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ABSTRACT

Biodiversity generally affects ecosystem processes, but to what extent detailed knowledge about specific
aspects of biodiversity helps us understand and predict specific ecosystem functions is not well-known.
We hypothesised that information about functional gene abundance and diversity would provide a better
way of predicting a particular function catalysed by that gene product, than would a more generic
descriptor of species diversity. For our purposes, we used marine benthic nitrogen-fixing bacteria as a
model system. We first used published observational data to relate nitrogen fixation to the abundance
of the gene nifH, which encodes enzymes involved in the fixation of atmospheric nitrogen gas. We
then used the fitted model, which explained 37% of the variance, to predict nitrogen fixation in other
sediment samples for which nitrogen fixation and nifH abundance was determined. The model provided
no predictive power for benthic nitrogen fixation on independent data. Additional information on the
diversity of the general bacterial community, and the nitrogen fixing community in particular did not
improve predictions. It was also not possible to predict nitrogen fixation based on the abundance of
particular gene variants or bacterial taxa. Our results demonstrate that process rates can be intrinsically
difficult to predict based on community metrics even when the community data and the process are tightly
coupled.

INTRODUCTION
Biodiversity is generally assumed to favour ecosystem functioning. This is due to niche complementarity,
positive interactions or the higher chance of including high-performing species (Tilman et al., 2014).
The qualitative trend has been consistent with that hypothesis across a variety of systems (Schmid et al.,
2009; Cardinale et al., 2011; Gamfeldt et al., 2015), including microbial ecosystems (Bell et al., 2005;
Philippot et al., 2013; Delgado-Baquerizo et al., 2016). Papers in the field hence frequently include
verbal predictions that future loss of diversity will have adverse consequences for ecosystem services
and human well being (Cardinale et al., 2012). Quantitative predictions, however, are largely absent
or highly speculative (Cardinale et al., 2011; Hooper et al., 2012) and the estimates of the relationship
between biodiversity and functioning are often noisy and characterised by large variance around the mean
(Maestre et al., 2012; Gamfeldt et al., 2013; Delgado-Baquerizo et al., 2016). Therefore, the ability to
make predictions has been called into question (Houlahan et al., 2017).

The field of microbial ecology, too, has called for predictive modeling of ecosystem functioning (Allison,
2012; Wieder et al., 2013; Powell et al., 2015). Microorganisms dominate Earth’s biogeochemical cycles.
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Being able to accurately model functions, such as carbon sequestration or nitrogen cycling, would thus
be valuable. Therefore, the inclusion of microbial community metrics into ecosystem models has been
advocated to improve predictions of process rates (Moorhead and Sinsabaugh, 2006; Todd-Brown et al.,
2011; Allison, 2012; Reed et al., 2014). However, attempts to include microbial community diversity,
structure or size have had mixed success. While some environmental studies report that prediction of
process rates could be improved by the inclusion of biotic variables (Powell et al., 2015) or that process
rates were strongly correlated to community diversity or size (Hsu and Buckley, 2008; Wessén et al.,
2011) others report no link (Graham et al., 2014; Rocca et al., 2015). Bier et al. (2015) reviewed the
literature reporting microbial community structure and process rates and found that 75% of the studies that
tested for it found a significant link. Roger et al. (2016) reviewed experiments that manipulated bacterial
diversity by dilution-to-extinction and reported that only 25% of 92 reported relationships were positive
and statistically supported. An analysis of 82 data sets that investigated the contribution of functional gene
abundance, diversity or community composition for carbon and nitrogen cycling rates found that overall
community metrics improved model fit in only 29% of the cases (Graham et al., 2016). The improvement
was small on average as adding microbial community metrics to a model with edaphic factors alone
improved the model fit from an adjusted r-square of 0.56 to 0.65. Nevertheless, for obligate processes
performed by phylogenetically narrow functional guilds, the model performed better.

In this study, we aimed to first predict and then explain marine benthic nitrogen fixation based on the
abundance and diversity of the nitrogen-fixing community, as well as the overall bacterial community. We
hypothesised that community metrics based on the functional community performing nitrogen fixation
would be a better predictor of fixation rates than the overall bacterial community metrics. Nitrogen
fixation, the biological transformation of atmospheric nitrogen gas into bioavailable ammonium, is a
crucial ecosystem function and this process is exclusively performed by free-living and symbiotic bacteria
and archaea. To detect these diazotrophs, it is established praxis to study the nifH gene, which encodes
the enzyme dinitrogenase reductase involved in nitrogen fixation.

In a previous study by Andersson et al. (2014), nifH abundance explained 37% of the variance in
nitrogen fixation in shallow marine sediments (Fig. 1 a), suggesting that the size of the diazotrophic
community could be used to predict nitrogen fixation rates. In the present study, we first test a model based
on data from Andersson et al. (2014) to predict the observed nitrogen fixation rates in shallow marine
sediments published in Alsterberg et al. (2017), using nifH abundance. The samples for both studies were
collected in the same environments (illuminated sediments in shallow coastal bays along the Swedish west
coast), in the same season (summer), using the same protocols for measuring nitrogen fixation. Alsterberg
et al. (2017) did not quantify nifH gene abundance. Therefore nifH abundance was determined for this
study from DNA samples from Alsterberg et al. (2017) using largely the same protocols as in Andersson
et al. (2014). In a second step, we sequenced the diazotrophic community based on nifH and included
the general bacterial community, based on 16S rRNA gene sequences, obtained from Alsterberg et al.
(2017). With these additional data, we evaluated the relative ability of 1) the general bacterial diversity,
2) the diversity of the diazotrophic community, 3) the abundance of the diazotrophic community, and 4)
the habitat type for explaining nitrogen fixation rates. We also analysed whether the abundance of any
particular bacterial or diazotroph species correlated with nitrogen fixation rates.

MATERIALS AND METHODS
Study design and sample origin
Process rates and DNA samples were collected in a previous study (Alsterberg et al., 2017). For that study,
a total of 112 sediment cores from four different habitat types, hereafter referred to as ‘Sandy beach’, ‘Silty
mud’, ‘Cyanobacterial mats’ and ‘Ruppia maritima meadows’ were collected from shallow bays in the
summer of 2013 on the Swedish west coast. As the original experiment investigated the effects of habitat
diversity on ecosystem multifunctionality, the cores were assembled into habitat diversity treatments of 1
to 4 different habitats. Each habitat-diversity sampling unit consisted of 4 sediment cores jointly placed in
a larger cylinder were they shared the same overlying water. The final sample arrangement is shown in
(Fig. S1). The sediment cores were placed in a greenhouse with a continuous water flow from surface
water pumped from an adjacent bay and the experiment was left running for 2 weeks. In the present study
we used only DNA extracts and data from the summer sampling in Alsterberg et al. (2017).
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As the original experiment was replicated in three seasons, it was not possible to analyse samples from
all 112 cores in each season. For that reason, sediment samples from the same habitats within the same
large cylinders were combined to a single sample, resulting in a total of 52 samples. From the original 52
samples, 12 samples were excluded. 6 samples are missing and we excluded another 6 samples as they are
very likely to have been misassigned to the wrong habitat as consistently revealed by the multidimensional
clustering of the phylogenetic marker gene (16S) and the nifh gene as well as two separate functional
genes not included in this study (Fig. S2).

Nitrogen fixation
Nitrogen fixation rates were measured with the acetylene reduction assay (Stewart and Fitzgerald, 1967)
as modified by (Capone and others, 1993). The details of the measurements are described in Alsterberg
et al. (2017) and Andersson et al. (2014). Briefly, four sample of 3 ml homogenized sediment were
incubated in gas tight exetainers together with 1.5 ml filtered seawater. The headspace with untreated air
( 1.3 ml) was enriched with 20% acetylene (C2H4) gas (v:v) and the incubation was terminated through
the addition of 6.1 molL�1 ZnCl2 after 0, 24, 48 and 72 hours, respectively. Nitrogen fixation was then
measured by analysing the concentration of ethylene (C2H4) gas in the headspace and converting the
ethylene production into atmospheric nitrogen fixation using a ratio of N2 : ethylene of 1:3 (Capone and
others, 1993; Capone et al., 2005). The published nitrogen fixation rates have been recalculated and are
now expressed as µmol N2 g�1 sediment (wet weight) d�1.

Analyses of of 16S rRNA and nifH gene sequences
DNA extraction was performed in the previous study by Alsterberg et al.. The samples for DNA extraction
were taken at the same time as the samples for nitrogen fixation thus assuring that the analysed community
was the initial community used in the nitrogen fixation assay. Five g homogenized (and where indicated
above pooled) sediment samples were frozen and stored at -20�C. DNA was then extracted from 0.3 g
thawed sample, using the FastDNA Spin Kit for Soil (MP Biomedical) as indicated by the manufacturer.

Using the extracted DNA from Alsterberg et al. (2017), we amplified and sequenced nifH as marker
gene for genetic potential for nitrogen fixation. The V3-V4 region within the 16S rRNA gene as taxonomic
marker for bacteria and archaea was already sequenced and data were obtained from our previous study
(Alsterberg et al., 2017). Both the 16S rRNA and nifH genes were sequenced with Illumina MiSeq
technology and 2 x 300 bp paired-end chemistry by Microsynth (Microsynth AG, Switzerland). The
details of the primer sequences and PCR conditions are given in Table S1.

While the 16S data were sequenced and published in the previous experiment, they were re-analysed
with a slightly different pipeline for this study. The sequences were trimmed using FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit) and merged with PEAR (Zhang et al., 2014)
after which we performed quality filtering using USEARCH v8.0 (Edgar, 2010). The criterion for quality
filtering was 1 maximum expected error per merged read and a sequence length between 420 and 470
bp. OTU clustering was performed in vsearch (Rognes et al., 2016) at 97% identity. Chimera checking
was also done with vsearch de novo chimera checking as well as reference chimera checking against the
SILVA reference database (Pruesse et al., 2007) was performed. We dropped global singletons from the
analysis after each step. We assigned taxonomy using the assignTaxonomy function from DADA2
package (Callahan et al., 2016) in R using the provided SILVA training set as reference. OTUs identified
as eukaryotic, mitochondric or originating from chloroplasts were removed. The final data set included
8187 bacterial and archeal OTUs. For the construction of a phylogenetic tree, the representative sequences
were aligned globally with the DECIPHER package (Wright, 2015) and the tree was constructed with
FastTree (Price et al., 2009) and made ultrametric with PATHd8 (Britton et al., 2007).

The nifH sequences were analysed in a similar way as the 16S rRNA reads with an OTU similarity
threshold at 97%. Reference chimera checking was performed against the nifH ARB database, curated and
maintained by the Zehr lab (Ludwig et al., 2004; Heller et al., 2014). The representative sequences were
checked for frameshift errors with HMMFRAME (Zhang and Sun, 2011) using an hmmfile generated
by hmmbuild based on the full protein alignment extracted from the nifH ARB database. Only 14
representative sequences with frameshifts were detected and were excluded. The final set of representative
sequences was submitted to a length filtering and we kept only sequences between 384 and 396 bp.
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We aligned the representative sequences together with reference sequences from the largest available
tree in the ARB nifH database. The alignment was performed with a custom python script aligning the
reverse translation of the DNA sequences to the reference protein alignment using hmmalign. The primers
amplify four nifH paralogues known to encode proteins that are not implicated in nitrogen fixation (bchx,
bchl, frxc and nflh genes; cluster 4 and 5 sequences sensu Young (2005)). We retrieved representative
sequences for these paralogues from UniProt http://www.uniprot.org and joined them to the
degapped full set of protein sequences. Finally, we re-aligned all sequences with hmmalign and built a
phylogenetic tree based on the protein alignment using FastTree. The phylogeny showed that all sequences
retrieved from our samples aligned closely with a reference nifH sequence or a reference sequence for
nifH paralogues. All sequences that clustered with known nifH paralogues were pruned. This lead to the
exclusion of 53% of all reads belonging to 39% of all OTUs. OTUs excluded from the tree were also
removed from the OTU table and all excluded sequences were removed from the full sequence file. Finally
all reference sequences were removed from the tree and the tree was made ultrametric with PATHd8. The
final table contained 1484 nifH OTUs.

Analysis of diversity data
For each set of sequences, the 16S rRNA and nifH genes, we calculated the effective number of OTUs
sensu (Jost, 2006) of order q = 1. This is equivalent to the exponential of the Shannon diversity and
can be interpreted as the number of species in an equally diverse community with evenness = 1. We
accounted for uneven sampling depth by applying the estimator developed by Chao et al. (2015) and
Marcon and Hérault (2015). However, rarefaction curves for diversity of order q = 1 showed that all
samples reached or were close to saturation wherefore it is unlikely that diversity estimates were biased by
uneven sampling depth. We also calculated the effective number of phylogenetic unrelated species sensu
Chao et al. (2010), taking into account the relatedness of the OTU sequences. However, as phylogenetic
diversity was strongly correlated to the effective number of species (Pearsons’s r 0.78 - 0.94), we only
used the former metric in the statistical analysis.

Quantification qPCR of nifH genes
The abundances of the nitrogen fixing community were determined by quantifying the nifH genes with
quantitative real-time PCR (qPCR). Each reaction contained 10 ng template DNA, iQ SYBR Green
Supermix (BioRad), 0.1% Bovine Serum Albumin (BSA) and primer concentrations of 0.8 µM in a total
volume of 15 µL. The qPCR reactions were run in duplicate using the BioRad CFX Connect Real-Time
System. Efficiencies, primer sequences and thermal cycling conditions are listed in Table S1. As standard,
we used linearized plasmids containing a nifH gene fragment. Prior to quantification, an inhibition test
was performed for all samples with a plasmid specific qPCR assay containing the pGEM-T plasmid
(Promega) as template in the presence of 10 ng sediment DNA or water. The controls with water were not
significantly different from those with sediment DNA, indicating no PCR inhibition.

The nifH abundance was corrected by considering the fractions of reads per sample that were identified
as nifH paralogues.

Statistical analysis
The aim of this study was to attempt to predict or else explain the large variation in nitrogen fixation rates
observed in Alsterberg et al. (2017). As reported in that study, part of the variation was explained by habitat
diversity. To account for that we fitted a linear model of the form nitrogen f ixation ⇠ habitat diversity,
with habitat diversity as discrete variable with four levels (1-4) and extracted the residuals from this model
(Fig. S3). The absolute minimum residual value was added to all residuals to shift the values back on the
original scale. These values were used as response variable for all subsequent analysis. However, using
the original nitrogen fixation rates did not change any of the results qualitatively.

We analysed the data in three steps. In the first step, we took the following model that was fitted to data
from a previously published survey (Andersson et al., 2014):

log10(nitrogen f ixation) = 0.96 log10(ni f H copies g�1 wetsediment)�21.07 (1)

The range of nifH copies observed in Andersson et al. (2014) [2⇥105 � 5⇥107 copies g�1 sediment]
nearly covered the full range of observed copy numbers in this study [7.2⇥104 � 7.4⇥106 copies g�1
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sediment]. However, as Andersson et al. (2014) did not sequence the nifH gene, the nifH copy numbers
could not be corrected for the fraction of nifH genes picked up by the primers but not implicated in
nitrogen fixation. We therefore also used the uncorrected nifH gene copy numbers obtained in the present
study as predictor of nitrogen fixation.

In a second step, we investigated whether the general bacterial diversity as well as the diversity and
abundance of the diazotrophic community, could alone or in combination explain more of the observed
variation in nitrogen fixation rates. For that, we correlated nitrogen fixation to the effective number of
bacterial diversity, effective number of nifH types, corrected nifH copy number abundance, and to habitat
type. The last variable was included, as in the absence of abiotic and other biotic variables, habitat type
represents the integrated unmeasured biological, chemical and physical parameters. Finally, we also tried
a linear model including all four predictor variables, but without interactions.

In a third step, we explored whether the abundance of any single OTU, either nifH or 16S rRNA,
correlated with nitrogen fixation rates across samples using the DESeq2 package (Love et al., 2014).
The package tests for differential abundance by modeling the response variable (in our case nitrogen
fixation) as function of the log2 fold changes in abundance in the count data. The DESeq function uses
generalized linear models where the counts are modeled using a negative binomial distribution with
fitted mean (taking into account the uneven sampling depth) and OTU specific dispersion parameter. We
tested two models: 1) for differential abundance correlated to nitrogen fixation rates across habitats, after
accounting for habitat differences in OTU abundance and 2) differential abundance correlated to nitrogen
fixation within each habitat separately. The false discovery rate was set to 0.05 and we chose the Wald
test to assess significance and the Benjamini & Hochberg correction for multiple testing. All statistical
analysis were performed in R (R Core Team, 2016).

RESULTS
Prediction of nitrogen fixation rate
The copy number of nifH was a reasonably good predictor of nitrogen fixation rates reported by Andersson
et al. (2014) (Fig. 1 a). Yet, the model performed poorly when used to predict nitrogen fixation rate on
independent data. The observed values for nitrogen fixation fall outside the prediction intervals, and the
predictions are systematically biased (Fig. 1 b). Notably, a model where the observed nitrogen fixation
rate was simply predicted by the mean observed rate outperformed the predictive model informed by
previous data.

Correlation of nitrogen fixation with other community metrics
The effective number of microbial OTUs ranged from 108 - 826. The diversity was different between
habitats (p = 0.0017) with, ‘Cyanobacterial mats’ having the lowest median diversity (Div, n = 8, Div =
386) followed by ‘Ruppia maritima meadows’ (n = 10, Div = 392), ‘Silty mud’ (n = 11, Div = 547) and
‘Sandy beach’ (n = 10, Div = 724). The diversity of nifH genes ranged from 33 to 266 effective number of
OTUs, likewise with differences between the habitat types (p = 0.0007). However the order of habitats
ranked by diversity was different, with ‘Sandy beach’ having the lowest median diversity (n = 10, Div
= 98), followed by ‘Cyanobacterial mats’ (n = 8, Div = 105), ‘Ruppia maritima meadows’ (n = 10, Div
= 151) and ‘Silty mud’ (n = 11, Div = 220). Across habitat, there was a positive, but weak relationship
between effective number of nifH OTUs and effective number of bacterial OTUs (adj. R2 = 0.1, p = 0.03).

The nifH gene copy number ranged from 7.2⇥104 � 7.4⇥106 copies g�1 sediment. Yet, 44% (‘Silty
mud’) to 68% (‘Sandy beach’) of those reads were identified as nifH paralogues and after correcting the
copy number of nifH genes in each sample , the nifH copy number ranged from 4⇥104 � 3.2⇥106 copies
g�1 sediment. There was no difference in nifH abundance across habitat types (p = 0.3) and no relationship
between nifH diversity and abundance (adj. R2 = 0.05, p = 0.08).

The nitrogen fixation rate was not correlated with either of the described community metrics (Fig. 2).
However, nitrogen fixation varied with habitat type (p = 0.009), which explained 28% of the variance.
A multiple linear model including all four variables as predictors (without interactions) had only weak
statistical support (p = 0.05). Additionally, an ANOVA with type II sum of squares, to test each main
effect over the other main effects, showed that only habitat type had any explanatory power (p = 0.017).
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Figure 1. Predicting nitrogen fixation by the abundance of the nifH gene in marine shallow water
sediments. a Data from Andersson et al. (2014). The authors measured nitrogen fixation at 60 sampling
sites along the Swedish west coast and quantified the abundance of nifH genes with qPCR. The solid line
is the best fit model of log10(nitrogen f ixation)⇠ log10(ni f H Abundance) (R2 = 0.37, p = 2.9⇥10�7 )
and the shaded area shows the 95% prediction interval. The horizontal dashed line indicates the
geometric mean. b nitrogen fixation data from Alsterberg et al. (2017). We quantified nifH abundance for
this study. The black solid line is the predicted mean nitrogen fixation using the model a, the shaded area
represents the 95% prediction interval and the dashed horizontal line shows the geometric mean. The
model is a poor fit to the independently collected data and is outperformed by an intercept only model
(dashed line).The samples were collected in the same season in the same region and the quantification of
nitrogen fixation and nifH abundances were determined using the same protocols.

Correlation of nitrogen fixation with specific OTUs
Both the overall bacterial and the diazotrophic communities differed across habitat types (Fig. 3). Yet, after
controlling for different mean abundances between habitats, no OTU, neither nifH nor 16S rRNA based,
correlated with nitrogen fixation rates - with the exception of a single OTU that had lower abundance in
samples with higher rates (Fig. 4). When we check for differential abundance within each habitat type, we
found one nifH OTU that covaried with nitrogen fixation rates in the ‘Ruppia maritima’ habitat. Moreover
we found 8 16S rRNA OTUs that were related to nitrogen fixation rates; 3 in the ‘Cyanobacterial mats’,
(all negative), 4 in ‘Silty mud’ (all positive) and one in ‘Ruppia maritima’. The adjusted p-values and
effect sizes for all OTUs are given in Table S2.

DISCUSSION
Our results show that applying a model with good statistical support to predict nitrogen fixation from
nifH gene abundances had no predictive power. In fact an intercept-only model outperformed the model
informed by the previous data on the new independent dataset. Notably, even though the model fitted to
the data of Andersson et al. (2014) had strong statistical support and reasonably high R2, it did not predict
nitrogen fixation well in an absolute sense. The predicted values differed from the observed values by 20
to 966% (10th and 90th quantile respectively). Hence, even in the case where the functional relationship
would have been the same in both data sets, nifH abundance would have been a poor indicator for the
absolute nitrogen fixation rate. This highlights the crucial differences between good statistical support,
quantified as the probability that the slope is different from 0 (p-value) and the proportion of variance
explained by the model (R2), and good predictive ability of a model. We can only claim to have a good
mechanistic understanding of the system if the latter is small on independent data (Houlahan et al., 2017).
The mismatch of the functional form of the relationship demonstrates the limited frame of inference of
any single study, even when performed at relatively large scales and applied to very similar data. The
ecological forecast horizon (sensu Petchey et al. (2015)) was thus limited, either in space or time, or both.
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Figure 2. Predicting nitrogen fixation by microbial community metrics. a) bacterial and archeal
diversity measured as effective number of bacterial OTUs (based on 16S RNA); b) diazotroph diversity
expressed as effective number of nifH OTUs; c) abundance of nifH copies (copies g�1 sediment) after
correcting for the fraction of reads encoding nifH paralogues not implicated in nitrogen fixation; d) by
habitat type. Colors represent habitat type: turquoise, cyanobacterial mats; green, Ruppia maritima
meadows; orange, sandy sediment and red, silty mud. The p-value of linear models of the form
sqrt(nitrogen f ixation)⇠ X is given in the inset of each panel. For the only significant relationship (with
habitat type) the R2 is also given. The p-values are not adjusted. The dashed lines represent the intercept
only models (the mean of nitrogen fixation)
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Figure 3. Non-metric multidimensional scaling of the samples based on the OTU-based community
composition by gene and habitat. The distance metric is Bray-Curtis dissimilarity. The raw reads have
been transformed using the varianceStabilizingTransformation function in DESeq2,
which transforms the count data to meet approximate homoskedasticity and normalizes for library depth
(unequal read numbers in different samples).
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Figure 4. Read abundances of six 16S rRNA and one nifH OTU that covaried with nitrogen fixation
rates. The abundances on the x-axis are transformed counts by the
varianceStabilizingTransformation function in DESeq2, which transforms the count data
to meet approximate homoscedasticity and normalizes for library depth. The test for association, however,
was done using the raw data (glm with model mean-variance relationship) not the transformed data.

Our failure to predict nitrogen fixation rates could be because our independent variables are not directly
connected to nitrogen fixation, as only the active protein is truly related to function. The causality chain
that connects the detected gene abundance to the realized protein activity is several steps long and each
step is influenced by a range of factors that may weaken the direct link. A simple model exercise shows
that in a causality chain of length 4, the correlation between the start and the endpoint can be low (Fig.
S4). However, in our model system, it is unclear how well each step correlates to the next, i.e. from gene
to final activity. For example, biological nitrogen fixation is highly regulated at the transcriptional level
(Dixon and Kahn, 2004) and not all diazotrophs that are detected are active or alive. The fraction of active
cells in the total prokaryotic community in marine sediments has been estimated to be just 40% (Manini
and Danovaro, 2006) and it has recently been suggested that 40% of detectable DNA might stem from
extracellular DNA, remaining in soils after cell death (Carini et al., 2016). In general, gene abundance is
only expected to be tightly linked to the process rate if it is a limiting factor. As Fig. 2 c shows, both the
lowest and the highest nitrogen fixation rates occurred in the lowest quantile of measured gene abundances
in our samples. Thus, high gene abundance was not a prerequisite for high nitrogen fixation rates. While
the highest observed gene abundances coincided with high nitrogen fixation rates, a quantile regression
on the 20th% quantile was not significant (data not shown).

Detailed knowledge about both the overall prokaryotic community and the nitrogen-fixing community
in particular did not significantly increase our ability to explain or predict the observed nitrogen fixation
rates. Instead, habitat type was the only factor that had statistical support in explaining variation in process
rates. This could be because habitat type might be correlated with abiotic factors known to regulate
nitrogen fixation such as the concentration of dissolved nitrogen, pH, or the concentration of dissolved
oxygen (Andersson et al., 2014; Hsu and Buckley, 2008). Diazotroph diversity has been linked to nitrogen
fixation rates in some cases (Hsu and Buckley, 2008), but not in others (Rocca et al., 2015). Since species
(or biological units sensu Krause et al. (2014), i.e. OTUs, genetic varieties, functional groups etc) occupy
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different niches, the full community can occupy more of the total niche space than any individual species.
The nifH gene for example can be separated into three main clusters and 42 subclusters involved in
nitrogen fixation (Zehr et al., 2003). These clusters are partly congruent with organismal phylogeny
(cluster I), but partly also delineate functional groups. As such, cluster III is found in a range of distantly
related bacteria that are dominantly obligatory anaerobes. This suggests niche differentiation between
diazotrophs which opens the possibility for niche complementarity. Niche differentiation has also been
shown for benthic denitrifying bacteria and archaea under different oxygen regimes (Wittorf et al., 2016).
An alternative hypothesis supporting a link between diversity and process rate is that a diverse diazotroph
community is more likely to contain high performing species (sampling effect sensu Huston (1997)). A
sampling effect yields higher functioning if the process that we measure gives a competitive advantage to
a species that is high performing with regard to that process (positive selection effect, Loreau (2000)).
This could be a reasonable assumption in the case of nitrogen fixation, if bioavailable nitrogen is a limiting
resource. Prokaryotic diversity, in turn, is only expected to be connected to nitrogen fixation rates if either
diazotroph diversity is closely related to nitrogen fixation and a good proxy for diazotroph diversity or, if
the diversity of non-diazotroph prokaryotes favors nitrogen fixation for some reason. However diazotroph
diversity was largely uncorrelated to prokaryotic diversity.

The community metrics that we chose to analyse are in principle suitable for prediction on independent
data as they are transferrable. For example, we quantified diversity as effective number of species, which
takes into account the relative abundance of the single species (Jost, 2006). As effective number it fulfills
the doubling property, which demands that the common diversity of two communities that share no
species equals the summed diversity of both communities. The effective number of species of order q
� 1 can also be reliably estimated on an absolute scale as it is much less sensitive to sampling intensity
compared to species richness (Haegeman et al., 2013). Likewise, the abundance of nifH genes were
quantified on an absolute scale (gene copies g�1 sediment). Finally, the abundance of certain OTUs can
be compared across studies, if the OTUs are defined coherently. Nevertheless, OTU abundance underlies
certain limitations as read abundance data are only semiquantitative (Větrovský and Baldrian, 2013).

In the absence of a relationship between community metrics and community functioning, the influence
of certain influential species has often been evoked (Straub and Snyder, 2006; Peter et al., 2011). We
tested for species identity effects, but found little evidence for it. Only one bacterial OTU was significantly
correlated with nitrogen fixation rates across habitats (Fig. 4). The relationship was negative, precluding a
direct effect of the detected OTU on process rates. Within habitats, the abundance of five bacterial OTUs
was significantly and positively related to nitrogen fixation rates. Yet, the evidence is purely correlative
and the direction of the causality is not clear. High nitrogen fixation might also have favored these OTUs.
Only a single diazotroph OTU was correlated with the rate of nitrogen fixation and the relationship seems
driven by one influential sample (Fig. 4).

The bacterial and the diazotrophic community differed markedly in community composition among
habitats (Fig. 3). Yet in all habitat types, low and high nitrogen fixation rates were observed, and while
average nitrogen fixation rates differed between habitats, the variation within habitats was high (Fig. 2 d).
In this study we did not attempt to correlate community structure to observed process rates. Doing so asks
the question of whether communities that are more alike have more similar functioning but not which
community composition is related to what functioning. Therefore the results, even if significant, cannot
be used to predict process rates on independent data.

CONCLUSION
There is a clear biological link between functional genes and the processes they encode. Yet, neither the
abundance nor the diversity of the nifH genes explained variation in nitrogen fixation rates and habitat
type was the only factor that had statistical support. A range of factors could obscure the link between
community metrics of diazotrophs and the corresponding process rates, including both biological and
technical limitations. This shows that it remains challenging to use diversity and other community metrics
as predictors for process rates, even in a system where the causality chain is known. Following Houlahan
et al. (2017), this highlights the fact that our understanding of when and where community metrics are
important for nitrogen fixation is limited. While we provide a for instance with this study, the point is
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general: Unless we can show that prior knowledge of community metrics informs our expectation of
process rates or ecosystem functioning, the link remains elusive and speculative.
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