NOT PEER-REVIEWED

1	TaxaSE: Exploiting evolutionary conservation within 16S rDNA sequences for
2	enhanced taxonomic annotation
3 4 5 6 7	Ali Z. Ijaz ¹ , Thomas Jeffries ¹ , Christopher Quince ² , Kelly Hamonts ¹ , Brajesh K. Singh ^{1*}
8	1. Hawkesbury Institute for the Environment, Western Sydney University, Penrith,
9	NSW, Australia
10	2. Warwick Medical School, University of Warwick, Coventry, United Kingdom
11 12 13 14	*Corresponding Author: <u>b.singh@westernsydney.edu.au</u>
15 16 17 18	
19 20 21 22	
22 23 24 25	
26 27 28	
29 30 31 32 33	
34 35 36 37	
38 39 40	
41 42 43 44	
45	

46 Abstract

47 Amplicon based taxonomic analysis, which determines the presence of microbial taxa 48 in different environments on the basis of marker gene annotations, often uses 49 percentage identity as the main metric to determine sequence similarity against 50 databases. These data are then used to study the distribution of biodiversity as well as 51 response of microbial communities to environmental conditions. However the 16S 52 rRNA gene displays varying degrees of sequence conservation along its length and 53 percentage identity does not fully utilize this information. Additionally, the prevalent 54 usage of Operational Taxonomic Unit, or OTUs is not without its own issues and may 55 lead to a reduction in annotation capability of the system. Hence a novel approach to 56 taxonomic annotation is needed. Here we introduce a new taxonomic annotation 57 pipeline, TaxaSE, which utilizes Shannon entropy to quantify evolutionary 58 conservation within 16S rDNA sequences for enhanced taxonomic annotations. 59 Furthermore, the system is capable of annotation of individual sequences in order to 60 improve fine grain taxonomic annotations. We present both *in-silico* comparison of 61 the new similarity metric with percentage identity, as well as comparison with the 62 popular QIIME pipeline. The results demonstrate the new similarity metric achieves 63 better performance especially at lower taxa levels. Furthermore, the pipeline is able to 64 extract more fine grain taxonomic annotations compared to QIIME. These exhibit not 65 only the effectiveness of the new pipeline but also highlight the need to shift away 66 from both percentage identity and OTU based approaches for ecological projects. 67

68 Introduction

69 Ecogenomics study of microbes is a rapidly growing field of research that aims at

70 studying uncultured organisms via their nucleic acid sequences to determine the true

Peer Preprints

71	diversity of microbes, their function and distribution in a variety of environments
72	(Huson et al. 2009). Many environments have been the focus of ecogenomics studies,
73	including soil, the oral cavity, feces, and aquatic habitats (Riesenfeld et al. 2004). The
74	field has been driven by the advent of high throughput sequencing where genomic
75	information is acquired directly from the microbial communities in their natural
76	environment, with a drastic reduction in the cost of sequencing (Morgan &
77	Huttenhower 2014). As a consequence, bioinformatics pipelines aiming to
78	characterize microbial community composition, have been developed alongside
79	various 16S rDNA gene sequence databases, which serve as a reference set of
80	sequences for microbial taxonomic analysis (Santamaria et al. 2012).
81	Sequencing of 16S rDNA amplicons primarily uses short reads, representing a
82	specific region of a gene. Analysis requires a significant amount of time, typically a
83	day or more for taxonomic annotation depending on computational resources and size
84	of data. The underlying scoring scheme behind sequence similarity is currently
85	percentage identity, a simple distance based approach which does not fully utilize the
86	inherent variation in evolutionary conservation within 16S rDNA gene sequences, as
87	every base is considered equal with respect to matches and mismatches and positions
88	of these matches and mismatches are not essential (Fox et al. 1992; Stackebrandt &
89	Goebel 1994). This is important in the context that certain regions of the 16S rDNA
90	sequences are considerably variable while others are relatively conserved, and the
91	degree of variability is not constant (Chakravorty et al. 2007; Stackebrandt & Goebel
92	1994). This distance based approach does not truly estimates the evolutionary
93	distances between sequences as different nucleotide positions on sequences are
94	changing at different rates (Woese 1987). Furthermore, fine-scale taxonomic
95	annotation may not be resolved as well, especially at genus level (Fox et al. 1992). As

NOT PEER-REVIEWED

96	most taxonomic annotation pipelines, such as QIIME (Caporaso et al. 2010), MG-
97	RAST (Aziz et al. 2008) and MEGAN (Huson et al. 2007) are dependent on
98	percentage identity for sequence similarity measure, an improvement in this context
99	would result in better downstream analysis. These represent the limitations of 16S
100	rDNA gene sequence analysis primarily due to the selection of percentage identity as
101	the determinant of sequence similarity.
102	Furthermore, the majority of taxonomic annotation systems use operational
103	taxonomic unit (OTU), as the defining concept for determining community
104	composition (He et al. 2015). Considered as a <i>de facto</i> standard approach to analysis,
105	OTUs are formed by clustering sequences on the basis of a specified similarity
106	threshold such as 97% (Drancourt et al. 2000; Tikhonov et al. 2015). Sequence based
107	denoising approaches such as DADA2 (Callahan et al. 2016) and Deblur are also
108	applied. Taxonomic annotation is performed on the representative sequence of each
109	OTU, and all the sequences within the OTU are assigned the same taxonomy
110	regardless of small-scale differences in base composition between them (Nguyen et
111	al. 2016). This is a favorable technique as picking representative OTUs from a list of
112	sequences drastically cuts down on computational requirements for analysis, giving
113	the ability to quickly perform fast annotation, in addition to providing abundance
114	information of how many reads form a cluster (He et al. 2015; Methé et al. 2012) and,
115	therefore, allows for rapid analysis of large datasets (Nguyen et al. 2016).
116	However, OTU generation methods assume that all 16S rDNA genes evolve at
117	the same rate (Schloss & Westcott 2011). Furthermore, OTUs made from short read
118	sequences may not be as reliable in estimating species richness as the OTUs formed
119	from near full-length sequences, primarily due to the 16S rRNA gene exhibiting
120	different degrees of variability across its length and therefore region selection plays

NOT PEER-REVIEWED

121	an important role in accurately estimating microbial diversity (Kim et al. 2011).
122	Additionally, OTU assignments may not be reliable and can differ on the basis of the
123	algorithm used (Tikhonov et al. 2015), with common OTU creation approaches
124	sometimes leading to inflation of species level diversity estimates (Edgar 2013; White
125	et al. 2010). This is compounded by the fact that certain OTU construction techniques
126	generate unstable OTUs where the membership of sequences changes significantly
127	with the addition of new sequences or samples to the dataset and as a consequence,
128	different sets of OTUs are observed with each clustering run (He et al. 2015). This has
129	a significant impact on downstream diversity analysis including rarefaction curves,
130	which determine how well sequencing depth captures diversity as well as
131	identification of individual OTUs (He et al. 2015; Nguyen et al. 2016).
132	Our aim was to address these limitations by developing a new taxonomic
133	annotation pipeline, defined here as Taxonomic Annotation via Shannon entropy (the
134	TaxaSE system), which employs the novel Shannon entropy based sequence
135	similarity measure, instead of percentage identity, to quantitatively assess variability
136	across the whole of the 16S rDNA sequences within an aligned bacteria database,
137	paving the way for a novel approach towards estimating sequence similarity and
138	compared its performance against the most widely used QIIME pipeline (Caporaso et
139	al. 2010). In fact, it was proposed determining the pattern of change at given positions
140	in 16S rRNA gene may optimise analysis (Woese 1987). The technique has been
141	utilized in other tools such as oligotyping, which looks at the variation within an
142	individual OTU (Eren et al. 2013). Furthermore, the limitations associated with OTU
143	generation and usages were resolved by following an OTU-independent approach
144	where sequences are annotated individually. This resulted in the highest resolution
145	annotation via a combination of an improved annotation algorithm as well as

Door	Droprinto
146	extracting intra-OTU diversity, compared to the standard 97% OTU similarity
147	approach, which obscures fine-scale variation. With the improvements in
148	computational resources available to ecological projects, this approach is now
149	practical to be used in determining microbial diversity.
150	To illustrate the effectiveness of our pipeline, in-silico comparison was
151	performed between the underlying Shannon entropy based metric of the new pipeline
152	against the percentage identity metric, to demonstrate the improvement in sequence
153	similarity determination, while the pipeline itself was compared to QIIME on datasets
154	from sugarcane habitat for both alpha diversity and beta diversity evaluation of the
155	microbial community.
156	
157	Materials & Methods
158	
159	Shannon Entropy based sequence similarity scoring metric
160	SILVA (Quast et al. 2013) Release 123 aligned database of 16S rDNA
161	sequences was used to quantitatively assess and calculate entropy across the whole
162	16S rDNA sequence. The database was taken as a matrix M of dimensions m x n ,
163	consisting of \mathbf{m} rows and \mathbf{n} columns. Each row was an aligned reference sequence
164	and column denoted locations where a nucleotide, gap or dot occurred. As the
165	database represented multiple sequence alignments of 16S rRNA, dots were used for
166	padding before the start and after the end of a reference sequence depending on how
167	the sequence was aligned against other sequences and therefore were not factored in
168	any calculation, as they did not signify any information. To simplify calculations,
169	ambiguous sequences that contained nucleotides other than A, T, C or G such as N
170	were removed from the database. Shannon entropy was then calculated for every

Peer Preprints

171	column in the database, as given in pseudo code listed in supplementary material 1.			
172	USEARCH sequence aligner (Edgar 2010) was utilized for determining alignments			
173	between reference and query sequences. The system flowchart is illustrated in Figure			
174	1, where USEARCH alignments (Edgar 2010) were used to reconstruct full			
175	alignments between query sequences and reference 16S rDNA gene sequences. This			
176	determined precisely where matches, mismatches and gaps occurred against a			
177	reference sequence. Relative entropy was then calculated using the vectors developed			
178	for each reference sequence and finally each query read was scored. The process is			
179	described as below:			
180	1) Query sequences were aligned with the reference SILVA database. The			
181	resultant data contained complete information of alignment between the			
182	reference and query sequences as well as the location of alignments.			
183	2) Alignments were then reconstructed where location of gaps, matches and			
184	mismatches were determined.			
185	3) Shannon entropy for each query sequence and the matched reference sequence			
186	segment was calculated using the stored vectors in a separate database.			
187	4) Finally, relative Shannon entropy score was calculated and query sequences			
188	were annotated with reference sequence taxonomic annotation.			
189				
190	Relative Shannon entropy for every query sequence was generated in the following			
191	manner:			
192	1) Shannon entropy value on locations where a nucleotide mismatch occurred			
193	between the reference and query sequence was converted to a negative value			

194 for query sequence.

Peer	Preprints NOT PEER-REVIEWED
195	2) Next, for both reference sequence and query sequence, the maximum Shannon
196	entropy value was added on each location. This enabled better segregation of
197	sequences, which may contain mismatches.
198	3) Finally, the total entropy value for both reference sequence segment as well as
199	query sequence was calculated by adding values at every location.
200	4) A relative entropy score was then calculated by dividing total Shannon
201	entropy value of a query read by the total Shannon entropy value of the
202	reference read segment. As every reference sequence had a taxonomic
203	annotation associated with it, the matched input read was assigned this
204	annotation.
205	
206	Validation of Shannon entropy based scoring metric
207	
208	Validation of the new scoring scheme was performed using an <i>in silico</i> approach.
209	MicroSim: A motif-based next-generation read simulator developed by Schirmer et.
210	al. was used to generate multiple datasets of 20,000 amplicon reads from reference
211	sequences from SILVA release 123 database, simulating an Illumina MiSEQ Fusion
212	Golay V4 Amplicon 250bp (DS78) platform. The following metrics were used in the
213	validation process:
214	

215 Recall:
$$\frac{TP}{TP+FN}$$

216 Precision: $\frac{TP}{TP+FP}$

Peer Preprints 217 Accuracy: $\frac{TP+TN}{TP+FP+TN+FN}$

218	Here, TP denotes True Positives, FP as False Positives, TN as True Negatives,
219	and FN as False Negatives. Thresholds were varied between 0 and 1 to determine
220	recall, precision and accuracy for both percentage identity and the new Shannon
221	entropy based scoring scheme. Lastly, for precision vs. recall curves, area under the
222	curve was also calculated to determine if the new scoring metric is performing better
223	than percentage identity.

224 The validation process consisted of removal of taxa approach, where 100 225 genera, 10 families and 1 class were randomly selected and removed. Sequences 226 belonging to these removed taxa are effectively novel to the remaining sequences in 227 the database and therefore should not closely match any of the taxa retained in the 228 database. This approach can be useful in understanding how the system reacts to 229 novel sequences that may present themselves in real datasets to which the database is 230 naïve (Lanzen et al. 2012). Furthermore, application of MicroSim on these sequences 231 ensured that the resultant mock community to be tested, would be much more 232 representative of real datasets as compared to random cropping of sequences. 233

234 **Real dataset analysis**

235 For the real dataset analysis between TaxaSE and QIIME, samples from sugarcane

236 environment were selected to elucidate the differences between both pipelines.

Sugarcane leaf, stalk, root and rhizosphere soil samples were collected in November 237

- 238 2014 from eight sugarcane fields growing three sugarcane varieties (KQ228, MQ239
- 239 and Q240) near Ingham, Queensland, Australia. Bacterial 16S rRNA amplicon

Peer	Preprints NOT PEER-REVIEWE
240	sequencing was performed by the NGS facility at Western Sydney University using
241	Illumina Miseq (2x 301 bp PE) and the 341F/805R primer set.
242	A total of 158 samples were used, with the breakdown from each sub-habitat
243	listed in Table 1. To minimize noise artifacts and prevent occurrences of chimeras, the
244	following preprocessing procedure was followed for all samples:
245	1) Read trimming:
246	a. Sequences were trimmed on both R1 and R2 reads removing low
247	quality regions with Phred (Ewing et al. 1998) score of less than 25
248	(Q25). This was performed using "seqtk" tool (Li).
249	2) Paired-end read merging:
250	a. After quality trimming, both forward and reverse reads were merged
251	using FLASH (Magoc & Salzberg 2011) with a maximum overlap set
252	to 200.
253	3) Chimera removal:
254	a. Finally, the merged reads were analyzed for the presence of chimeras.
255	This was accomplished using VSEARCH, a sequence aligner and RDP
256	(Cole et al. 2014) Gold database which contained 10,049 reference
257	sequences. Subsequently, chimeras were removed from the samples.
258	
259	Given that the new pipeline was developed to annotate on a per-sequence basis,
260	comparison was based on the distinct number of annotations observed by each
261	pipeline. OTUs were generated at 97% and 99% sequence similarity for QIIME.
262	Following the annotation process via RDP classifier, OTUs, which had the same
263	taxonomic annotations, were combined together to form pseudo-OTUs. Furthermore,
264	OTUs belonging to Eukaryota and Archaea were removed from QIIME results as the

eer	Preprints NOT PEER-REVIEWED
265	primary comparison between both systems was based on bacterial taxonomic
266	annotations. Lastly, given that the new pipeline was using a completely new sequence
267	similarity-scoring scheme, hence a new set of thresholds was selected. Primarily,
268	three comparison approaches were followed and analysis were done via tools
269	provided in QIIME:
270	Alpha diversity comparison:
271	• Implemented using QIIME's inbuilt <i>alpha_rarefaction.py</i> script
272	• Distinct number of taxonomic annotations
273	• Shannon diversity
274	Beta diversity comparison:
275	• Accomplished by using QIIME's <i>beta_diversity_through_plots.py</i>
276	script. Bray Curtis was taken as the distance metric and plots were
277	generated using the Emperor package (Yoshiki Vázquez-Baeza 2013).
278	ADONIS and ANOSIM
279	 compare_categories.py script was used for this purpose.
280	
281	Results
282	
283	Scoring metric comparison
284	The precision vs. recall curve of both Shannon entropy and percentage identity
285	approaches closely match each other for the removal of genera based dataset (Figure
286	2-a). Precision started at less than 0.5, diminishing as recall improved for both

- approaches. For removal of families based validation, the precision vs. recall curve
- for Shannon entropy stayed above the precision vs. recall curve for percentage
- identity, illustrating better precision at the same recall (Figure 2-b). Precision for both

NOT	DE	ED	DEV	
NOT		En-	- TEV	ED

Peer	Preprints NOT PEER-RE
290	curves began at 0.4 and stayed below this until full recall was achieved. Finally, the
291	precision vs. recall curves for removal of class-based validation approach is shown in
292	Figure 2-c. Precision was low for both approaches, staying below 0.4.
293	The area under the curve illustrates the differences between the classification
294	capabilities of both scoring metrics (Table 2). The new scoring scheme performs
295	better at removal of families and class based datasets, while showing comparable
296	performance to percentage identity for removal of genera.
297	
298	Pipeline comparison
299	
300	Alpha Diversity
301	Distinct number of taxonomic annotations comparison
302	For rhizosphere environment, TaxaSE produced the highest number of distinct
303	taxonomic annotations at 807, while QIIME at 99% OTU similarity produced 578
304	distinct taxonomic annotations and QIIME at 97% OTU similarity coming up last at
305	about 515 (Figure 3-a). Welch's t-test showed a very significant difference between
306	QIIME at 97% OTU similarity and QIIME at 99% OTU similarity (p=0.0059).
307	Furthermore, Welch's t-test also reported statistically very significant difference
308	between QIIME at 97% OTU similarity and TaxaSE (p=0.0001) as well as between
309	QIIME at 99% OTU similarity and TaxaSE (p=0.0001). All three approaches were
310	therefore statistically different from each other, with the highest OTUs for TaxaSE
311	pipeline.
312	For the root environment, here as well TaxaSE produced the largest number of
313	distinct taxonomic annotations at 890, followed by QIIME at 99% OTU similarity
314	with 593 distinct annotations and lastly QIIME at 97% OTU similarity at 522 (Figure

NOT PEER-REVIEWED

338	Shannon diversity index comparison
337	
336	QIIME at 99% OTU similarity and TaxaSE (p=0.0311).
335	between QIIME at 97% OTU similarity and TaxaSE (p=0.0017), as well as between
334	OTU similarity (p=0.1742). However, statistically significant difference was found
333	found by Welch's t-test between QIIME at 97% OTU similarity and QIIME at 99%
332	produced 101 distinct annotations. The difference was not statistically significant, as
331	similarity generated 121 distinct annotations while QIIME at 97% OTU similarity
330	number of distinct taxonomic annotations at 167 (Figure 3-d). QIIME at 99% OTU
329	Stem was the least diverse of all habitats, and TaxaSE generated a highest
328	and TaxaSE (p=0.0001).
327	similarity and TaxaSE (p=0.0001) as well as between QIIME at 99% OTU similarity
326	statistically significant difference was observed between QIIME at 97% OTU
325	97% OTU similarity and QIIME at 99% OTU similarity (p=0.003). An extremely
324	statistically significant difference was observed via Welch's t-test between QIIME at
323	OTU similarity coming up last at 574 distinct annotations (Figure 3-c). A very
322	QIIME at 99% OTU similarity followed it at 697 annotations and QIIME at 97%
321	generating higher number of distinct taxonomic annotations reaching 907, while
320	Soil showed similar pattern as with previous environments, with TaxaSE
319	significant between QIIME at 99% OTU similarity and TaxaSE as well (p=0.0001).
318	at 97% OTU similarity and TaxaSE (p=0.0001) and lastly an extremely statistically
317	OTU similarity (p=0.0018), a statistically very significant difference between QIIME
316	significant difference between QIIME at 97% OTU similarity and QIIME at 99%
315	3-b). Welch's t-test illustrated a similar picture here as well, with a statistically

Peer Preprints NOT PEER 340 Shannon diversity index comparison displayed a similar picture as illustrated for

341	distinct taxonomic annotation results. For rhizsophere samples, TaxaSE produced the
342	highest Shannon diversity index for distinct taxonomic annotation based comparison,
343	with a value of 7.7, compared to QIIME at 99% OTU similarity at 7.1 and QIIME at
344	97% OTU similarity at 6.9, as shown in Figure 4-a. Welch's t-test produced a
345	statistically significant difference between QIIME at 97% OTU and QIIME at 99%
346	OTU similarity ($p = 0.045$). The difference was statistically very significant between
347	both QIIME approaches and TaxaSE ($p = 0.0001$).
348	Samples from root environment showed similar Shannon diversity index
349	results between the two QIIME methods (Figure 4-b), with TaxaSE leading with more
350	than 7.6, followed by QIIME at 99% OTU similarity with 6.8 and lastly QIIME at
351	97% OTU similarity at 6.6. The difference was not statistically significant between
352	QIIME at 97% OTU similarity and QIIME at 99% OTU similarity ($p = 0.1639$).
353	However, similar to rhizosphere samples, the difference was statistically very
354	significant between both QIIME approaches and TaxaSE ($p = 0.0001$).
355	TaxaSE also had higher Shannon diversity results for soil samples compared
356	to QIIME at 97% and QIIME at 99% (Figure 4-c), where TaxaSE showed slightly
357	more diversity index at 7.77 than both QIIME methods, with QIIME at 97% OTU
358	similarity at 7.1 and QIIME at 99% OTU similarity at 7.3. Welch's t-test illustrated
359	that the difference was not statistically significant between QIIME at 97% OTU and
360	QIIME at 99% OTU similarity ($p = 0.0565$). However, the difference was statistically
361	very significant between TaxaSE and both QIIME approaches ($p = 0.0001$).
362	Finally, Shannon diversity index results for all three methods for stem samples
363	showed TaxaSE having an average Shannon diversity of 2.7 while QIIME at 99%
364	OTU similarity produced 2.4 and finally QIIME at 97% OTU similarity produced the

Peer	Preprints NOT PEER-REVIEWED
365	lowest Shannon diversity at 1.7 (Figure 4-d). The difference was statistically
366	significant very between QIIME at 97% OTU similarity and QIIME at 99% OTU
367	similarity and also between QIIME at 97% OTU similarity and TaxaSE ($p = 0.0001$).
368	However, the difference was not statistically significant between QIIME at 99% OTU
369	and TaxaSE ($p = 0.0591$).
370	
371	Beta Diversity comparison
372	
373	The beta diversity plots were almost identical across all three approaches and
374	illustrated the same separation pattern of samples. The beta diversity plot for QIIME
375	at 97% OTU similarity is shown in Figure 5-a. Stem samples were segregated from
376	the samples belonging to other environments. Furthermore, root and soil samples
377	displayed some segregation as well. The first principle coordinate, PC1 explained a
378	variance of 58.31% in the case of QIIME at 97% OTU similarity.
379	Beta diversity plot for QIIME at 99% OTU similarity, as illustrated in Figure
380	5-b, provided a similar pattern as was seen for QIIME at 97% OTU similarity (Figure
381	5-a). Stem samples were segregated from the other samples and the first principle
382	coordinate explained a variance of 57%, slightly lower than what was observed for
383	QIIME at 97% OTU similarity.
384	Finally, the beta diversity plot for TaxaSE system is shown in Figure 7-c and
385	here as well, stem samples were well segregated from other samples. Furthermore,
386	soil samples were more densely packed along the first axis for TaxaSE system
387	compared to either of QIIME based methods. The first principle coordinate axis, PC1
388	explained 53.22% of variance, the lowest between all three methods.

Peer	Preprints NOT PEER-REVIEWED
389	ADONIS results for the three methods as listed in Table 3 show a slightly
390	different pattern, where the grouping of samples on the basis of environment was best
391	explained by QIIME at 97% OTU similarity with a R^2 value of 0.6797, followed by
392	QIIME at 99% OTU similarity with a R^2 value of 0.671 and lastly TaxaSE, with a R^2
393	value of 0.622. Overall, the ADONIS results were similar between all three methods.
394	The ANOSIM results illustrated that for all of the methods, the grouping of
395	samples by environments is statistically significant, with p-value of 0.001 (Table 4).
396	All three methods generated an R-value of more than 0.8, however TaxaSE produced
397	a slightly lower, but still strong ANOSIM result compared to the other two methods.
398	
399	Discussion
400	
401	Shannon entropy based sequence similarity metric
402	The new Shannon entropy based sequence similarity metric can be used as a
403	replacement of the current standard percentage identity. The new approach showed
404	comparative performance for the whole SILVA dataset and slightly lower for removal
405	of genus validation dataset. However it improved upon percentage identity for
406	removal of families and classes datasets.
407	For removal of genus dataset, sequences were checked at family level. Both
408	approaches generated almost the exact same result in this case, with percentage
409	identity slightly leading over Shannon entropy approach. However, the Shannon
410	entropy based approach showed improved performance compared to Percentage
411	Identity based approach, with higher area under the curve in the case of removal of
412	families dataset. For removal of class dataset, sequences were checked at phylum

Peer Preprints

413 level and while both approaches were similar in their capability, Shannon entropy

414 based approach demonstrates slightly improved performance.

This translates into better annotation of novel sequences at the order level as well as phylum level compared to the percentage Identity based approach and is therefore much more effective at taxonomic annotation as novel sequences can be

annotated better in the case of the new approach.

419 Unlike percentage identity, the new Shannon entropy based approach

420 effectively captures evolutionary conservation from the 16S rDNA sequences as

421 every location's degree of variability is directly determined and used in the new

422 scoring scheme. This represents an advance towards better similarity measurements,

423 which are in accordance with the evolution of sequences (Woese 1987). The results

424 illustrate better annotation capability at class and families level while being

425 comparative to percentage identity at other taxa levels.

426 Given that the vast majority of microbes are uncultivated (Huson et al. 2007;

427 Marcy et al. 2007), there is a higher likelihood that in many ecological studies

428 unknown sequences will be detected. The best possible annotation of these sequences

429 will give insight into the inner workings of the environment, even if the exact

430 taxonomic annotation cannot be determined at finer taxonomic levels (Huson et al.

431 2007). For this reason, new approaches should be able to handle these sequences in an

432 improved fashion and here the new Shannon entropy based approach provides

433 improved performance over the industry standard Percentage Identity.

434

435 TaxaSE performance evaluation

436 TaxaSE represents an advancement in taxonomic annotation compared to current

437 approaches, with the utilization of a more evolutionary correct sequence similarity

Peer Preprints

measure and its application in a microbial taxonomic annotation pipeline. Given that
the true number of species is unknown for a real dataset, a comparison cannot be
made solely on the basis of number of species identified. Nonetheless, the real
potential of the pipeline is illustrated when an OTU independent, per sequence
annotation is performed. Given that TaxaSE produced better or similar patterns with
respect to alpha diversity results, the new pipeline is as applicable as other pipelines
in assessing alpha diversity in ecological studies.

445 The microbial community was observed to be more diverse in the case of soil, 446 rhizosphere and root habitats, which are expected to have a high degree of diversity 447 (Kirk et al. 2004; Pinton et al. 2001). However samples from the stem environment 448 were far less diverse. This was primarily due to different species inhabiting plant 449 stem, which may include endophytic microbes that are beneficial to the growth 450 (Gouda et al. 2016) and health of the plant (Miguel et al. 2016) as well as pathogenic bacteria, however a single plant species may play as a host for only a limited number 451 452 of microbes (Imam et al. 2016). Furthermore, the niche endophyte population is 453 dependent on various factors such as host species and environmental conditions 454 (Gouda et al. 2016).

455 As for beta diversity analysis, ADONIS results showed that QIIME at 97% 456 OTU similarity explained the most variance, followed closely by OIIME at 99% OTU 457 similarity, with TaxaSE explaining the least. The results correlate inversely with the 458 number of distinct taxonomic annotations, where QIIME at 97% OTU similarity produced the least number of distinct annotations and explained the most variance and 459 460 TaxaSE system produced the most number of distinct annotations but with low 461 explanation of variance. Therefore, given that the ADONIS test described how much 462 variation is explained by grouping on the basis of location, less variation is being

Peer Preprints

explained by approaches with a higher number of taxonomic annotations. This may be 463 because some taxonomic annotations were common across different habitats and 464 465 approaches such as QIIME at 99% and TaxaSE were able to extract these annotations 466 more in comparison to QIIME at 97%. Beta Diversity plots illustrated similar patterns across all approaches, where QIIME at 97% OTU similarity, QIIME at 99% OTU 467 468 similarity and TaxaSE, displayed almost identical patterns and were able to 469 differentiate between different habitats. Furthermore, similar to OTU comparison, 470 here as well stem samples were distinctly separated from root, soil and rhizsophere 471 for all three methods. Thus TaxaSE is well suited to identifying ecologically distinct 472 microbial assemblages. In the case of TaxaSE, slightly less variability was accounted 473 by the first axis, PC1 compared to QIIME at 97% OTU similarity and 99% OTU 474 similarity. This may be because more common taxa were observed for TaxaSE system 475 and therefore the ability of the system to explain variability on the basis of taxonomy 476 fell as an increase in the number of variables leads to a reduction in the total variation 477 explained (Nagelkerke 1991). A similar case was observed between QIIME at 97% 478 OTU similarity and QIIME at 99% OTU similarity as the later's first axis explained 479 slightly less variability at 57%, compared to former's 58.31%. 480

481 Conclusion

482 The novel Shannon entropy based approach demonstrated its effectiveness over

483 percentage identity, where the evolutionary conservation information of 16S rRNA is

484 directly exploited to provide a more accurate sequence similarity metric. Most

485 popular approaches forgo the utilization of this inherent information contained within

the 16S rRNA sequences, instead relying on a measure that only counts mismatches

487 between sequences. Given the variability across the whole of 16S rRNA, not every

base may be equally important as variable locations are much more essential in
differentiating between sequences compared to conserved regions (Chakravorty et al.
2007).

The approach is competitive that it can be used alongside commonly applied percentage identity scoring schemes. Its higher performance at higher taxa levels is especially important as majority of bacterial sequences are not annotated, and more and more novel sequences are being detected in almost all of the next-generation sequencing projects. It's likely that these new sequences may not be resolved at genera level and hence new approaches, which are better at taxonomic annotation at higher taxonomic levels than genera, would be more appropriate.

498 Building upon this novel approach to sequence similarity is the new TaxaSE 499 pipeline. The OTU independent approach, central to TaxaSE, provides an alternative 500 method to improving taxonomic annotation. While this comes at the expense of more 501 computational time and requirement of higher resources, it can be used to delve 502 deeply into finer level of taxa levels and improve annotation process as a result, which 503 would otherwise go unnoticed with an OTU based method. Alpha diversity results 504 also illustrate a similar picture where TaxaSE generated the highest number of 505 annotations across all habitats in comparison to QIIME based methods. This 506 highlights the benefit of following this new approach. 507 The results of applied environmental dataset analysis demonstrate the 508 advantage of using TaxaSE over OTU based, industry standard pipelines such as 509 QIIME while demonstrating comparable performance in distinct taxonomic 510 annotation based approach. With the ability to annotate sequences at the highest 511 resolution (e.g. species level) annotation at times as well as using a novel scoring

Deer	Preprints NOT REED REVIEWE
512	approach based on Shannon entropy, TaxaSE represents a step forward in taxonomic
513	annotation of microbial DNA sequences.
514	
515	Author contributions
516	Ali Z. Ijaz: Developed the TaxaSE pipeline and the underlying Shannon entropy
517	based sequence similarity measure. Performed validation, real dataset analysis and
518	comparison with QIIME pipeline. Wrote the majority of the manuscript.
519	
520	Thomas Jeffries: Provided evaluation on real dataset analysis, comparison with
521	QIIME. Also provided feedback on the manuscript.
522	
523	Christopher Quince: Provided feedback and evaluation on the validation process,
524	real dataset analysis and comparison with QIIME. Also provided feedback on the
525	manuscript.
526	
527	Kelly Hamonts: Performed sampling and sequencing of the sugarcane dataset.
528	
529	Brajesh K. Singh: Supervised the overall project. Provided critical feedback and
530	comments on the manuscript. Gave approval for the submission of the article.
531	
532	References
533	
534	Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes
535	S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek
536	RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C,

Peer	Preprints NOT PEER-REVIEWED
537	Stevens R, Vassieva O, Vonstein V, Wilke A, and Zagnitko O. 2008. The
538	RAST Server: rapid annotations using subsystems technology. BMC
539	Genomics 9:75. 10.1186/1471-2164-9-75
540	Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, and Holmes SP. 2016.
541	DADA2: High resolution sample inference from Illumina amplicon data.
542	<i>Nature Methods</i> 13:581-583. 10.1038/nmeth.3869
543	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
544	Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights
545	D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M,
546	Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko
547	T, Zaneveld J, and Knight R. 2010. QIIME allows analysis of high-
548	throughput community sequencing data. <i>Nat Methods</i> 7:335-336.
549	10.1038/nmeth.f.303
550	Chakravorty S, Helb D, Burday M, Connell N, and Alland D. 2007. A detailed
551	analysis of 16S ribosomal RNA gene segments for the diagnosis of
552	pathogenic bacteria. <i>J Microbiol Methods</i> 69:330-339.
553	10.1016/j.mimet.2007.02.005
554	Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A,
555	Kuske CR, and Tiedje JM. 2014. Ribosomal Database Project: data and
556	tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633-642.
557	10.1093/nar/gkt1244
558	Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, and Raoult D. 2000. 16S
559	ribosomal DNA sequence analysis of a large collection of environmental
560	and clinical unidentifiable bacterial isolates. J Clin Microbiol 38:3623-
561	3630.

Peer	Preprints NOT PEEB-BEVIEWER
562	Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST.
563	Bioinformatics 26:2460-2461. 10.1093/bioinformatics/btq461
564	Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial
565	amplicon reads. <i>Nat Methods</i> 10:996-998. 10.1038/nmeth.2604
566	Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, and Sogin ML.
567	2013. Oligotyping: Differentiating between closely related microbial taxa
568	using 16S rRNA gene data. Methods Ecol Evol 4. 10.1111/2041-
569	210X.12114
570	Ewing B, Hillier L, Wendl MC, and Green P. 1998. Base-calling of automated
571	sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175-
572	185.
573	Fox GE, Wisotzkey JD, and Jurtshuk P, Jr. 1992. How close is close: 16S rRNA
574	sequence identity may not be sufficient to guarantee species identity. Int J
575	Syst Bacteriol 42:166-170. 10.1099/00207713-42-1-166
576	Gouda S, Das G, Sen SK, Shin HS, and Patra JK. 2016. Endophytes: A Treasure
577	House of Bioactive Compounds of Medicinal Importance. Front Microbiol
578	7:1538.10.3389/fmicb.2016.01538
579	He Y, Caporaso JG, Jiang X-T, Sheng H-F, Huse SM, Rideout JR, Edgar RC, Kopylova
580	E, Walters WA, Knight R, and Zhou H-W. 2015. Stability of operational
581	taxonomic units: an important but neglected property for analyzing
582	microbial diversity. <i>Microbiome</i> 3:20. 10.1186/s40168-015-0081-x
583	Huson DH, Auch AF, Qi J, and Schuster SC. 2007. MEGAN analysis of metagenomic
584	data. Genome Res 17:377-386. 10.1101/gr.5969107

eer	Preprints NOT PEER-REVIEWED
585	Huson DH, Richter DC, Mitra S, Auch AF, and Schuster SC. 2009. Methods for
586	comparative metagenomics. BMC Bioinformatics 10 Suppl 1:S12.
587	10.1186/1471-2105-10-S1-S12
588	Imam J, Singh PK, and Shukla P. 2016. Plant Microbe Interactions in Post
589	Genomic Era: Perspectives and Applications. Front Microbiol 7:1488.
590	10.3389/fmicb.2016.01488
591	Kim M, Morrison M, and Yu Z. 2011. Evaluation of different partial 16S rRNA
592	gene sequence regions for phylogenetic analysis of microbiomes. Journal
593	of Microbiological Methods 84:81-87.
594	http://dx.doi.org/10.1016/j.mimet.2010.10.020
595	Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, and Trevors JT.
596	2004. Methods of studying soil microbial diversity. Journal of
597	Microbiological Methods 58:169-188.
598	http://dx.doi.org/10.1016/j.mimet.2004.04.006
599	Lanzen A, Jorgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, Ovreas L,
600	and Urich T. 2012. CRESTclassification resources for environmental
601	sequence tags. PLoS One 7:e49334. 10.1371/journal.pone.0049334
602	Li H. Toolkit for processing sequences in FASTA/Q formats. Available at
603	https://github.com/lh3/seqtk.
604	Magoc T, and Salzberg SL. 2011. FLASH: fast length adjustment of short reads to
605	improve genome assemblies. <i>Bioinformatics</i> 27:2957-2963.
606	10.1093/bioinformatics/btr507
607	Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG, Szeto E, Platt D,
608	Hugenholtz P, and Relman DA. 2007. Dissecting biological "dark matter"
609	with single-cell genetic analysis of rare and uncultivated TM7 microbes

Ρ

610

611 104:11889-11894.

612 Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, Gevers D, 613 Petrosino JF, Abubucker S, Badger JH, Chinwalla AT, Earl AM, FitzGerald 614 MG, Fulton RS, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, 615 Martin JC, Mitreva M, Muzny DM, Sodergren EJ, Versalovic J, Wollam AM, 616 Worley KC, Wortman JR, Young SK, Zeng Q, Aagaard KM, Abolude OO, Allen-Vercoe E, Alm EJ, Alvarado L, Andersen GL, Anderson S, Appelbaum 617 618 E, Arachchi HM, Armitage G, Arze CA, Ayvaz T, Baker CC, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser MJ, Bloom T, Vivien Bonazzi J, Brooks P, 619 620 Buck GA, Buhay CJ, Busam DA, Campbell JL, Canon SR, Cantarel BL, Chain 621 PS, Chen IMA, Chen L, Chhibba S, Chu K, Ciulla DM, Clemente JC, Clifton 622 SW, Conlan S, Crabtree J, Cutting MA, Davidovics NJ, Davis CC, DeSantis TZ, 623 Deal C, Delehaunty KD, Dewhirst FE, Devch E, Ding Y, Dooling DJ, Dugan 624 SP, Dunne WM, Durkin AS, Edgar RC, Erlich RL, Farmer CN, Farrell RM, 625 Faust K, Feldgarden M, Felix VM, Fisher S, Fodor AA, Forney L, Foster L, Di Francesco V, Friedman J, Friedrich DC, Fronick CC, Fulton LL, Gao H, 626 Garcia N, Giannoukos G, Giblin C, Giovanni MY, Goldberg JM, Goll J, 627 628 Gonzalez A, Griggs A, Guija S, Haas BJ, Hamilton HA, Harris EL, Hepburn 629 TA, Herter B, Hoffmann DE, Holder ME, Howarth C, Huang KH, Huse SM, 630 Izard J, Jansson JK, Jiang H, Jordan C, Joshi V, Katancik JA, Keitel WA, 631 Kelley ST, Kells C, Kinder-Haake S, King NB, Knight R, Knights D, Kong HH, 632 Koren O, Koren S, Kota KC, Kovar CL, Kyrpides NC, La Rosa PS, Lee SL, 633 Lemon KP, Lennon N, Lewis CM, Lewis L, Ley RE, Li K, Liolios K, Liu B, Liu Y, Lo C-C, Lozupone CA, Lunsford RD, Madden T, Mahurkar AA, Mannon 634

from the human mouth. Proceedings of the National Academy of Sciences

Peer	Preprints NOT PEER-REVIEWE
635	PJ, Mardis ER, Markowitz VM, Mavrommatis K, McCorrison JM, McDonald
636	D, McEwen J, McGuire AL, McInnes P, Mehta T, Mihindukulasuriya KA,
637	Miller JR, Minx PJ, Newsham I, Nusbaum C, O'Laughlin M, Orvis J, Pagani I,
638	Palaniappan K, Patel SM, Pearson M, Peterson J, Podar M, Pohl C, Pollard
639	KS, Priest ME, Proctor LM, Qin X, Raes J, Ravel J, Reid JG, Rho M, Rhodes R,
640	Riehle KP, Rivera MC, Rodriguez-Mueller B, Rogers Y-H, Ross MC, Russ C,
641	Sanka RK, Pamela Sankar J, Sathirapongsasuti F, Schloss JA, Schloss PD,
642	Schmidt TM, Scholz M, Schriml L, Schubert AM, Segata N, Segre JA,
643	Shannon WD, Sharp RR, Sharpton TJ, Shenoy N, Sheth NU, Simone GA,
644	Singh I, Smillie CS, Sobel JD, Sommer DD, Spicer P, Sutton GG, Sykes SM,
645	Tabbaa DG, Thiagarajan M, Tomlinson CM, Torralba M, Treangen TJ, Truty
646	RM, Vishnivetskaya TA, Walker J, Wang L, Wang Z, Ward DV, Warren W,
647	Watson MA, Wellington C, Wetterstrand KA, White JR, Wilczek-Boney K,
648	Wu YQ, Wylie KM, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans BP,
649	Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker JD, Birren BW, Gibbs RA,
650	Highlander SK, Weinstock GM, Wilson RK, and White O. 2012. A
651	framework for human microbiome research. Nature 486:215-221.
652	10.1038/nature11209
653	Miguel PSB, de Oliveira MNV, Delvaux JC, de Jesus GL, Borges AC, Tótola MR,

- Neves JCL, and Costa MD. 2016. Diversity and distribution of the
 endophytic bacterial community at different stages of Eucalyptus growth. *Antonie van Leeuwenhoek* 109:755-771. 10.1007/s10482-016-0676-7
- Morgan XC, and Huttenhower C. 2014. Meta'omic analytic techniques for
 studying the intestinal microbiome. *Gastroenterology* 146:1437-1448
 e1431. 10.1053/j.gastro.2014.01.049

660 Nagelkerke NJ. 1991. A note on a general definition of the coefficient of 661 determination. *Biometrika* 78:691-692.

Peer Preprints

- Nguyen N-P, Warnow T, Pop M, and White B. 2016. A perspective on 16S rRNA
 operational taxonomic unit clustering using sequence similarity. *Npj Biofilms And Microbiomes* 2:16004. 10.1038/npjbiofilms.2016.4
- Pinton R, Varanini Z, and Nannipieri P. 2001. The rhizosphere as a site of
 biochemical interactions among soil components, plants, and
 microorganisms.
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, and
 Glockner FO. 2013. The SILVA ribosomal RNA gene database project:
 improved data processing and web-based tools. *Nucleic Acids Res*41:D590-596. 10.1093/nar/gks1219
- Riesenfeld CS, Schloss PD, and Handelsman J. 2004. Metagenomics: genomic
 analysis of microbial communities. *Annu Rev Genet* 38:525-552.
 10.1146/annurev.genet.38.072902.091216
- Santamaria M, Fosso B, Consiglio A, De Caro G, Grillo G, Licciulli F, Liuni S,
 Marzano M, Alonso-Alemany D, Valiente G, and Pesole G. 2012. Reference
 databases for taxonomic assignment in metagenomics. *Brief Bioinform*13:682-695. 10.1093/bib/bbs036
- Schloss PD, and Westcott SL. 2011. Assessing and improving methods used in
 operational taxonomic unit-based approaches for 16S rRNA gene
 sequence analysis. *Appl Environ Microbiol* 77:3219-3226.
 10.1128/aem.02810-10
- 683 Stackebrandt E, and Goebel B. 1994. Taxonomic note: a place for DNA-DNA
 684 reassociation and 16S rRNA sequence analysis in the present species

Peer	Preprints NOT PEER-REVIEWEI
685	definition in bacteriology. International Journal of Systematic and
686	Evolutionary Microbiology 44:846-849.
687	Tikhonov M, Leach RW, and Wingreen NS. 2015. Interpreting 16S metagenomic
688	data without clustering to achieve sub-OTU resolution. ISME J 9:68-80.
689	10.1038/ismej.2014.117
690	White JR, Navlakha S, Nagarajan N, Ghodsi M-R, Kingsford C, and Pop M. 2010.
691	Alignment and clustering of phylogenetic markers - implications for
692	microbial diversity studies. BMC Bioinformatics 11:152. 10.1186/1471-
693	2105-11-152
694	Woese CR. 1987. Bacterial evolution. <i>Microbiol Rev</i> 51:221-271.
695	Yoshiki Vázquez-Baeza MP, Antonio Gonzalez and Rob Knight. 2013. EMPeror: a
696	tool for visualizing high-throughput microbial community data.
697	

- 700 Figure 1: System Process Diagram where data files are shown in green,
- 701 processing tasks in blue and results in purple.

NOT PEER-REVIEWED

Figure 2: Precision vs. recall graph for a) removal of genera dataset b) removal
of families dataset and c) removal of class dataset, with percentage identity in
blue and Shannon entropy approach in red.

- 729
- 730

NOT PEER-REVIEWED

Figure 3: Observed species for distinct taxonomic annotation comparison with a)
rhizosphere, b) root, c) soil and d) stem. QIIME at 97% OTU similarity is shown
in blue, QIIME at 99% OTU similarity in dark blue and TaxaSE in orange.

735 Error bars represent standard error. Significance levels are showed with

- asterisks, where * represents p < 0.05, ** represents p < 0.01 and *** represents
- 737 p < 0.001.

NOT PEER-REVIEWED

Figure 4: Shannon diversity for distinct taxonomic annotation comparison with
a) rhizosphere, b) root, c) soil and d) stem. QIIME at 97% OTU similarity is
shown in blue, QIIME at 99% OTU similarity in dark blue and TaxaSE in
orange. Error bars represent standard error. Significance levels are shown with
asterisks, where * represents p < 0.05, ** represents p < 0.01 and *** represents
p < 0.001.

NOT PEER-REVIEWED

746 Figure 5: Beta diversity principle coordinate analysis plots for distinct taxonomic

- annotation comparison of sugarcane dataset with a) QIIME at 97% OTU
- similarity, b) QIIME at 99% OTU similarity and c) TaxaSE. Rhizosphere
- samples are shown in red, root in blue, soil in orange and stem in green.

750 **Table 1: Environmental sample data used for comparative analysis**

	Sub-habitat	Number of Samples	
	Rhizosphere	12	
	Root	45	
	Soil	54	
	Stem	47	
	Total	158	
751 752			
753 754			
755 756			
757			
758 759			
760 761			
762 763			
764 765			
766 767			
768 769			
770 771			
772			
773 774			
775 776			
777 778			
779 780			
781 782			
783 784			

785 **Table 2: Area under the curve for removal of taxa validation**

	Area under the curve	Percentage Identity	Shannon Entropy
	Genera	0.393	0.392
	Families	0.345	0.349
	Class	0.347	0.348
786			
787			
788			
789			
790			
791			
792			
793			
794			
795			
796			
797			
798			
799			
800			
801			
802			
803			
804			
805			
806			
807			
808			
809			
810			
811			
812			
813			
814			
815			
816			
817			
818			
819			
820			
821			
822			
872			
821			
825			
02J 876			
020			
04/ 010			
020			

Table 3: ADONIS results for distinct taxonomic annotation comparison between

830 QIIME at 97% OTU similarity, QIIME at 99% OTU similarity and TaxaSE.

QIIME at 9	97% OTU sim	ilarity				
	Degree of	Sum of	Mean	F-Model	R^2 value	p-value
	freedom	squares	Squares			
Habitats	3	25.417	8.4725	99.008	0.67965	0.001
Residuals	140	11.980	0.0856		0.32035	
Total	143	37.398			1.00000	
QIIME at 9	99% OTU sim	ularity				
	Degree of	Sum of	Mean	F-Model	R ² value	p-value
	freedom	squares	Squares			
Habitats	3	25.317	8.4391	95.371	0.67145	0.001
Residuals	140	12.388	0.0885		0.32855	
Total	143	37.706			1.00000	
TaxaSE						
	Degree of	Sum of	Mean	F-Model	R ² value	p-value
	freedom	squares	Squares			
Habitats	3	23.700	7.9000	76.743	0.62186	0.001
Residuals	140	14.412	0.1029		0.37814	
	1/13	38.112			1.00000	

843 Table 4: ANOSIM results for distinct taxonomic annotations comparison

844 between QIIME at 97% OTU similarity, QIIME at 99% OTU similarity and

845 TaxaSE.

ANOSIM					
Approach	p-value	R-value			
QIIME at 97%	0.001	0.8528			
QIIME at 99%	0.001	0.8558			
TaxaSE	0.001	0.8238			

846

847

848

849

850 851

852

853