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Abstract 46	

Amplicon based taxonomic analysis, which determines the presence of microbial taxa 47	

in different environments on the basis of marker gene annotations, often uses 48	

percentage identity as the main metric to determine sequence similarity against 49	

databases. These data are then used to study the distribution of biodiversity as well as 50	

response of microbial communities to environmental conditions. However the 16S 51	

rRNA gene displays varying degrees of sequence conservation along its length and 52	

percentage identity does not fully utilize this information. Additionally, the prevalent 53	

usage of Operational Taxonomic Unit, or OTUs is not without its own issues and may 54	

lead to a reduction in annotation capability of the system. Hence a novel approach to 55	

taxonomic annotation is needed. Here we introduce a new taxonomic annotation 56	

pipeline, TaxaSE, which utilizes Shannon entropy to quantify evolutionary 57	

conservation within 16S rDNA sequences for enhanced taxonomic annotations. 58	

Furthermore, the system is capable of annotation of individual sequences in order to 59	

improve fine grain taxonomic annotations. We present both in-silico comparison of 60	

the new similarity metric with percentage identity, as well as comparison with the 61	

popular QIIME pipeline. The results demonstrate the new similarity metric achieves 62	

better performance especially at lower taxa levels. Furthermore, the pipeline is able to 63	

extract more fine grain taxonomic annotations compared to QIIME. These exhibit not 64	

only the effectiveness of the new pipeline but also highlight the need to shift away 65	

from both percentage identity and OTU based approaches for ecological projects. 66	

 67	

Introduction 68	

Ecogenomics study of microbes is a rapidly growing field of research that aims at 69	

studying uncultured organisms via their nucleic acid sequences to determine the true 70	
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diversity of microbes, their function and distribution in a variety of environments 71	

(Huson et al. 2009). Many environments have been the focus of ecogenomics studies, 72	

including soil, the oral cavity, feces, and aquatic habitats (Riesenfeld et al. 2004). The 73	

field has been driven by the advent of high throughput sequencing where genomic 74	

information is acquired directly from the microbial communities in their natural 75	

environment, with a drastic reduction in the cost of sequencing (Morgan & 76	

Huttenhower 2014). As a consequence, bioinformatics pipelines aiming to 77	

characterize microbial community composition, have been developed alongside 78	

various 16S rDNA gene sequence databases, which serve as a reference set of 79	

sequences for microbial taxonomic analysis (Santamaria et al. 2012). 80	

Sequencing of 16S rDNA amplicons primarily uses short reads, representing a 81	

specific region of a gene. Analysis requires a significant amount of time, typically a 82	

day or more for taxonomic annotation depending on computational resources and size 83	

of data. The underlying scoring scheme behind sequence similarity is currently 84	

percentage identity, a simple distance based approach which does not fully utilize the 85	

inherent variation in evolutionary conservation within 16S rDNA gene sequences, as 86	

every base is considered equal with respect to matches and mismatches and positions 87	

of these matches and mismatches are not essential (Fox et al. 1992; Stackebrandt & 88	

Goebel 1994). This is important in the context that certain regions of the 16S rDNA 89	

sequences are considerably variable while others are relatively conserved, and the 90	

degree of variability is not constant (Chakravorty et al. 2007; Stackebrandt & Goebel 91	

1994). This distance based approach does not truly estimates the evolutionary 92	

distances between sequences as different nucleotide positions on sequences are 93	

changing at different rates (Woese 1987). Furthermore, fine-scale taxonomic 94	

annotation may not be resolved as well, especially at genus level (Fox et al. 1992). As 95	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2941v1 | CC BY 4.0 Open Access | rec: 21 Apr 2017, publ: 21 Apr 2017



most taxonomic annotation pipelines, such as QIIME (Caporaso et al. 2010), MG-96	

RAST (Aziz et al. 2008) and MEGAN (Huson et al. 2007) are dependent on 97	

percentage identity for sequence similarity measure, an improvement in this context 98	

would result in better downstream analysis. These represent the limitations of 16S 99	

rDNA gene sequence analysis primarily due to the selection of percentage identity as 100	

the determinant of sequence similarity. 101	

Furthermore, the majority of taxonomic annotation systems use operational 102	

taxonomic unit (OTU), as the defining concept for determining community 103	

composition (He et al. 2015). Considered as a de facto standard approach to analysis, 104	

OTUs are formed by clustering sequences on the basis of a specified similarity 105	

threshold such as 97% (Drancourt et al. 2000; Tikhonov et al. 2015). Sequence based 106	

denoising approaches such as DADA2 (Callahan et al. 2016) and Deblur are also 107	

applied. Taxonomic annotation is performed on the representative sequence of each 108	

OTU, and all the sequences within the OTU are assigned the same taxonomy 109	

regardless of small-scale differences in base composition between them (Nguyen et 110	

al. 2016). This is a favorable technique as picking representative OTUs from a list of 111	

sequences drastically cuts down on computational requirements for analysis, giving 112	

the ability to quickly perform fast annotation, in addition to providing abundance 113	

information of how many reads form a cluster (He et al. 2015; Methé et al. 2012) and, 114	

therefore, allows for rapid analysis of large datasets (Nguyen et al. 2016). 115	

However, OTU generation methods assume that all 16S rDNA genes evolve at 116	

the same rate (Schloss & Westcott 2011). Furthermore, OTUs made from short read 117	

sequences may not be as reliable in estimating species richness as the OTUs formed 118	

from near full-length sequences, primarily due to the 16S rRNA gene exhibiting 119	

different degrees of variability across its length and therefore region selection plays 120	
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an important role in accurately estimating microbial diversity (Kim et al. 2011). 121	

Additionally, OTU assignments may not be reliable and can differ on the basis of the 122	

algorithm used (Tikhonov et al. 2015), with common OTU creation approaches 123	

sometimes leading to inflation of species level diversity estimates (Edgar 2013; White 124	

et al. 2010). This is compounded by the fact that certain OTU construction techniques 125	

generate unstable OTUs where the membership of sequences changes significantly 126	

with the addition of new sequences or samples to the dataset and as a consequence, 127	

different sets of OTUs are observed with each clustering run (He et al. 2015). This has 128	

a significant impact on downstream diversity analysis including rarefaction curves, 129	

which determine how well sequencing depth captures diversity as well as 130	

identification of individual OTUs (He et al. 2015; Nguyen et al. 2016). 131	

Our aim was to address these limitations by developing a new taxonomic 132	

annotation pipeline, defined here as Taxonomic Annotation via Shannon entropy (the 133	

TaxaSE system), which employs the novel Shannon entropy based sequence 134	

similarity measure, instead of percentage identity, to quantitatively assess variability 135	

across the whole of the 16S rDNA sequences within an aligned bacteria database, 136	

paving the way for a novel approach towards estimating sequence similarity and 137	

compared its performance against the most widely used QIIME pipeline (Caporaso et 138	

al. 2010). In fact, it was proposed determining the pattern of change at given positions 139	

in 16S rRNA gene may optimise analysis (Woese 1987). The technique has been 140	

utilized in other tools such as oligotyping, which looks at the variation within an 141	

individual OTU (Eren et al. 2013). Furthermore, the limitations associated with OTU 142	

generation and usages were resolved by following an OTU-independent approach 143	

where sequences are annotated individually. This resulted in the highest resolution 144	

annotation via a combination of an improved annotation algorithm as well as 145	
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extracting intra-OTU diversity, compared to the standard 97% OTU similarity 146	

approach, which obscures fine-scale variation. With the improvements in 147	

computational resources available to ecological projects, this approach is now 148	

practical to be used in determining microbial diversity. 149	

To illustrate the effectiveness of our pipeline, in-silico comparison was 150	

performed between the underlying Shannon entropy based metric of the new pipeline 151	

against the percentage identity metric, to demonstrate the improvement in sequence 152	

similarity determination, while the pipeline itself was compared to QIIME on datasets 153	

from sugarcane habitat for both alpha diversity and beta diversity evaluation of the 154	

microbial community. 155	

 156	

Materials & Methods 157	

 158	

Shannon Entropy based sequence similarity scoring metric 159	

SILVA (Quast et al. 2013) Release 123 aligned database of 16S rDNA 160	

sequences was used to quantitatively assess and calculate entropy across the whole 161	

16S rDNA sequence. The database was taken as a matrix M of dimensions m x n, 162	

consisting of m rows and n columns. Each row was an aligned reference sequence 163	

and column denoted locations where a nucleotide, gap or dot occurred. As the 164	

database represented multiple sequence alignments of 16S rRNA, dots were used for 165	

padding before the start and after the end of a reference sequence depending on how 166	

the sequence was aligned against other sequences and therefore were not factored in 167	

any calculation, as they did not signify any information. To simplify calculations, 168	

ambiguous sequences that contained nucleotides other than A, T, C or G such as N 169	

were removed from the database. Shannon entropy was then calculated for every 170	
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column in the database, as given in pseudo code listed in supplementary material 1. 171	

USEARCH sequence aligner (Edgar 2010) was utilized for determining alignments 172	

between reference and query sequences. The system flowchart is illustrated in Figure 173	

1, where USEARCH alignments (Edgar 2010) were used to reconstruct full 174	

alignments between query sequences and reference 16S rDNA gene sequences. This 175	

determined precisely where matches, mismatches and gaps occurred against a 176	

reference sequence. Relative entropy was then calculated using the vectors developed 177	

for each reference sequence and finally each query read was scored. The process is 178	

described as below: 179	

1) Query sequences were aligned with the reference SILVA database. The 180	

resultant data contained complete information of alignment between the 181	

reference and query sequences as well as the location of alignments. 182	

2) Alignments were then reconstructed where location of gaps, matches and 183	

mismatches were determined. 184	

3) Shannon entropy for each query sequence and the matched reference sequence 185	

segment was calculated using the stored vectors in a separate database. 186	

4) Finally, relative Shannon entropy score was calculated and query sequences 187	

were annotated with reference sequence taxonomic annotation. 188	

 189	

Relative Shannon entropy for every query sequence was generated in the following 190	

manner: 191	

1) Shannon entropy value on locations where a nucleotide mismatch occurred 192	

between the reference and query sequence was converted to a negative value 193	

for query sequence.  194	
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2) Next, for both reference sequence and query sequence, the maximum Shannon 195	

entropy value was added on each location. This enabled better segregation of 196	

sequences, which may contain mismatches.  197	

3) Finally, the total entropy value for both reference sequence segment as well as 198	

query sequence was calculated by adding values at every location. 199	

4) A relative entropy score was then calculated by dividing total Shannon 200	

entropy value of a query read by the total Shannon entropy value of the 201	

reference read segment. As every reference sequence had a taxonomic 202	

annotation associated with it, the matched input read was assigned this 203	

annotation. 204	

 205	

Validation of Shannon entropy based scoring metric 206	

 207	

Validation of the new scoring scheme was performed using an in silico approach. 208	

MicroSim: A motif-based next-generation read simulator developed by Schirmer et. 209	

al. was used to generate multiple datasets of 20,000 amplicon reads from reference 210	

sequences from SILVA release 123 database, simulating an Illumina MiSEQ Fusion 211	

Golay V4 Amplicon 250bp (DS78) platform. The following metrics were used in the 212	

validation process: 213	

 214	

Recall: 
!"

!"!!"
 215	

Precision: 
!"

!"!!"
 216	
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Accuracy:	
!"!!"

!"!!"!!"!!"
 217	

Here, TP denotes True Positives, FP as False Positives, TN as True Negatives, 218	

and FN as False Negatives. Thresholds were varied between 0 and 1 to determine 219	

recall, precision and accuracy for both percentage identity and the new Shannon 220	

entropy based scoring scheme. Lastly, for precision vs. recall curves, area under the 221	

curve was also calculated to determine if the new scoring metric is performing better 222	

than percentage identity. 223	

The validation process consisted of removal of taxa approach, where 100 224	

genera, 10 families and 1 class were randomly selected and removed. Sequences 225	

belonging to these removed taxa are effectively novel to the remaining sequences in 226	

the database and therefore should not closely match any of the taxa retained in the 227	

database. This approach can be useful in understanding how the system reacts to 228	

novel sequences that may present themselves in real datasets to which the database is 229	

naïve (Lanzen et al. 2012). Furthermore, application of MicroSim on these sequences 230	

ensured that the resultant mock community to be tested, would be much more 231	

representative of real datasets as compared to random cropping of sequences. 232	

 233	

Real dataset analysis 234	

For the real dataset analysis between TaxaSE and QIIME, samples from sugarcane 235	

environment were selected to elucidate the differences between both pipelines. 236	

Sugarcane leaf, stalk, root and rhizosphere soil samples were collected in November 237	

2014 from eight sugarcane fields growing three sugarcane varieties (KQ228, MQ239 238	

and Q240) near Ingham, Queensland, Australia. Bacterial 16S rRNA amplicon 239	
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sequencing was performed by the NGS facility at Western Sydney University using 240	

Illumina Miseq (2x 301 bp PE) and the 341F/805R primer set. 241	

A total of 158 samples were used, with the breakdown from each sub-habitat 242	

listed in Table 1. To minimize noise artifacts and prevent occurrences of chimeras, the 243	

following preprocessing procedure was followed for all samples: 244	

1) Read trimming: 245	

a. Sequences were trimmed on both R1 and R2 reads removing low 246	

quality regions with Phred (Ewing et al. 1998) score of less than 25 247	

(Q25). This was performed using “seqtk” tool (Li). 248	

2) Paired-end read merging: 249	

a. After quality trimming, both forward and reverse reads were merged 250	

using FLASH (Magoc & Salzberg 2011) with a maximum overlap set 251	

to 200. 252	

3) Chimera removal: 253	

a. Finally, the merged reads were analyzed for the presence of chimeras. 254	

This was accomplished using VSEARCH, a sequence aligner and RDP 255	

(Cole et al. 2014) Gold database which contained 10,049 reference 256	

sequences. Subsequently, chimeras were removed from the samples. 257	

 258	

Given that the new pipeline was developed to annotate on a per-sequence basis, 259	

comparison was based on the distinct number of annotations observed by each 260	

pipeline. OTUs were generated at 97% and 99% sequence similarity for QIIME. 261	

Following the annotation process via RDP classifier, OTUs, which had the same 262	

taxonomic annotations, were combined together to form pseudo-OTUs. Furthermore, 263	

OTUs belonging to Eukaryota and Archaea were removed from QIIME results as the 264	
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primary comparison between both systems was based on bacterial taxonomic 265	

annotations. Lastly, given that the new pipeline was using a completely new sequence 266	

similarity-scoring scheme, hence a new set of thresholds was selected. Primarily, 267	

three comparison approaches were followed and analysis were done via tools 268	

provided in QIIME: 269	

• Alpha diversity comparison:  270	

o Implemented using QIIME’s inbuilt alpha_rarefaction.py script 271	

o Distinct number of taxonomic annotations 272	

o Shannon diversity 273	

• Beta diversity comparison:  274	

o Accomplished by using QIIME’s beta_diversity_through_plots.py 275	

script. Bray Curtis was taken as the distance metric and plots were 276	

generated using the Emperor package (Yoshiki Vázquez-Baeza 2013). 277	

• ADONIS and ANOSIM 278	

o compare_categories.py	script	was	used	for	this	purpose. 279	

 280	

Results 281	

 282	

Scoring metric comparison 283	

The precision vs. recall curve of both Shannon entropy and percentage identity 284	

approaches closely match each other for the removal of genera based dataset (Figure 285	

2-a).  Precision started at less than 0.5, diminishing as recall improved for both 286	

approaches.  For removal of families based validation, the precision vs. recall curve 287	

for Shannon entropy stayed above the precision vs. recall curve for percentage 288	

identity, illustrating better precision at the same recall (Figure 2-b). Precision for both 289	
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curves began at 0.4 and stayed below this until full recall was achieved. Finally, the 290	

precision vs. recall curves for removal of class-based validation approach is shown in 291	

Figure 2-c. Precision was low for both approaches, staying below 0.4.  292	

The area under the curve illustrates the differences between the classification 293	

capabilities of both scoring metrics (Table 2). The new scoring scheme performs 294	

better at removal of families and class based datasets, while showing comparable 295	

performance to percentage identity for removal of genera. 296	

 297	

Pipeline comparison 298	

 299	

Alpha Diversity  300	

Distinct number of taxonomic annotations comparison 301	

For rhizosphere environment, TaxaSE produced the highest number of distinct 302	

taxonomic annotations at 807, while QIIME at 99% OTU similarity produced 578 303	

distinct taxonomic annotations and QIIME at 97% OTU similarity coming up last at 304	

about 515 (Figure 3-a). Welch’s t-test showed a very significant difference between 305	

QIIME at 97% OTU similarity and QIIME at 99% OTU similarity (p=0.0059). 306	

Furthermore, Welch’s t-test also reported statistically very significant difference 307	

between QIIME at 97% OTU similarity and TaxaSE (p=0.0001) as well as between 308	

QIIME at 99% OTU similarity and TaxaSE (p=0.0001). All three approaches were 309	

therefore statistically different from each other, with the highest OTUs for TaxaSE 310	

pipeline. 311	

 For the root environment, here as well TaxaSE produced the largest number of 312	

distinct taxonomic annotations at 890, followed by QIIME at 99% OTU similarity 313	

with 593 distinct annotations and lastly QIIME at 97% OTU similarity at 522 (Figure 314	
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3-b). Welch’s t-test illustrated a similar picture here as well, with a statistically 315	

significant difference between QIIME at 97% OTU similarity and QIIME at 99% 316	

OTU similarity (p=0.0018), a statistically very significant difference between QIIME 317	

at 97% OTU similarity and TaxaSE (p=0.0001) and lastly an extremely statistically 318	

significant between QIIME at 99% OTU similarity and TaxaSE as well (p=0.0001).  319	

 Soil showed similar pattern as with previous environments, with TaxaSE 320	

generating higher number of distinct taxonomic annotations reaching 907, while 321	

QIIME at 99% OTU similarity followed it at 697 annotations and QIIME at 97% 322	

OTU similarity coming up last at 574 distinct annotations (Figure 3-c). A very 323	

statistically significant difference was observed via Welch’s t-test between QIIME at 324	

97% OTU similarity and QIIME at 99% OTU similarity (p=0.003). An extremely 325	

statistically significant difference was observed between QIIME at 97% OTU 326	

similarity and TaxaSE (p=0.0001) as well as between QIIME at 99% OTU similarity 327	

and TaxaSE (p=0.0001). 328	

 Stem was the least diverse of all habitats, and TaxaSE generated a highest 329	

number of distinct taxonomic annotations at 167 (Figure 3-d). QIIME at 99% OTU 330	

similarity generated 121 distinct annotations while QIIME at 97% OTU similarity 331	

produced 101 distinct annotations. The difference was not statistically significant, as 332	

found by Welch’s t-test between QIIME at 97% OTU similarityand QIIME at 99% 333	

OTU similarity (p=0.1742). However, statistically significant difference was found 334	

between QIIME at 97% OTU similarity and TaxaSE (p=0.0017), as well as between 335	

QIIME at 99% OTU similarity and TaxaSE (p=0.0311). 336	

 337	

Shannon diversity index comparison 338	

 339	
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Shannon diversity index comparison displayed a similar picture as illustrated for 340	

distinct taxonomic annotation results. For rhizsophere samples, TaxaSE produced the 341	

highest Shannon diversity index for distinct taxonomic annotation based comparison, 342	

with a value of 7.7, compared to QIIME at 99% OTU similarity at 7.1 and QIIME at 343	

97% OTU similarity at 6.9, as shown in Figure 4-a. Welch’s t-test produced a 344	

statistically significant difference between QIIME at 97% OTU and QIIME at 99% 345	

OTU similarity (p = 0.045). The difference was statistically very significant between 346	

both QIIME approaches and TaxaSE (p = 0.0001). 347	

 Samples from root environment showed similar Shannon diversity index 348	

results between the two QIIME methods (Figure 4-b), with TaxaSE leading with more 349	

than 7.6, followed by QIIME at 99% OTU similarity with 6.8 and lastly QIIME at 350	

97% OTU similarity at 6.6. The difference was not statistically significant between 351	

QIIME at 97% OTU similarity and QIIME at 99% OTU similarity (p = 0.1639). 352	

However, similar to rhizosphere samples, the difference was statistically very 353	

significant between both QIIME approaches and TaxaSE (p = 0.0001).  354	

 TaxaSE also had higher Shannon diversity results for soil samples compared 355	

to QIIME at 97% and QIIME at 99% (Figure 4-c), where TaxaSE showed slightly 356	

more diversity index at 7.77 than both QIIME methods, with QIIME at 97% OTU 357	

similarity at 7.1 and QIIME at 99% OTU similarity at 7.3. Welch’s t-test illustrated 358	

that the difference was not statistically significant between QIIME at 97% OTU and 359	

QIIME at 99% OTU similarity (p = 0.0565). However, the difference was statistically 360	

very significant between TaxaSE and both QIIME approaches (p = 0.0001). 361	

 Finally, Shannon diversity index results for all three methods for stem samples 362	

showed TaxaSE having an average Shannon diversity of 2.7 while QIIME at 99% 363	

OTU similarity produced 2.4 and finally QIIME at 97% OTU similarity produced the 364	
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lowest Shannon diversity at 1.7 (Figure 4-d). The difference was statistically 365	

significant very between QIIME at 97% OTU similarity and QIIME at 99% OTU 366	

similarity and also between QIIME at 97% OTU similarity and TaxaSE (p = 0.0001). 367	

However, the difference was not statistically significant between QIIME at 99% OTU 368	

and TaxaSE (p = 0.0591). 369	

 370	

Beta Diversity comparison 371	

 372	

The beta diversity plots were almost identical across all three approaches and 373	

illustrated the same separation pattern of samples. The beta diversity plot for QIIME 374	

at 97% OTU similarity is shown in Figure 5-a. Stem samples were segregated from 375	

the samples belonging to other environments. Furthermore, root and soil samples 376	

displayed some segregation as well. The first principle coordinate, PC1 explained a 377	

variance of 58.31% in the case of QIIME at 97% OTU similarity. 378	

Beta diversity plot for QIIME at 99% OTU similarity, as illustrated in Figure 379	

5-b, provided a similar pattern as was seen for QIIME at 97% OTU similarity (Figure 380	

5-a). Stem samples were segregated from the other samples and the first principle 381	

coordinate explained a variance of 57%, slightly lower than what was observed for 382	

QIIME at 97% OTU similarity. 383	

Finally, the beta diversity plot for TaxaSE system is shown in Figure 7-c and 384	

here as well, stem samples were well segregated from other samples. Furthermore, 385	

soil samples were more densely packed along the first axis for TaxaSE system 386	

compared to either of QIIME based methods. The first principle coordinate axis, PC1 387	

explained 53.22% of variance, the lowest between all three methods. 388	
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ADONIS results for the three methods as listed in Table 3 show a slightly 389	

different pattern, where the grouping of samples on the basis of environment was best 390	

explained by QIIME at 97% OTU similarity with a R2 value of 0.6797, followed by 391	

QIIME at 99% OTU similarity with a R2 value of 0.671 and lastly TaxaSE, with a R2 392	

value of 0.622. Overall, the ADONIS results were similar between all three methods. 393	

The ANOSIM results illustrated that for all of the methods, the grouping of 394	

samples by environments is statistically significant, with p-value of 0.001 (Table 4). 395	

All three methods generated an R-value of more than 0.8, however TaxaSE produced 396	

a slightly lower, but still strong ANOSIM result compared to the other two methods.   397	

 398	

Discussion 399	

 400	

Shannon entropy based sequence similarity metric  401	

The new Shannon entropy based sequence similarity metric can be used as a 402	

replacement of the current standard percentage identity. The new approach showed 403	

comparative performance for the whole SILVA dataset and slightly lower for removal 404	

of genus validation dataset. However it improved upon percentage identity for 405	

removal of families and classes datasets. 406	

 For removal of genus dataset, sequences were checked at family level. Both 407	

approaches generated almost the exact same result in this case, with percentage 408	

identity slightly leading over Shannon entropy approach. However, the Shannon 409	

entropy based approach showed improved performance compared to Percentage 410	

Identity based approach, with higher area under the curve in the case of removal of 411	

families dataset. For removal of class dataset, sequences were checked at phylum 412	
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level and while both approaches were similar in their capability, Shannon entropy 413	

based approach demonstrates slightly improved performance.  414	

This translates into better annotation of novel sequences at the order level as 415	

well as phylum level compared to the percentage Identity based approach and is 416	

therefore much more effective at taxonomic annotation as novel sequences can be 417	

annotated better in the case of the new approach. 418	

 Unlike percentage identity, the new Shannon entropy based approach 419	

effectively captures evolutionary conservation from the 16S rDNA sequences as 420	

every location’s degree of variability is directly determined and used in the new 421	

scoring scheme. This represents an advance towards better similarity measurements, 422	

which are in accordance with the evolution of sequences (Woese 1987). The results 423	

illustrate better annotation capability at class and families level while being 424	

comparative to percentage identity at other taxa levels. 425	

 Given that the vast majority of microbes are uncultivated (Huson et al. 2007; 426	

Marcy et al. 2007), there is a higher likelihood that in many ecological studies 427	

unknown sequences will be detected. The best possible annotation of these sequences 428	

will give insight into the inner workings of the environment, even if the exact 429	

taxonomic annotation cannot be determined at finer taxonomic levels (Huson et al. 430	

2007). For this reason, new approaches should be able to handle these sequences in an 431	

improved fashion and here the new Shannon entropy based approach provides 432	

improved performance over the industry standard Percentage Identity. 433	

 434	

TaxaSE performance evaluation 435	

TaxaSE represents an advancement in taxonomic annotation compared to current 436	

approaches, with the utilization of a more evolutionary correct sequence similarity 437	
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measure and its application in a microbial taxonomic annotation pipeline.  Given that 438	

the true number of species is unknown for a real dataset, a comparison cannot be 439	

made solely on the basis of number of species identified. Nonetheless, the real 440	

potential of the pipeline is illustrated when an OTU independent, per sequence 441	

annotation is performed. Given that TaxaSE produced better or similar patterns with 442	

respect to alpha diversity results, the new pipeline is as applicable as other pipelines 443	

in assessing alpha diversity in ecological studies.  444	

 The microbial community was observed to be more diverse in the case of soil, 445	

rhizosphere and root habitats, which are expected to have a high degree of diversity 446	

(Kirk et al. 2004; Pinton et al. 2001). However samples from the stem environment 447	

were far less diverse. This was primarily due to different species inhabiting plant 448	

stem, which may include endophytic microbes that are beneficial to the growth 449	

(Gouda et al. 2016) and health of the plant (Miguel et al. 2016) as well as pathogenic 450	

bacteria, however a single plant species may play as a host for only a limited number 451	

of microbes (Imam et al. 2016). Furthermore, the niche endophyte population is 452	

dependent on various factors such as host species and environmental conditions 453	

(Gouda et al. 2016).  454	

As for beta diversity analysis, ADONIS results showed that QIIME at 97% 455	

OTU similarity explained the most variance, followed closely by QIIME at 99% OTU 456	

similarity, with TaxaSE explaining the least. The results correlate inversely with the 457	

number of distinct taxonomic annotations, where QIIME at 97% OTU similarity 458	

produced the least number of distinct annotations and explained the most variance and 459	

TaxaSE system produced the most number of distinct annotations but with low 460	

explanation of variance. Therefore, given that the ADONIS test described how much 461	

variation is explained by grouping on the basis of location, less variation is being 462	
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explained by approaches with a higher number of taxonomic annotations. This may be 463	

because some taxonomic annotations were common across different habitats and 464	

approaches such as QIIME at 99% and TaxaSE were able to extract these annotations 465	

more in comparison to QIIME at 97%. Beta Diversity plots illustrated similar patterns 466	

across all approaches, where QIIME at 97% OTU similarity, QIIME at 99% OTU 467	

similarity and TaxaSE, displayed almost identical patterns and were able to 468	

differentiate between different habitats. Furthermore, similar to OTU comparison, 469	

here as well stem samples were distinctly separated from root, soil and rhizsophere 470	

for all three methods. Thus TaxaSE is well suited to identifying ecologically distinct 471	

microbial assemblages. In the case of TaxaSE, slightly less variability was accounted 472	

by the first axis, PC1 compared to QIIME at 97% OTU similarity and 99% OTU 473	

similarity. This may be because more common taxa were observed for TaxaSE system 474	

and therefore the ability of the system to explain variability on the basis of taxonomy 475	

fell as an increase in the number of variables leads to a reduction in the total variation 476	

explained (Nagelkerke 1991).  A similar case was observed between QIIME at 97% 477	

OTU similarity and QIIME at 99% OTU similarity as the later’s first axis explained 478	

slightly less variability at 57%, compared to former’s 58.31%.  479	

 480	

Conclusion 481	

The novel Shannon entropy based approach demonstrated its effectiveness over 482	

percentage identity, where the evolutionary conservation information of 16S rRNA is 483	

directly exploited to provide a more accurate sequence similarity metric. Most 484	

popular approaches forgo the utilization of this inherent information contained within 485	

the 16S rRNA sequences, instead relying on a measure that only counts mismatches 486	

between sequences. Given the variability across the whole of 16S rRNA, not every 487	
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base may be equally important as variable locations are much more essential in 488	

differentiating between sequences compared to conserved regions (Chakravorty et al. 489	

2007). 490	

 The approach is competitive that it can be used alongside commonly applied 491	

percentage identity scoring schemes. Its higher performance at higher taxa levels is 492	

especially important as majority of bacterial sequences are not annotated, and more 493	

and more novel sequences are being detected in almost all of the next-generation 494	

sequencing projects. It’s likely that these new sequences may not be resolved at 495	

genera level and hence new approaches, which are better at taxonomic annotation at 496	

higher taxonomic levels than genera, would be more appropriate.  497	

 Building upon this novel approach to sequence similarity is the new TaxaSE 498	

pipeline. The OTU independent approach, central to TaxaSE, provides an alternative 499	

method to improving taxonomic annotation. While this comes at the expense of more 500	

computational time and requirement of higher resources, it can be used to delve 501	

deeply into finer level of taxa levels and improve annotation process as a result, which 502	

would otherwise go unnoticed with an OTU based method. Alpha diversity results 503	

also illustrate a similar picture where TaxaSE generated the highest number of 504	

annotations across all habitats in comparison to QIIME based methods. This 505	

highlights the benefit of following this new approach.  506	

 The results of applied environmental dataset analysis demonstrate the 507	

advantage of using TaxaSE over OTU based, industry standard pipelines such as 508	

QIIME while demonstrating comparable performance in distinct taxonomic 509	

annotation based approach. With the ability to annotate sequences at the highest 510	

resolution (e.g. species level) annotation at times as well as using a novel scoring 511	
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approach based on Shannon entropy, TaxaSE represents a step forward in taxonomic 512	

annotation of microbial DNA sequences. 513	

 514	
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	699	

Figure 1: System Process Diagram where data files are shown in green, 700	

processing tasks in blue and results in purple. 701	
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	725	
Figure 2: Precision vs. recall graph for a) removal of genera dataset b) removal 726	

of families dataset and c) removal of class dataset, with percentage identity in 727	

blue and Shannon entropy approach in red. 728	

	729	
	730	

0.3	

0.35	

0.4	

0.45	

0.5	

0.55	

0	 0.2	 0.4	 0.6	 0.8	 1	

Pr
ec
isi
on

	

Recall	

PI	

SE	

0.3	

0.32	

0.34	

0.36	

0.38	

0.4	

0	 0.2	 0.4	 0.6	 0.8	 1	

Pr
ec
isi
on

	

Recall	

PI	

SE	

0.28	

0.3	

0.32	

0.34	

0.36	

0.38	

0	 0.2	 0.4	 0.6	 0.8	 1	

Pr
ec
isi
on

	

Recall	

PI	

SE	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2941v1 | CC BY 4.0 Open Access | rec: 21 Apr 2017, publ: 21 Apr 2017



	731	

Figure 3: Observed species for distinct taxonomic annotation comparison with a) 732	

rhizosphere, b) root, c) soil and d) stem. QIIME at 97% OTU similarity is shown 733	

in blue, QIIME at 99% OTU similarity in dark blue and TaxaSE in orange. 734	

Error bars represent standard error. Significance levels are showed with 735	

asterisks, where * represents p < 0.05, **  represents p < 0.01 and *** represents 736	

p < 0.001. 737	
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	738	

Figure 4: Shannon diversity for distinct taxonomic annotation comparison with 739	

a) rhizosphere, b) root, c) soil and d) stem. QIIME at 97% OTU similarity is 740	

shown in blue, QIIME at 99% OTU similarity in dark blue and TaxaSE in 741	

orange. Error bars represent standard error. Significance levels are shown with 742	

asterisks, where * represents p < 0.05, **  represents p < 0.01 and *** represents 743	

p < 0.001. 744	

6.2	

6.4	

6.6	

6.8	

7	

7.2	

7.4	

7.6	

7.8	

8	

8.2	

QIIME	-	
97%	

QIIME	-	
99%	

TaxaSE	

Sh
an

no
n	
Di
ve
rs
ity

	

5	

5.5	

6	

6.5	

7	

7.5	

8	

8.5	

QIIME	-	
97%	

QIIME	-	
99%	

TaxaSE	

6	

6.5	

7	

7.5	

8	

8.5	

QIIME	-	
97%	

QIIME	-	
99%	

TaxaSE	

Sh
an

no
n	
Di
ve
rs
ity

	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

QIIME	-	
97%	

QIIME	-	
99%	

TaxaSE	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2941v1 | CC BY 4.0 Open Access | rec: 21 Apr 2017, publ: 21 Apr 2017



	745	

Figure 5: Beta diversity principle coordinate analysis plots for distinct taxonomic 746	

annotation comparison of sugarcane dataset with a) QIIME at 97% OTU 747	

similarity, b) QIIME at 99% OTU similarity and c) TaxaSE. Rhizosphere 748	

samples are shown in red, root in blue, soil in orange and stem in green. 749	
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Table 1: Environmental sample data used for comparative analysis 750	

Sub-habitat	 Number	of	Samples	

Rhizosphere	 12	

Root	 45	

Soil	 54	

Stem	 47	

Total	 158	
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Table 2: Area under the curve for removal of taxa validation 785	

Area	under	the	curve	 Percentage	Identity	 Shannon	Entropy	
Genera	 0.393	 0.392	
Families	 0.345	 0.349	
Class	 0.347	 0.348	
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Table 3: ADONIS results for distinct taxonomic annotation comparison between 829	

QIIME at 97% OTU similarity, QIIME at 99% OTU similarity and TaxaSE. 830	

QIIME at 97% OTU similarity 

 Degree of 

freedom 

Sum of 

squares 

Mean 

Squares 

F-Model R2 value p-value 

Habitats 3 25.417   8.4725   99.008 0.67965   0.001 

Residuals 140 11.980   0.0856           0.32035         

Total 143 37.398                    1.00000     

QIIME at 99% OTU similarity 

 Degree of 

freedom 

Sum of 

squares 

Mean 

Squares 

F-Model R2 value p-value 

Habitats 3 25.317   8.4391   95.371 0.67145   0.001 

Residuals 140 12.388   0.0885           0.32855         

Total 143 37.706                    1.00000       

TaxaSE 

 Degree of 

freedom 

Sum of 

squares 

Mean 

Squares 

F-Model R2 value p-value 

Habitats 3 23.700   7.9000   76.743 0.62186   0.001 

Residuals 140 14.412   0.1029           0.37814         

Total 143 38.112                    1.00000    
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Table 4: ANOSIM results for distinct taxonomic annotations comparison 843	

between QIIME at 97% OTU similarity, QIIME at 99% OTU similarity and 844	

TaxaSE. 845	

ANOSIM	

Approach	 p-value	 R-value	

QIIME	at	97%	 0.001	 0.8528	

QIIME	at	99%	 0.001	 0.8558	

TaxaSE	 0.001	 0.8238	
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