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Background: Technological advances in sequencing, assembly and segregation of resulting contigs into

species-specific bins has enabled the reconstruction of individual genomes from environmental

metagenomic data sets. Though a powerful technique, it is shadowed by an inability to truly determine

whether assembly and binning techniques are accurate, specific, and sensitive due to a lack of complete

reference genome sequences against which to check the data. Errors in genome reconstruction, such as

missing or mis-attributed activities, can have a detrimental effect on downstream metabolic and

ecological modeling, and thus it is important to assess the accuracy of the process.

Methods: We compared genomes reconstructed from metagenomic data to complete genome

sequences of 10 organisms isolated from the same community to identify regions not captured by typical

binning techniques. The nucleotide content, as %G+C and tetranucleotide frequencies, and sequence

redundancy within both the genome and across the metagenome were determined for both the captured

and uncaptured regions. This direct comparison allowed us to evaluate the efficacy of nucleotide

composition and coverage profiles as elements of binning protocols and look for biases in sequence

characteristics and gene content in regions missing from the reconstructions.

Results: We found that repeated sequences were frequently missed in the reconstruction process as

were short sequences with variant nucleotide composition. Genes encoded on the missing regions were

strongly biased towards ribosomal RNAs, transfer RNAs, mobile element functions and genes of unknown

function.

Conclusions: Our observation of increased mis-binning of short regions, especially those with variant

nucleotide content, and repeated regions implies that factors which affect assembly efficiency also

impact binning accuracy. To a large extent, mis-binned regions appear to derive from mobile elements.

Our results support genome reconstruction as a robust process, and suggest that reconstructions

determined to be >90% complete are likely to effectively represent organismal function.
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12 ABSTRACT

13 Background: Technological advances in sequencing, assembly and segregation of resulting 

14 contigs into species-specific bins has enabled the reconstruction of individual genomes from 

15 environmental metagenomic data sets. Though a powerful technique, it is shadowed by an 

16 inability to truly determine whether assembly and binning techniques are accurate, specific, and 

17 sensitive due to a lack of complete reference genome sequences against which to check the data.  

18 Errors in genome reconstruction, such as missing or mis-attributed activities, can have a 

19 detrimental effect on downstream metabolic and ecological modeling, and thus it is important to 

20 assess the accuracy of the process. 

21 Methods: We compared genomes reconstructed from metagenomic data to complete genome 

22 sequences of 10 organisms isolated from the same community to identify regions not captured by 

23 typical binning techniques. The nucleotide content, as %G+C and tetranucleotide frequencies, 

24 and sequence redundancy within both the genome and across the metagenome were determined 

25 for both the captured and uncaptured regions. This direct comparison allowed us to evaluate the 

26 efficacy of nucleotide composition and coverage profiles as elements of binning protocols and 

27 look for biases in sequence characteristics and gene content in regions missing from the 

28 reconstructions.

29 Results: We found that repeated sequences were frequently missed in the reconstruction process 

30 as were short sequences with variant nucleotide composition. Genes encoded on the missing 

31 regions were strongly biased towards ribosomal RNAs, transfer RNAs, mobile element functions 

32 and genes of unknown function. 

33 Discussion: Our observation of increased mis-binning of short regions, especially those with 

34 variant nucleotide content, and repeated regions implies that factors which affect assembly 
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35 efficiency also impact binning accuracy. To a large extent, mis-binned regions appear to derive 

36 from mobile elements. Our results support genome reconstruction as a robust process, and 

37 suggest that reconstructions determined to be >90% complete are likely to effectively represent 

38 organismal function.

39
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40 INTRODUCTION

41 High-throughput sequencing has revolutionized microbiology by allowing investigation of 

42 natural communities in a culture-independent manner (Long et al. 2016; White et al. 2016b; 

43 Zhou et al. 2015). While general characterizations of organismal diversity through sequencing 

44 marker gene amplicons (e.g., 16S rRNA, 18S rRNA, ITS) or direct functional gene counts from 

45 metagenomic data are useful, one goal of metagenomics has always been to obtain complete 

46 genome sequences of organisms from environmental samples. Having a complete genome 

47 sequence provides a platform for understanding the range of metabolic roles an organism can 

48 play within a community and the interactions it has with other organisms, and can provide 

49 specific context for interpretation of transcriptomics and proteomics. 8Genome reconstruction9 

50 (also referred to as 8genomes from metagenomes9), the process of  segregating either sequence 

51 reads or assembled contigs and scaffolds into organism-specific 8bins9, has benefitted from 

52 continuing advances in sequencing technologies, sequence assembly algorithms and segregation 

53 methods (Sangwan et al. 2016), from early successes assembling genomes from a simple 

54 community (Tyson et al. 2004) to more recent studies reconstructing many organisms from 

55 complex environments (Alneberg et al. 2014; Anantharaman et al. 2016; Baker et al. 2015; 

56 Brown et al. 2015; Graham et al. 2016; Kang et al. 2015; Li et al. 2015; Li et al. 2016; Nobu et 

57 al. 2015; Wu et al. 2016). One shortcoming of this approach is that while it is generally possible 

58 to assemble metagenomic data and segregate it into bins, determining the correctness and 

59 completeness of the final product has been impossible in almost all cases because of the lack of 

60 appropriate reference genomes for environmental samples. Genome reconstruction techniques 

61 have been tested using synthetic communities of cultured organisms, but such communities do 
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62 not exhibit the type and amount of variability found in natural communities, and thus cannot 

63 replicate the complications this variability causes.

64  Unicyanobacterial consortia (UCC) were developed as models systems to investigate the 

65 mechanisms of metabolic interaction between cyanobacteria and heterotrophs. These systems 

66 provide an opportunity to compare reconstructed genomes against a robust reference genome set 

67 and learn about potential gaps and pitfalls of current reconstruction processes. Two consortia, 

68 each containing a single unique cyanobacterial species and sharing an additional 18 heterotrophic 

69 species, were derived from a natural mat community (Cole et al. 2014). The communities have 

70 been sequenced to near-completeness, and genome reconstruction has been performed (Nelson et 

71 al. 2015), revealing the presence and maintenance of microdiversity within the consortia. In 

72 parallel, axenic isolates of 10 of the member species have also been sequenced (Nelson et al. 

73 2015; Romine et al. 2017). This paired genomic and metagenomic dataset allows direct 

74 comparison of reconstructed genomes from diverse organisms against 8groundtruth9 datasets. 

75 Previously, we have shown that common aspects of the genome reconstruction process 

76 (assembly from a complex sequence space and segregation of contigs based on read depth 

77 profiles and sequence composition) to be both specific and sensitive (Nelson et al. 2015). Here 

78 we focus on identification of regions that are missed or mis-binned by current techniques, 

79 examine why the current processes fail, and suggest factors that should be considered in 

80 evaluation of reconstruction data or in development of new techniques.

81 We have investigated the nature of genomic regions that under current standard genome 

82 reconstruction techniques are not recovered (herein referred to as missed detection regions, or 

83 MDRs) to evaluate how these regions differ from recovered regions (correct detection regions, 

84 or CDRs) and to what extent the missing genomic information might impact conclusions drawn 
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85 from analysis of reconstructed genomes. Two common elements of current sequence segregation 

86 protocols are analysis of sequence composition and comparison of coverage profiles between 

87 samples, so we examined the nucleotide content of MDRs vs CDRs as both %G+C and 

88 tetranucleotide content, and the multiplicity of sequence information both within the individual 

89 genome (i.e., repetitiveness within the genome) and across the entire metagenomic data set. To 

90 determine the impact on downstream functional analyses, the gene content was examined for 

91 biases in the cellular roles of genes found within MDRs and CDRs. 

92

93 MATERIALS & METHODS

94 Sequence data sets.

95 The datasets analysed during the current study are available in the Genbank repository. 

96 Porphyrobacter sp. HL-46 GCA_000744895 and GCA_001314525; Halomonas sp. HL-48 

97 GCA_000686925 and GCA_001314875; Halomonas sp. HL-93 GCA_900086985 and 

98 GCA_001314745; Algoriphagus marincola HL-49 GCA_000526355 and GCA_001314815; 

99 Aliidiomarina calidilacus HL-53 GCA_001458075 and GCA_001314555; Marinobacter 

100 excellens HL-55 GCA_000934705 and GCA_001314845; Marinobacter sp. HL-58 

101 GCA_000686085 and GCA_001314605; Roseicbaca calidilacus HL-91 GCA_001517585 and 

102 GCA_001314645; Salinivirga fredricksonii HL-109 GCA_900094735 and GCA_001314785; 

103 Erythrobacter sp. HL-111 GCA_900105095 and GCA_001314765 (Nelson et al. 2015; Romine 

104 et al. 2017).

105

106 Compositional analysis.
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107 %G+C calculation and tetranucleotide frequency distance chi squared analysis was performed 

108 using a custom perl scripts. Briefly, for a given genome region, tetranucleotide frequencies were 

109 calculated across all six reading frames using the EMBOSS (Rice et al. 2000) compseq tool and 

110 the chi squared statistic calculated using the frequencies calculated for the whole genome as the 

111 expected values. To estimate P-values for each analysis, one thousand random coordinate sets 

112 yielding the same number and length of fragments as in each genome9s CDR or MDR set were 

113 generated and evaluated. For %G+C analysis, absolute distances were calculated between the 

114 %G+C value for the region of interest (i.e., MDR or CDR) and the genome average. For 

115 significance determination, only regions >2kb were considered, since that length was the lower 

116 size limit considered for CDR inclusion (Nelson et al. 2015).

117 Intragenome redundancy

118 To calculate intragenome sequence redundancy, each genome sequence was searched against 

119 itself using nucmer v3.0 (Kurtz et al. 2004) with the maxmatch option, and a per-base 

120 redundancy was calculated. Average redundancy values for the entire genome, each CDR and 

121 each MDR were calculated from the per-base data, and the arithmetic distance between these 

122 averages determined. One thousand sets of random coordinate regions of the same number and 

123 lengths as in each set were analyzed to determine confidence.

124 Metagenome redundancy

125 To determine the redundancy of sequences within the metagenomic data set, metagenome reads 

126 were searched against genome sequences using bowtie2 (Langmead & Salzberg 2012). Per base 

127 coverage was calculated using the samtools (Li et al. 2009) depth command, and average 

128 coverage values for MDRs and CDRs were determined. One thousand sets of random coordinate 

129 regions of the same number and lengths as in each set were analyzed to determine confidence.
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130 Gene function analysis

131 Complete genome sequences were annotated by the IMG pipeline (Huntemann et al. 2015), 

132 which included COG assignment based on the December 2014 release of the 2003-2014 COGs 

133 (Galperin et al. 2015). COGs assigned to more than one functional category were counted for 

134 each assigned category. Genes not assigned to a COG category were classified as 8unassigned9. 

135 Ribosomal RNA (rRNA) gene features were identified by the IMG pipeline (Markowitz et al. 

136 2014); transfer RNAs (tRNA) were identified with tRNAscan-SE (Lowe & Eddy 1997); other 

137 non-coding RNAs (ncRNA) were identified using the Rfam database v11.0 (Burge et al. 2013) 

138 and infeRNAl v1.1 software (Nawrocki & Eddy 2013). For each gene set, the category counts 

139 were normalized to the total feature counts. Principle components analysis was performed and 

140 biplot of gene categories was generated using R package bpca v.1.2-2 (http://cran.r-

141 project.org/web/packages/bpca/).

142

143 RESULTS AND DISCUSSION

144 The genomic dataset used in this study was collected from two unicyanobacterial consortia and 

145 ten organisms isolated therefrom, and consisted of draft or full genome sequence for the ten 

146 isolates and cognate genome reconstructions from consortial metagenomic sequence (Nelson et 

147 al. 2015; Romine et al. 2017). The abundances of the organisms within the consortia cultures 

148 differed, resulting in sequence coverage values for the reconstructed genomes ranging from ~4-

149 650X. Comparison of the reconstructed genomes to the isolate genomes showed recovery of 

150 90%+ of sequence for genomes with at least 10X coverage, with one exception, Halomonas sp. 

151 HL-93 (Table 1). Co-linear sequence alignments indicated there were no assembly errors (data 

152 not shown). Based on the genome/reconstruction comparisons, MDRs for each genome were 
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153 identified. Porphyrobacter HL-46 had the lowest metagenome coverage (3.6X). Its reconstructed 

154 genome comprised hundreds of short contigs and was determined to be ~40% complete. Thus, 

155 the MDRs for HL-46 are assumed to be primarily caused by the random sampling of the shotgun 

156 sequencing methodology and not by any inherent content biases, allowing the HL-46 analyses to 

157 serve as a negative control.

158

159 Nucleotide composition of MDRs frequently differs from the genome average

160 Bacteria and Archaea have evolved to have a fairly consistent %G+C across their genome 

161 (Karlin et al. 1998), so much so that it has been proposed as a metric of classification at higher 

162 taxonomic levels (Wayne et al. 1987). Because of this, %G+C serves as a primary screen for 

163 segregation of contigs from metagenomic assembly. It is not uncommon, however, to observe 

164 regions within a genome that differ significantly from the genome average (Bohlin et al. 2010). 

165 This variation can be the result of selective pressure for structural properties in non-coding 

166 genes, for instance ribosomal RNAs and other functional RNAs have been shown to vary in 

167 nucleotide composition in correlation with optimal growth temperature (Galtier & Lobry 1997b). 

168 In other cases, variant %G+C indicates a region which has been acquired recently (in 

169 evolutionary time) from a non-related source (horizontal gene transfer) (Wixon 2001). To 

170 investigate whether variant G+C confounds genome reconstruction, we compared the %G+C of 

171 MDRs to that of CDRs and the complete genome. 

172 The genomes in this study had a range of %G+C values, from 42% (A. marincola HL-49) 

173 to 68% (Erythrobacteraceae bacterium HL-111), with most skewing toward the higher values 

174 (Table 2).We determined the %G+C for each CDR and MDR g200 bp in length and calculated 

175 distance from the %G+C for the complete genome. For genomes with more than one genomic 
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176 element, each molecule was considered separately since extrachromosomal elements may have 

177 distinct nucleotide composition. The %G+C for the MDRs differed significantly (pf0.005) from 

178 the cognate genome average for 7 of the genomes, while the CDRs generally reflected the 

179 genome average (Table 2). The average %G+C for MDRs of HL-49 was significantly higher 

180 than the genome average (42%), while the %G+C averages for MDRs from HL-48 and HL-111 

181 were significantly lower than the genomes9 averages (59% and 68% respectively). Other 

182 genomes (HL-53 (47%), HL-55 (56%), HL-109 (64%)) had some MDRs with %G+C higher 

183 than the genome average and some MDRs with lower values (Fig. 1). Extrachromosomal 

184 elements analyzed did not display a significant difference in the %G+C of their MDRs from the 

185 molecule average. As expected, the distance values for the MDRs and CDRs of HL-46 showed 

186 no significant difference from the genome average (Table 2), however, HL-469s CDRs and 

187 MDRs did not display identical %G+C profiles (Fig. 1). There was a slight bias toward higher 

188 %G+C for the MDRs and lower %G+C in the CDRs, which reflect a bias in the assembly 

189 algorithm.

190 Tetranucleotide frequency (TNF) has been shown to be capable of distinguishing higher 

191 taxonomic classifications, up to species (Dick et al. 2009; Teeling et al. 2004). This resolving 

192 power has been leveraged in contig segregation protocols (Albertsen et al. 2013; Imelfort et al. 

193 2014; Tyson et al. 2004; Wu et al. 2016). To investigate whether genomic regions with variant 

194 TNF are poorly recovered in genome reconstruction, we compared the TNFs of CDRs and 

195 MDRs to that of the cognate complete genome using chi-squared analysis. In most cases, the chi-

196 squared statistic was nearly an order of magnitude higher for MDRs versus CDRs, and the 

197 differences were significant for all chromosomal sequences save HL-46, HL-109, HL-93 and the 

198 small chromosome of HL-91 (Table 3). 
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199 One factor that could affect nucleotide composition effects on binning is the length of the 

200 region with variant composition versus the length of the contig. If the variant region comprises 

201 most of the contig being evaluated, the difference from the genome average will be pronounced, 

202 whereas if the variant region is only a small percentage of the contig, the signal will be muted. 

203 An examination of CDR/MDR length versus compositional variance (Fig. S1) revealed a strong, 

204 significant negative correlation between contig length and TNF distance for CDRs (R2=0.64, p-

205 value<2.2x10-16) and a weaker relationship for MDRs (R2=0.14, p-value=4.9x10-12). Taken 

206 together, the %G+C and TNF results show that genomic regions with variant nucleotide 

207 composition are more likely to be missed during genome reconstruction, and this effect is 

208 stronger for short contigs. The most effective way to overcome this problem is to enhance 

209 assembly such that regions with unusual content are included in significantly longer contigs, or, 

210 through clone linkage, identify strong, unique connections to binned contigs.

211

212 Repeated sequences segregate aberrantly

213 Sequence coverage profiles are frequently effective in discriminating contigs from different 

214 organisms (Tyson et al. 2004). Samples taken under different conditions or at different times 

215 capture community states which have similar organismal composition, but differing relative 

216 abundances. This difference translates to distinct coverage profiles for assembled contigs, and 

217 thus contigs with similar coverage profiles are assumed to originate from the same organism. In 

218 this data set, for example, we compared two cultures with near-identical heterotroph species 

219 composition, but different cyanobacteria acting as a conduit for energy and carbon (Cole et al. 

220 2014; Nelson et al. 2015). Other studies compared samples taken at different times (Albertsen et 

221 al. 2013). Differential coverage analysis, however, has the drawback that duplicated regions of a 
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222 genome will yield higher coverage values than the genome average and are likely to be either 

223 excluded from any bin, or binned improperly. This effect is compounded by the fact that 

224 assemblers (especially standard de Bruijn graph assemblers using short-read data) are also 

225 confounded by repeated sequences and tend to terminate contigs when repeats are encountered 

226 and/or assemble repeats into separate contigs (Pop 2009). Thus, unlike nucleotide composition 

227 variance, any high-coverage signal is unlikely to be diluted by incorporation into a larger contig.

228 To examine the impact of sequence duplication on genome reconstruction, we determined 

229 the multiplicity of sequence information across CDRs and MDRs, measured by sequence 

230 coverage, and compared those values to the genome average. Correspondence of repeated 

231 regions and MDRs was strong (Table 4, Fig 2, Fig S2). In HL-111, all MDRs save one were 

232 present in at least two copies (Fig 2). For all reconstructions, save HL-46, the MDRs had a 

233 significantly different multiplicity than the genome average (p f0.005), while the CDRs were 

234 essentially the same as the genome average (Table 4). One exception was a plasmid from HL-

235 109, where the CDRs showed a significantly lower multiplicity than the average for the plasmid 

236 (1.0 vs 1.28, p=0.002) (Fig S2). This appears to be caused by the plasmid containing a high 

237 number of repeated regions which were not recovered during binning. 

238 Another phenomenon that can affect contig coverage in metagenomic assembly is 

239 multiple organisms sharing identical regions of DNA. Some regions are highly conserved 

240 between related species, an example being the ribosomal RNA operon, which is known to 

241 confound assemblers and segregation strategies (Ghurye et al. 2016). Alternatively, mobile 

242 elements such as plasmids or transposons can have a broad host range and invade and inhabit 

243 closely or even distantly related organisms (Frost et al. 2005). Such regions, even if not repeated 

244 within a genome, will exhibit anomalous coverage and thus could be either excluded or mis-
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245 binned. We examined the metagenomic read coverage depth to determine if MDRs had 

246 anomalous profiles relative to the whole genome and the CDRs. For most reconstructions, the 

247 MDRs9 coverage differed from the genome average and that of the CDRs (Table 5, Fig 2, Fig 

248 S2). Only HL-46 and HL-49 did not have significant differences. Most MDRs displayed higher 

249 or equivalent coverage values, however, several MDRs in HL-48, and the two small plasmids 

250 associated with HL-91 showed lower metagenomic coverage values (Fig S2). A likely 

251 explanation for this is the presence in the consortia of sub-populations of these organisms with 

252 either sub-species level variation caused by insertion/deletion events or alternate plasmid 

253 content.

254

255 Functional assessment of MDR genes

256 To determine the extent to which regions missing from reconstructions might affect downstream 

257 metabolic or functional analyses and predictions for organisms and communities, we examined 

258 the gene content of the MDRs and the functional roles of those genes. COG categorization was 

259 used as a basis for comparison because of its ability to identify, in particular, genes associated 

260 with mobile elements such as plasmids, phage and insertion sequences. In addition, we evaluated 

261 the distribution of non-coding RNA genes since some are known to be repeated within genomes 

262 (multiple rRNA operons, for example), and others (tRNAs) are commonly associated with 

263 mobile elements (Hacker & Kaper 2000). 

264 For all the reconstructions, the gene content of the MDRs differed from that of the CDRs 

265 and complete genomes. Functional analysis of gene sequences shows that this difference was 

266 largely driven by genes encoding mobile element functions (COG category X) and RNA genes 

267 (Figure 3). The mobile element genes in the MDR regions were predominantly transposases 
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268 with some contribution from bacteriophage and plasmid genes (HL-91; HL-93). Most of the 

269 identified rRNA genes fell within MDRs, with only HL-48 and HL-53 each having one rRNA 

270 contained in a CDR. In addition, the MDRs, including the two entire plasmids from HL-91 

271 which were not binned, contained a higher percentage of genes that were not assigned to a COG 

272 category.

273

274 What9s missing from reconstructed genomes?

275 Analysis of regions that were not recovered from genome reconstruction (MDRs) showed both 

276 nucleotide compositional variance and intragenome repetitiveness. The %G+C and 

277 tetranucleotide frequencies of MDRs tended to differ from the genome average (Tables 2 and 3), 

278 and the sequence coverage differed. This met expectations since, in general, binning tools are 

279 designed around the assumption that sequences with similar properties belong together, thus any 

280 genome region that varies significantly from the genome average is likely be mis-binned or 

281 discarded when considered separately. Regions with atypical nucleotide content have been 

282 observed to contain genes upon which selective pressures are acting on nucleic acid structure, 

283 such as ribosomal RNAs and tRNAs (Galtier & Lobry 1997a; Hurst & Merchant 2001; Schattner 

284 2002), and exogenously introduced segments such as mobile elements (Daubin et al. 2003; 

285 Garcia-Vallve et al. 2000). It is significant that many of the MDRs displayed lower %G+C than 

286 the genome average, since it has been observed that laterally acquired regions tend to have lower 

287 %G+C than their hosts (Daubin et al. 2003), while phage and insertion sequences tend to have 

288 A+T-enriched genomes (Rocha & Danchin 2002). Notably, many genome regions with variant 

289 nucleotide composition were incorporated into longer contigs by the assembler, masking the 

290 variance and allowing correct binning. Conversely, the assembler collapsed repeated region 
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291 sequences into single contigs, and thus they were mis-binned due to the inflated sequence 

292 coverage values. Often repeated sequences displayed variant nucleotide composition, but the 

293 reciprocal was less frequent, indicating that repetitiveness is the stronger driver of mis-binning. 

294 These results demonstrate that assembly efficiency is an important determining factor for correct 

295 binning, or conversely, any factor that results in shorter assemblies will result in poorer recovery 

296 of anomalous regions. Thus, it is advisable to include replication and positive controls in 

297 metagenomic sequencing protocols, particularly for highly diverse communities such as soils and 

298 riverbed sediments, to allow evaluation of assembly efficiency and accuracy.

299 Repeated regions identified in this study appeared to largely consist of insertion elements 

300 based on functional analysis and their relatively short size (1-2 kb). Mis-binning of these regions 

301 is unlikely to meaningfully affect functional predictions for a reconstructed genome. Their 

302 presence in a genome is more likely to affect metabolic reconstruction analysis by reducing 

303 assembly efficiency, resulting in more, shorter contigs and increasing the chance that these 

304 shorter contigs are mis-binned. Technological advances increasing read length beyond 2000 nt 

305 will increase contig lengths, binning accuracy, and the likelihood of yielding closed genomes 

306 from environmental samples (White et al. 2016a). 

307 MDRs were generally observed to be short, with a median length of less than 5 kb (Table 

308 1) and containing only a handful of genes. Thus even genome reconstructions with a large 

309 number of gaps (indicating a large number of MDRs) may be missing only a small percentage of 

310 their genomes. The conserved single-copy gene (CSCG) estimations for completeness appear for 

311 all intents and purposes to be a reasonable indication of how much information is absent (Nelson 

312 et al. 2015). One caveat to this conclusion, however, is that extrachromosomal elements, 

313 plasmids and phages (integrated or otherwise) typically do not carry CSCG markers, and thus are 
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314 essentially invisible in such analyses. The longer MDRs observed in our analysis appear to 

315 comprise integrated plasmids or phage, and thus any gap in a reconstruction could represent up 

316 to 50 kb (or more) of genetic material. Importantly, these represent introduced genetic material, 

317 which, while likely conveying a beneficial trait, are unlikely to carry functions that are integral to 

318 host metabolic function.

319

320 CONCLUSIONS

321 This analysis indicates that reconstructed genomes estimated to be near-complete can be 

322 assumed to contain nearly all genes important to metabolic reconstruction. The majority of 

323 identifiable genes present on MDRs appear to be either highly conserved, non-coding genes that 

324 can be assumed to be present (such as the rRNA genes and tRNA genes) or are associated with 

325 mobile genetic elements. While many of these genes may be not be directly related to cellular 

326 metabolism (transposases, toxin/antitoxin systems, phage and plasmid functions), it should be 

327 noted that entire extrachromosomal elements may be missed by the binning process due to either 

328 alternate nucleotide composition, a higher number of copies per cell than the genome, or 

329 occupancy in only a subset of the population (such as the two molecules in HL-109). These 

330 elements frequently carry genes that alter the physiology or resistance of the host organism. For 

331 example, HL-109 and HL-111 have MDRs that includes genes involved in glycan biosynthesis, 

332 suggesting alterations to the cell wall, while HL-91 has picked up a multidrug efflux transporter.  

333 As such, reconstructed genomes can be considered reliable foundations for metabolic 

334 reconstruction, but should not be assumed to be comprehensive for the function of the organism.

335
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Reconstructed genome coverage and completeness
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1 Table 1 Reconstructed genome coverage and completeness

Genome Molecule MG Cova %CDRb MDRsc  MDR lengthÿ MDR range

HL-46 EI34DRAFT_7210 3.9x 40% 284 4742 1007..42318

EI34DRAFT_6181d 3.9x 25% 7 18136 1108..49149

HL-48 CY41DRAFT 69x 95% 29 1892 330..53737

HL-49 K302DRAFT 9.7x 91% 89 3234 209..25366

HL-53 Ga0003345 113x 98% 15 1564 952..6133

HL-55 K417DRAFT 11x 95% 34 3574 417..45387

HL-58 CD01DRAFT 128x 99% 13 1124 959..12996

HL-91 Ga0058931_14 226x 97% 20 3129 135..11341

Ga0058931_11d 227x 97% 6 2188 914..4391

Ga0058931_13d 158x 0% 1 113349 113349

Ga0058931_12d 160x 0% 1 97917 97917

HL-93 Ga0071314 11x 85% 98 3605 232..78515

HL-109 Ga0071312_11 612x 87% 20 1835 204..63971

Ga0071312_12 669x 92% 28 1285 506..52589

Ga0071312_13d 615x 95% 3 6053 1908..10088

HL-111 Ga0071316 18x 95% 39 1589 501..20407

2 a Metagenomic read coverage

3 b Correct detection region. This is direct measure of genome sequence recovery.

4 c Missed detection region. Count of regions not recovered in reconstructed genome.

5 d Predicted to be an extrachromosomal element
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%G+C analysis
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1 Table 2. %G+C analysis

2

3 a Bold values indicates significant results (P<0.005).

4 b Not determined because the entire molecule was missing from the reconstructed genome.
5

Genome CDRs MDRs

molecule mean mean distance p-value mean distance p-value

HL-46 EI34DRAFT_7210 64.42 63.96 1.55±1.25 0.992 65.12 1.61±1.56 0.327

HL-46 EI34DRAFT_6181 59.94 60.78 1.97±1.41 0.840 60.97 1.92±0.75 0.595

HL-48 CY41DRAFT 58.98 59.00 1.01±1.13 0.991 45.76 13.22±19.69 <0.001a

HL-49 K302DRAFT 42.22 42.24 1.15±1.27 0.465 42.73 2.44±2.38 0.002

HL-53 Ga0003345 47.50 46.95 0.96±1.4 0.027 48.83 3.7±0.82 <0.001

HL-55 K417DRAFT 56.26 55.87 1.42±1.41 0.032 55.44 3±1.59 0.003

HL-58 CD01DRAFT 57.56 56.83 1.69±2.12 0.033 54.96 3.85±0.52 0.034

HL-91 Ga0058931_11 61.75 62.05 0.31±0.23 0.954 60.39 2.79±2.02 0.063

HL-91 Ga0058931_12 60.37 ndb nd nd nd nd nd

HL-91 Ga0058931_13 61.77 nd nd nd nd nd nd

HL-91 Ga0058931_14 61.84 60.99 1.33±1.6 0.019 59.11 3.52±1.96 0.001

HL-93 Ga0071314_11 55.88 56.75 1.75±1.59 0.996 56.08 3.6±2.57 0.001

HL-109 Ga0071312_11 64.09 64.55 1.12±1.05 0.688 60.96 3.28±2.85 0.062

HL-109 Ga0071312_12 64.07 63.89 0.92±1.09 0.172 63.11 1.94±1.43 0.589

HL-109 Ga0071312_13 65.34 65.47 0.13±0.07 0.861 61.68 3.66±2.24 0.011

HL-111 Ga0071316_11 68.12 68.20 0.99±1.05 0.485 64.26 3.86±1.39 <0.001
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Tetranucleotide frequency analysis
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1 Table 3. Tetranucleotide frequency analysis.

CDR MDR

molecule mean sd p-value mean sd p-value

HL-46 EI34DRAFT_7210 0.0816 0.0342 0.979 0.0699 0.0546 0.874

HL-46 EI34DRAFT_6181 0.0891 0.0621 0.63 0.0561 0.0462 0.998

HL-48 CY41DRAFT 0.0179 0.0446 0.303 0.1989 0.074 0.006

HL-49 K302DRAFT 0.0254 0.0291 0.616 0.1251 0.1741 <0.001a

HL-53 Ga0003345 0.0175 0.0331 0 0.1833 0.0344 <0.001

HL-55 K417DRAFT 0.0268 0.0444 0.08 0.157 0.1956 0.001

HL-58 CD01DRAFT 0.0481 0.0874 0.01 0.2077 0.0717 0.004

HL-91 Ga0058931_11 0.0181 0.020 0.253 0.1731 0.0968 0.014

HL-91 Ga0058931_12 ndb nd nd nd nd nd

HL-91 Ga0058931_13 nd nd nd nd nd nd

HL-91 Ga0058931_14 0.0392 0.049 0.001 0.2078 0.1391 <0.001

HL-93 Ga0071314_11 0.0433 0.0367 0.994 0.1124 0.0761 0.042

HL-109 Ga0071312_11 0.0175 0.0356 0.315 0.1719 0.125 0.053

HL-109 Ga0071312_12 0.0122 0.019 0.09 0.1244 0.0679 0.311

HL-109 Ga0071312_13 0.0013 0.0004 0.824 0.226 0.1933 0.009

HL-111 Ga0071316_11 0.0198 0.034 0.373 0.2484 0.0753 <0.001

2 a Bold text indicates significant result

3 b Not determined because the entire molecule was missing from the reconstructed genome.

4
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Genomic redundancy
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1 Table 4. Genomic redundancy.

Genome CDR MDR

molecule mean mean distance p-value mean distance p-value

HL-46 EI34DRAFT_7210 1.05 1.00 0.05±0 0.937 1.07 0.05±0.02 1.000

HL-46 EI34DRAFT_6181 1.00 1.00 0.01±0.03 1.000 1.00 0.01±0.04 1.000

HL-48 CY41DRAFT 1.05 1.01 0.05±0.08 0.994 1.63 1.35±1.06 <0.001a

HL-49 K302DRAFT 1.02 1.01 0.02±0.03 1.000 1.12 0.11±0.25 <0.001

HL-53 Ga0003345 1.02 1.00 0.02±0 0.753 2.18 1.07±0.9 <0.001

HL-55 K417DRAFT 1.03 1.00 0.03±0.02 1.000 1.52 1.03±1.64 <0.001

HL-58 CD01DRAFT 1.01 1.01 0.05±0.19 1.000 1.11 0.06±0.1 0.024

HL-91 Ga0058931_11 1.12 1.02 0.1±0.01 0.775 3.39 2.85±2.13 <0.001

HL-91 Ga0058931_12 1.22 ndb nd nd nd nd nd

HL-91 Ga0058931_13 1.19 nd nd nd nd nd nd

HL-91 Ga0058931_14 1.05 1.00 0.04±0.01 0.679 2.54 1.77±1.51 <0.001

HL-93 Ga0071314_11 1.04 1.01 0.05±0.1 1.000 1.21 0.28±0.58 0.004

HL-109 Ga0071312_11 1.37 1.02 0.34±0.04 0.627 3.74 4.17±3.21 <0.001

HL-109 Ga0071312_12 1.23 1.02 0.2±0.05 0.895 3.84 4.6±3.61 <0.001

HL-109 Ga0071312_13 1.28 1.00 0.28±0 0.002 6.72 7±4.29 <0.001

HL-111 Ga0071316_11 1.52 1.04 0.45±0.09 0.997 10.75 15.14±8.29 <0.001

2 a Bold text indicates significant result

3 b Not determined because the entire molecule was missing from the reconstructed genome.
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Metagenomic redundancy
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1 Table 5. Metagenomic redundancy.

Genome CDR MDR

molecule mean mean distance p-value mean distance p-value

HL-46 EI34DRAFT_7210 2.76 2.76 0.26±0.15 1.000 2.76 0.43±0.31 1.000

HL-46 EI34DRAFT_6181 5.98 4.37 2.95±2.34 1.000 7.09 4.01±13.35 1.000

HL-48 CY41DRAFT 72.40 69.25 3.65±2.45 1.000 129.42 100.97±153.33 0.001a

HL-49 K302DRAFT 8.97 8.75 0.51±0.58 1.000 11.30 4.16±17.52 0.049

HL-53 Ga0003345 441.81 440.04 24.51±18.21 1.000 564.04 115.56±59.71 <0.001

HL-55 K417DRAFT 16.76 12.12 7.06±10.45 0.997 100.30 110.35±333.81 0.001

HL-58 CD01DRAFT 128.28 127.85 9.1±15.71 1.000 180.14 60.44±27.54 <0.001

HL-91 Ga0058931_11 231.39 228.98 3.64±2.25 0.958 287.47 91.27±97.44 0.005

HL-91 Ga0058931_12 163.24 ndb nd nd nd nd nd

HL-91 Ga0058931_13 168.27 nd nd nd nd nd nd

HL-91 Ga0058931_14 227.56 226.41 8.18±6.59 1.000 265.65 97.82±117.47 0.002

HL-93 Ga0071314_11 50.87 48.44 4.04±2.92 1.000 62.13 16.16±35.87 0.003

HL-109 Ga0071312_11 3103.11 3077.90 97.47±72.15 1.000 3275.80 323.24±240.86 0.430

HL-109 Ga0071312_12 2821.18 2815.97 113.08±78.18 1.000 2888.40 352.81±436.28 1.000

HL-109 Ga0071312_13 2853.84 2898.44 47.56±9.73 0.192 1971.66 756.83±256.91 0.001

HL-111 Ga0071316_11 90.14 87.59 3.98±4.31 1.000 138.93 38.42±104.87 0.019

2 a Bold text indicates significant result

3 b Not determined because the entire molecule was missing from the reconstructed genome.
4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2953v1 | CC BY 4.0 Open Access | rec: 28 Apr 2017, publ: 28 Apr 2017



Figure 1

Distributions of %G+C for MDR and CDR genomic regions.

G+C composition was determined for individual regions identified as CDRs or MDRs. Bar

height represents the percentage of regions in the category. Black bars, CDRs; white bars,

MDRs.
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Figure 2

Analysis of HL-111 genome.

Ring 1 (outermost, black) 3 genome sequence; ring 2 (grey bars) 3 missed detection regions

(MDRs); ring 3 (teal) 3 tetranucleotide frequency (TNF) distance Ç2 values; ring 4 (orange) -

%G+C; ring 5 (blue) 3 intragenome redundancy; ring 6 (magenta) 3 metagenome

redundancy. Values were calculated across 2000 nt windows with a step size of 1000 nt. For

TNF, Ç2 was calculated for the windows using the whole molecule frequencies as the

expected. Data for other genomes analyzed is presented in Figure S1. Circlular plots were

generated using Circos v0.69.3 ( Krzywinski, Schein et al. 2009 ) .
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Figure 3

Functional categorization of genes present on MDRs.

The gene features of each genome region were assigned to functional COG categories or as

non-coding genes (rRNA; tRNA; ncRNA). Organisms9 gene sets were compared using Principal

Component Analysis. Organisms are represented by colors (HL-46, yellow; HL-48, purple; HL-

49, blue; HL-53, light blue; HL-55, gray; HL-58, orange; HL-91, black; HL-93, pink; HL-109,

red; HL-111, green). The genome region categories are represented by shapes (whole isolate

genomes, circles; CDRs, squares; MDRs, triangles; extrachromosomal elements, diamonds).

COG categories: A - RNA processing and modification; B - Chromatic structure and dynamics;

C - Energy production and conversion; D - Cell cycle control, cell division, chromosome

partitioning; E - Amino acid transport and metabolism; F - Nucleotide transport and

metabolism; G - Carbohydrate transport and metabolism; H - Coenzyme transport and

metabolism; I - Lipid transport and metabolism; J - Translation, ribosomal structure and

biogenesis; K - Transcription; L - DNA replication, recombination and repair; M - Cell

wall/membrane/envelope biogenesis; N - Cell motility; O - Post-translational modification,

protein turnover, chaperones; P - Inorganic ion transport and metabolism; Q - Secondary

metabolites biosynthesis, transport and catabolism; R - General function prediction; S -

Function unknown; T - Signal transduction mechanisms; U - Intracellular trafficking, secretion

and vesicular transport; V - Defense mechanisms; W - Extracellular structures; X - Mobilome,

transposons, phages; Y - Nuclear structure; Z - Cytoskeleton.
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