jensen-Kondering, Ghobadi, Wolff, Jansen & Ulmer, 2012). 

Further still, Jansen et al. (2006) reported that differences in the activity measure 

used for calculating laterality with a picture naming task could yield different 

dominance classifications for a given participant. This was not the case however for 
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verbal fluency and semantic decision tasks, suggesting that this may reflect 

something particular about the activity patterns induced by naming.  

There is evidence that these measures can yield the same high levels of 

reproducibility for LI measurement: Morrison et al. (2016) reported 100% 

reproducibility for classification of language dominance and almost identical test-

retest LI correlations using both activity measures for a rhyming task. However, the 

majority of studies report higher reproducibility for signal magnitude measures 

compared to signal extent measures (Adcock et al., 2003; Jansen et al., 2006; 

Harrington et al., 2006; Morrison et al., 2016). Importantly, Jansen et al. (2006) 

reported that a magnitude measure determined dominance reproducibly only when 

just those voxels that exceeded a criterion activation level were included; an extent 

measure was not reproducible. Magnitude measures have also been reported to be 

less sensitive to noise than a thresholded extent measure (Adcock et al., 2003).  

Of further note is Jansen et al’s (2006) finding that LIs based on signal extent 

lacked meaningful variation, often yielding LI values of 1; in contrast, LI magnitude 

measures gave greater between-subject variation in LI values. Which constitutes 

better laterality data depends on one’s view of lateralisation measurement. That is, in 

cases when one wishes to classify individuals’ language dominance, having LI 

values close to 1 or -1 would be useful to allow decisions to be clear cut. Conversely, 

when one is interested in quantifying individual variability in the degree of language 

lateralisation beyond the binary typical/atypical distinction, an LI measure that 

reveals greater between-subject variation would be more useful.  
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The flip method 

The standard LI ratio does not indicate whether the difference in activity between the 

hemispheres is significant or not, but simply quantifies the bias in activity towards 

one hemisphere. The flip method (Baciu, Juphard, Cousin & Le Bas, 2005) was 

developed to provide a direct statistical comparison of activity between the 

hemispheres. As illustrated in Fig. 8, this involves contrasting two sets of functional 

images created for the contrast of interest (i.e. task versus control); a right side 

images set, in which the left hemisphere is on the left and a mirror images set, in 

which the image is flipped such that the left hemisphere is on the right. By 

contrasting these two images, one can identify those homotopic voxels that show a 

significant difference in activity across the hemispheres. The resulting significant 

voxels in each hemisphere can then be used as input for the standard LI equation.   

Figure 8: The flip method. By contrasting a right-side contrast image with a mirror 

image (flipped so that the right hemisphere is on the left), a new contrast image is 

generated with significant voxels indicating regions in which left activity is statistically 

significantly greater than right homologue activity.   
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This method has been used in a small number of studies (see Fig. 3) as a 

means of measuring laterality (Cousin et al., 2007; Seghier et al., 2011; Hernandez 

et al., 2013). Baciu et al. (2005) compared the flip method to the standard LI ratio by 

comparing the correlations of each method’s LIs with handedness lateralisation 

indices. While both methods yielded language LIs that were poorly correlated with 

handedness LIs for a verb generation task, when a rhyming task was used the flip 

method yielded higher correlations than the standard LI method. Such a finding is 

difficult to interpret, especially given the inconsistent relationship between 

hanedness and language dominance (e.g. Mazoyer et al., 2014). More research is 

therefore needed to evaluate the flip method for measuring language laterality in 

terms of its reliability and robustness.  

Dominance classification 

If a categorical dominance classification is required, some form of standardised 

procedure is needed once an LI has been calculated. The range of methods used by 

different studies within our search is illustrated in Fig. 9. The most standard method 

of dominance classification uses cut-offs at -0.2 and 0.2, to divide left dominance (LI 

> 0.2) from bilaterality (-0.2 <= LI <= 0.2) and right dominance (LI < -0.2). However, 

such cut-offs are arbitrary, and we found multiple studies within our search that 

chose their own cut-offs (see ‘other cut-off values used’), including 0.1, 0.33, 0.4, 0.5 

and 0.6. Thus, it can be seen that there is a high level of heterogeneity in the 

methods of dominance classification used by different studies. This makes it very 

difficult to draw conclusions and comparisons between the proportions of typically 

and atypically lateralised individuals reported by different studies, and thus impedes 

progress in understanding the distribution of such lateralisation profiles across 

different populations.  
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Figure 9: Methods of dominance classification. Plot shows the different methods 

of classifying language dominance used by studies within our search across the 

period from 2000 to 2016. Note that studies within our search which did not classify 

dominance are not included in this plot.  

Other researchers have investigated data-driven methods of defining dominance 

categories (Adcock et al., 2003; Seghier et al., 2004; Abbott et al., 2010; Berl et al., 

2014; Mazoyer et al., 2014; Tzourio-Mazoyer et al., 2016). One simple way of 

deriving cut-offs is to use 2 standard deviations below the mean as a threshold to 

divide typical from atypical laterality (Adcock et al., 2003; Seghier et al., 2004). 

Abbott et al. (2010) used a similar approach in which an individual’s LI distribution (LI 

as a function of voxel count) was compared to a normative distribution based on a 

sample of controls with ‘typical’ lateralisation. As illustrated in Fig. 10, the individual’s 

threshold-dependent laterality curve is established as being either within or below 

the lower 95% confidence interval for the control group (represented by the shaded 

area in Fig. 10). If an individual’s laterality fell below such an interval, they were 

classed as atypical, on the basis of a low probability of their laterality data having 
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come from the ‘population’ of the normative group. This method thus provides an 

objective definition of atypical lateralisation, but with the obvious limitation that it 

relies on having a normative comparison group to define ‘typical’ lateralisation. 

 

 

 

 

 

 

 

 

 

Figure 10: Abbott et al’s (2010) method of dominance classification. The 

laterality curve of the subject (blue) is compared to that of a normative control group 

(black), using the lower 95% confidence interval for the control group (represented 

by the shaded area).  

Other data-driven approaches to dominance classification suggest the existence 

of more than two dominance categories. Berl et al. (2014) used a hierarchical 

clustering method which gradually and iteratively combined cases into clusters and 

indicated at what level in the hierarchy the optimal cluster solution was obtained. 

They discussed both a three cluster solution and a two cluster solution for a large 

sample of right handers; the former divided subjects into left dominant, crossed 
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dominance (one outlying case) or bilateral, whereas the latter divided typically and 

atypically lateralised subjects. This latter solution was found to divide at an LI of 0.5, 

which was therefore argued to represent a meaningful cut-off for dominance 

classification.  

A larger-scale study by Mazoyer et al. (2014) looked at dominance categories in 

both left and right handed participant groups. They used Gaussian mixture modelling 

to extract dominance categories from laterality data (consisting of LI values between 

-100 and +100), which involves determining the optimal number of Gaussian 

functions that can be fitted to the data. This found different model solutions for right 

and left handed groups. For the right handed group (Fig. 11, top panel), a three 

function solution was optimal, consisting of two overlapping ‘typical’ (left dominant) 

functions (both with LI values above +18) and a third ‘ambilateral’ function 

(consisting of LI values between -50 and +18). This agrees with Berl et al.’s (2014) 

study, which found no evidence for right hemisphere dominance in a right handed 

group. However, in the left handed group (Fig. 11, bottom panel), an additional 

‘strongly atypical’ function was found with strongly negative LI values (below -50). 

Only 10 left handers from this large sample (297 right and left handers) were strongly 

atypical, indicating that it is very rare. They thus argued for the need to treat atypical 

laterality as a heterogeneous group consisting of the subgroups of ‘ambilateral’ and 

‘strongly atypical’; conversely, it was argued that the overlapping typical distributions 

(from both left and right handed participants) could be combined into a single 

homogenous typical group.  
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Figure 11: Mazoyer et al’s (2014) 

method of dominance 

classification. Histograms showing 

the distribution of LI values across 

samples of right handed and left 

handed individuals, with the envelope 

showing the Gaussian functions fitted 

to the data for determination of 

dominance groups. Reprinted from 

Mazoyer et al. (2014), open access.  

 

These data-driven methods of deriving dominance categories suggest that the 

traditional  -0.2 and 0.2 cut-offs do not reflect the true distribution of LIs across 

individuals, and that revision of standards for dominance classification is needed in 

the field, with ramifications for both clinical practice and research.  

Effect of region of interest on laterality 

Another key consideration in calculating an LI concerns whether to include all voxels 

across a hemisphere (to calculate a global LI) or whether to define a region or 

several regions of interest (a regional LI). Figure 12 shows changes in approach to 

choice of region over time across the studies within our search. It can be seen that 

the majority of studies use a regional LI, either picking a single ROI or calculating 

multiple LIs from different regions. A number of studies have compared global and 

regional approaches to LI calculation, particularly in earlier years within our search 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2962v1 | CC BY 4.0 Open Access | rec: 3 May 2017, publ: 3 May 2017



24 
 

period. This evidence on the relative advantages and disadvantages of the global 

and regional approaches is discussed below. It can also be seen that a substantial 

proportion of studies use a single ROI in LI calculation; however, a review of 

evidence on regional variability in laterality questions the adequacy of such an 

approach (see Regional heterogeneity in laterality).  

Figure 12: Use of global and regional approaches to LI calculation over time. 

Plot shows the regional approaches used for LI calculation by studies within our 

search across the period from 2000 to 2016. 

Global and regional LIs 

A potential issue with global LIs is that voxels outside the areas most relevant to the 

language paradigm can have a strong influence on the LI obtained. Whilst many 

studies have shown that LIs from pre-specified language ROIs are stronger and 

more reliable than global LI measurements (Fernandez et al., 2001; Rutten et al., 

2002; Suarez et al., 2007; Pravata et al., 2011), others have found no difference 

(Hund-Georgiadis, Lex, Friederici & von Cramon, 2002) or the opposite (Rutten et 
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al., 2002; Wilke & Lidzba, 2007). Further studies suggest that whether global or 

regional LI measures are optimal may depend on other methodological decisions. 

For example, Jansen et al. (2006) reported that global LIs were more reliable than 

regional LIs when a voxel count approach was used. Similarly, Rutten et al. (2002) 

reported greater reliability for global LIs over regional LIs during an antonym 

generation task, but that the reverse was true for a verb generation task.  

In general however, cases of crossed dominance or regional heterogeneity in 

lateralisation have been used to argue for the need for regional rather than global 

laterality indices, which fail to capture these finer grained individual patterns in 

regional laterality (e.g. Seghier et al., 2011). Such evidence will be discussed in the 

following section, Regional heterogeneity in laterality.  

Regional approaches to LI calculation 

When using a regional rather than a global LI, careful thought must be given to 

deciding which areas to choose as ROIs. Typically, areas within frontal and 

temporoparietal cortex are chosen for measuring language laterality, such as the 

inferior frontal cortex or posterior superior temporal gyrus. It is not the case that any 

single ROI or combination of ROIs will always be optimal for assessing laterality; 

instead, the choice of ROI(s) must be guided by other factors such as the language 

function being studied or the purpose of laterality measurement.  

There are a number of studies which measure laterality from both frontal and 

temporoparietal ROIs, which allows one to compare the robustness and reliability of 

their LIs. There is mixed evidence over whether frontal or temporoparietal ROIs yield 

stronger or more reliable LI values. The majority of studies report stronger laterality 

in frontal than temporoparietal ROIs, across a wide range of both expressive and 
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receptive tasks (Vikingstad, George, Johnson & Cao, 2000; Gaillard et al., 2003; 

Clements et al., 2006; Harrington et al., 2006; Vernooji et al., 2007; Szaflarski et al., 

2008; Niskanen et al., 2012; Partovi et al., 2012a; Partovi et al., 2012b; Propper et 

al., 2012; Ocklenburg et al., 2013). However, some have reported the opposite, a 

pattern particularly associated with the use of receptive tasks such as semantic 

decision, speech listening or auditory comprehension  (Fernandez et al., 2001; 

Ramsey et al., 2001; Hund-Georgiadis et al., 2002; Harrington et al., 2006; 

Bethmann et al., 2007; Brennan et al., 2007; Sanjuan et al., 2010; van Oers et al., 

2010; Jensen-Kondering et al., 2012; Niskanen et al., 2012; Häberling et al., 2016). 

A similar pattern emerges for reliability of laterality measurement; while frontal LIs 

are often reported as more reliable than temporoparietal LIs (Harrington et al., 2006; 

Szaflarski et al., 2008; Partovi et al., 2012a), the reverse can be true when using a 

receptive language task (Harrington et al., 2006; Jansen et al., 2006). This suggests 

that the two areas are both capable of yielding robust and reliable laterality 

measurement, provided that a receptive task is used to engage temporoparietal 

areas.  

Regional heterogeneity in laterality 

Research comparing laterality across regions has reported cases of crossed or 

dissociated dominance across different cortical language areas, at both an individual 

and a group level (Vikingstad et al., 2000; Thivard et al., 2005; Jansen et al., 2006; 

Bethmann et al., 2007; Propper et al., 2010; Seghier et al., 2011; Van der Haegen et 

al., 2012; Vingerhoets et al., 2013; Berl et al., 2014; Häberling et al., 2016). 

Bethmann et al. (2007) reported four subjects with crossed frontal and temporal 

dominance for a semantic decision task; in particular, one subject was classified as 

bilateral when ROIs were combined, whereas classification based on either only a 
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frontal or a temporal ROI yielded contradicting dominance categories. Other studies 

report within-subject dissociations between the dominance measured from different 

regions using different language tasks. Cases of crossed dominance have been 

reported between frontal LIs for expressive language and temporal or 

occipitotemporal LIs for receptive language (Van der Haegen et al., 2012; Häberling 

et al., 2016), and between temporal and frontal LIs for two different expressive 

language tasks (Vikingstad et al., 2000). In Van der Haegen et al.’s (2012) study, the 

majority of left handed subjects showed colateralization of inferior frontal cortex for 

verb generation and ventral occipitotemporal cortex for lexical decision, but a small 

minority (3 out of 57 participants) showed crossed dominance. Such crossed 

dominance is not limited to left handers however; Häberling et al. (2016) reported 

cases of crossed frontal expressive and temporal receptive dominance among both 

left and right handers.  

Such cases highlight the inadequacy of relying on a single global or regional LI, 

and how this practice in previous research may have led to an underappreciation of 

such crossed dominance in the literature. Indeed, such regional variation is not only 

found at the individual level, but also at a group level. In a comparison of 

lateralisation for a semantic word matching task across 50 different ROIs, Seghier et 

al. (2011) reported a negative correlation between LIs obtained from the angular 

gyrus and the ventral precentral gyrus. This suggests that regional heterogeneity can 

be a normal part of typical profiles of hemispheric lateralisation for language.  

Summary and conclusions 

This review has highlighted the many different ways in which calculation of an LI 

from fMRI data presents a methodological challenge, and how the use of different 
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methods has changed over time. Of course, the decisions one makes when 

designing an fMRI laterality experiment will depend on the question being 

investigated; however, here we have highlighted some key principles that emerge 

from the literature that should be considered in order to generate increased 

standardisation in fMRI laterality protocols across future studies. Increased 

homogeny in the methods used by different studies will enable better integration of 

research findings in order to draw conclusions as to the nature and correlates of 

language lateralisation.      

fMRI LI calculation must address the problem of threshold dependence. 

Bootstrapping represents a promising method for calculating a robust, threshold-

independent LI, making it a widely used method in recent research. The general 

pattern of evidence suggests that signal magnitude may provide a more robust and 

reliable measure than signal extent, and that regional LIs calculated from pre-

specified ROIs are stronger and more reliable than global LIs. However, such 

decisions need to be considered in light of other methodological parameters (e.g. the 

activity measure used) in order to optimise the fMRI analysis. A useful tool for 

implementing such analysis methods is LI-tool, a tool-box within MATLAB software 

(Mathworks, Natick, MA, USA), developed by Wilke and Lidzba (2007). This includes 

options for different thresholding techniques and activity measures, and can 

implement the bootstrapping method. 

Data-driven methods can provide a less arbitrary means of classifying language 

dominance and support the validity of a three category model of language 

dominance within a mixed handedness sample, consisting of typical (left dominant), 

ambilateral, and atypical (strongly right dominant) groups; conversely in right handed 

samples a two-category model (typical versus ambilateral) may be sufficient 
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(Mazoyer et al., 2014). No subsequent studies have implemented the thresholds for 

dominance classification suggested by Mazoyer et al’s (2014) large scale study, 

except a paper reporting on the same sample of right and left handed individuals 

(Tzourio-Mazoyer et al., 2016). Further work is needed to implement and validate 

these cut-offs, to see if these generalise to other samples and thus could be used as 

standard practise.   

The choice of which regions of interest to use for LI calculation again depends 

on the question being asked. If one wishes to classify laterality for a particular 

language function, one must consider which ROI yields the highest and most reliable 

LIs for that function. Frontal ROIs typically yield the strongest and most reliable 

laterality for expressive tasks, whereas a temporoparietal ROI may be more 

appropriate for receptive tasks. However, measurement of laterality from a single 

regional or global ROI can be misleading and does not capture potential regional 

heterogeneity. Therefore, lateralisation across frontal and temporoparietal ROIs for 

at least one expressive and one receptive task should be measured, to obtain a 

comprehensive picture of any individual’s pattern of hemispheric dominance for 

language. This will enable further work to investigate the significance of such 

regional heterogeneity in dominance; for example, are there any functional 

consequences of having crossed frontal-temporal language laterality? In this way, 

fMRI as a method of laterality measurement can provide unique insights into 

lateralisation at a regional level; this should be fully exploited in future research.  
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