
Parallel and in-process compilation of individuals for genetic

programming on GPU

Hakan Ayral Corresp., 1 , Songül Albayrak 1

1 Department of Computer Engineering, Yildiz Technical University, İstanbul, Turkey

Corresponding Author: Hakan Ayral
Email address: hayral@gmail.com

Three approaches to implement genetic programming on GPU hardware are compilation, interpretation
and direct generation of machine code. The compiled approach is known to have a prohibitive overhead
compared to other two.

This paper investigates methods to accelerate compilation of individuals for genetic programming on
GPU hardware. We apply in-process compilation to minimize the compilation overhead at each
generation; and we investigate ways to parallelize in-process compilation. In-process compilation doesn’t
lend itself to trivial parallelization with threads; we propose a multiprocess parallelization using memory
sharing and operating systems interprocess communication primitives. With parallelized compilation we
achieve further reductions on compilation overhead. Another contribution of this work is the code
framework we built in C# for the experiments. The framework makes it possible to build arbitrary
grammatical genetic programming experiments that run on GPU with minimal extra coding effort, and is
available as open source.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

Parallel and in-process compilation of1

individuals for genetic programming on2

GPU3

Hakan Ayral1 and Songül Albayrak1
4

1Yildiz Technical University, Computer Engineering Department, Istanbul, TURKEY5

Corresponding author:6

Hakan Ayral17

Email address: hayral@gmail.com , songul@ce.yildiz.edu.tr8

ABSTRACT9

Three approaches to implement genetic programming on GPU hardware are compilation, interpretation

and direct generation of machine code. The compiled approach is known to have a prohibitive overhead

compared to other two.

10

11

12

This paper investigates methods to accelerate compilation of individuals for genetic programming on GPU

hardware. We apply in-process compilation to minimize the compilation overhead at each generation;

and we investigate ways to parallelize in-process compilation. In-process compilation doesn’t lend itself

to trivial parallelization with threads; we propose a multiprocess parallelization using memory sharing

and operating systems interprocess communication primitives. With parallelized compilation we achieve

further reductions on compilation overhead. Another contribution of this work is the code framework we

built in C# for the experiments. The framework makes it possible to build arbitrary grammatical genetic

programming experiments that run on GPU with minimal extra coding effort, and is available as open

source.

13

14

15

16

17

18

19

20

21

INTRODUCTION22

Genetic programming is an evolutionary computation technique, where the objective is to find a program23

(i.e. a simple expression, a sequence of statements, or a full-scale function) that satisfy a behavioral24

specification expressed as test cases along with expected results. Grammatical genetic programming is a25

subfield of genetic programming, where the search space is restricted to a language defined as a BNF26

grammar, thus ensuring all individuals to be syntactically valid.27

Processing power provided by graphic processing units (GPUs) make them an attractive platform28

for evolutionary computation due to the inherently parallelizable nature of the latter. First genetic29

programming implementations shown to run on GPUs were Chitty (2007) and Harding and Banzhaf30

(2007).31

Just like in the CPU case, genetic programming on GPU requires the code represented by individuals32

to be rendered to an executable form; this can be achieved by compilation to an executable binary object,33

by conversion to an intermediate representation of a custom interpreter developed to run on GPU, or by34

directly generating machine-code for the GPU architecture. Compilation of individuals’ codes for GPU is35

known to have a prohibitive overhead that is hard to offset with the gains from the GPU acceleration.36

Compiled approach for genetic programming on GPU is especially important for grammatical ge-37

netic programming; the representation of individuals for linear and cartesian genetic programming are38

inherently suitable for simple interpreters and circuit simulators implementable on a GPU. On the other39

hand grammatical genetic programming aims to make higher level constructs and structures representable,40

using individuals that represent strings of tokens belonging to a language defined by a grammar; unfor-41

tunately executing such a representation sooner or later requires some form of compilation or complex42

interpretation.43

In this paper we first present three benchmark problems we implemented to measure compilation times44

with. We use grammatical genetic programming for the experiments, therefore we define the benchmark45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

problems with their grammars, test cases and fitness functions.46

Then we set a baseline by measuring the compilation time of individuals for those three problems,47

using the conventional CUDA compiler Nvcc. Afterwards we measure the speedup obtained by the48

in-process compilation using the same benchmark problem setups. We proceed by presenting the obstacles49

encountered on parallelization of in-process compilation. Finally we propose a parallelization scheme for50

in-process compilation, and measure the extra speedup achieved.51

PRIOR WORK52

Harding and Banzhaf (2009) deals with the compilation overhead of individuals for genetic programming53

on GPU using CUDA. Article proposes a distributed compilation scheme where a cluster of around 1654

computers compile different individuals in parallel; and states the need for large number of fitness cases55

to offset the compilation overhead. It correctly predicts that this mismatch will get worse with increasing56

number of cores on GPUs, but also states that ”a large number of classic benchmark GP problems fit57

into this category”. Based on figure 5 of the article it can be computed that for a population size of 256,58

authors required 25 ms/individual in total1.59

Langdon and Harman (2010b) presents first use of grammatical genetic programming on the GPU,60

applied to a string matching problem to improve gzip compression; with a grammar constructed from61

fragments of an existing string matching CUDA code. Based on figure 11 of the accompanying technical62

reportLangdon and Harman (2010a) a population of 1000 individuals (10 kernels of 100 individuals63

each) takes around 50 seconds to compile using nvcc from CUDA v2.3 SDK, which puts the average64

compilation time to approximately 50 ms/individual.65

In Langdon (2011) an overview of genetic programming on GPU hardware is provided, along with a66

brief presentation and comparison of compiled and interpreted approaches. As part of the comparison67

it underlines the trade-off between the speed of compiled code versus the overhead of compilation, and68

states that the command line CUDA compiler was especially slow, hence why interpreted approach is69

usually preferred.70

Pospichal et al. (2011) investigate the acceleration of grammatical evolution by use of GPUs, by71

considering performance impact of different design decisions like thread/block granularity, different types72

of memory on GPU, host-device memory transactions. As part of the article compilation to PTX form73

and loading to GPU with JIT compilation on driver level, is compared with directly compiling to cubin74

object and loading to GPU without further JIT compilation. For a kernel containing 90 individuals takes75

540ms to compile to CUBIN with sub-millisecond upload time to GPU, vs 450ms for compilation to76

PTX and 80ms for JIT compilation and upload to GPU using nvcc compiler from CUDA v3.2 SDK. Thus77

PTX+JIT case which is the faster of the two achieves average compilation time of 5.88 ms/individual.78

Lewis and Magoulas (2011) proposes an approach for improving compilation times of individuals for79

genetic programming on GPU, where common statements on similar locations are aligned as much as80

possible across individuals. After alignment individuals with overlaps are merged to common kernels81

such that aligned statements become a single statement, and diverging statements are enclosed with82

conditionals to make them part of the code path only if the value of individual ID parameter matches83

an individual having that divergent statements. Authors state that in exchange for faster compilation84

times, they get slightly slower GPU runtime with merged kernels as all individuals need to evaluate every85

condition at the entry of each divergent code block coming from different individuals. In results it is86

stated that for individuals with 300 instructions, compile time is 347 ms/individual if it’s unaligned, and87

72 ms/individual if it’s aligned (time for alignment itself not included) with nvcc compiler from CUDA88

v3.2 SDK.89

da Silva et al. (2015) provides a comparison of compilation, interpretation and direct generation90

of machine code methods for genetic programming on GPUs. Five benchmark problems consisting of91

Mexican Hat and Salutowicz regressions, Mackey-Glass time series forecast, Sobel Filter and 20-bit92

Multiplexer are used to measure the comparative speed of the three mentioned methods. It is stated that93

compilation method uses nvcc compiler from CUDA V5.5 SDK. Compilation time breakdown is only94

provided for Mexican Hat regression benchmark on Table 6, where it is stated that total nvcc compilation95

time took 135,027 seconds and total JIT compilation took 106,458 seconds. Table 5 states that Mexican96

1This number includes network traffic, XO, mutation and processing time on GPU, in addition to compilation times. In our case

the difference between compilation time and total time has constantly been at sub-millisecond level per population on all problems;

thus for comparison purposes compile times we present can also be taken as total time with an error margin of 1ms/pop.size

2/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

Hat problem uses 400K generations and a population size of 36. Therefore we can say that an average97

compilation time of (135,027+106,458)/36×400,000 = 16.76 ms/individual is achieved.98

IMPLEMENTED PROBLEMS FOR MEASUREMENT99

We implemented three problems as benchmark to compare compilation speed. They consist of a general100

program synthesis problem, Keijzer-6 as a regression problem Keijzer (2003), and 5-bit Multiplier as a101

multi output boolean problem . The latter two are included in the ”Alternatives to blacklisted problems”102

table on White et al. (2012).103

We use grammatical genetic programming as our representation and phenotype production method;104

therefore all problems are defined with a BNF grammar that defines a search space of syntactically valid105

programs, along with some test cases and a fitness function specific to the problem. For all three problems,106

a genotype which is a list of (initially random) integers derives to a phenotype which is a valid CUDA C107

expression, or code block in form of a list of statements. All individuals are appended and prepended with108

some initialization and finalization code which serves to setup up the input state and write the output to109

GPU memory afterwards. See Appendix for BNF Grammars and codes used to surround the individuals.110

Search Problem111

Search Problem is designed to evolve a function which can identify whether a search value is present in112

an integer list, and return its position if present or return -1 otherwise.113

We first proposed this problem as a general program synthesis benchmark in Ayral and Albayrak (ress).114

The grammar for the problem is inspired by O’Neill et al. (2014); we designed it to be a subproblem115

of the more general integer sort problem case along with some others. It also bears some similarity to116

problems presented in Helmuth and Spector (2015) based on, the generality of its usecase, combined with117

simplicity of its implementation.118

Test cases consist of unordered lists of random integers in the range [0,50], and list lengths vary119

between 3 and 20. Test cases are randomly generated but half of them are ensured to contain the value120

searched, and others ensured not to contain. We employed a binary fitness function, which returns 1 if the121

returned result is correct (position of searched value or -1 if it’s not present on list) or 0 if it’s not correct;122

hence the fitness of an individual is the sum of its fitnesses over all test cases, which evolutionary engine123

tries to maximize.124

Keijzer-6125

Keijzer-6 function, introduced in Keijzer (2003), is the function K6(x) = ∑
x
n=1

1
n

which maps a single126

integer parameter to the partial sum of harmonic series with number of terms indicated by its parameter.127

Regression of Keijzer-6 function is one of the recommended alternatives to replace simpler symbolic128

regression problems like quartic polynomial White et al. (2012).129

For this problem we used a modified version of the grammar given in Nicolau and Fenton (2016),130

and Fagan et al. (2016), with the only modification of increasing constant and variable token ratio as131

the expression nesting gets deeper. We used the root mean squared error as fitness function which is the132

accepted practice for this problem.133

5-bit multiplier134

5-bit multiplier problem consists of finding a boolean relation that takes 10 binary inputs to 10 binary135

outputs, where two groups of 5 inputs each represent an integer up to 25 −1 in binary, and the output136

represents a single integer up to 210−1, such that the output is the multiplication of the two input numbers.137

This problem is generally attacked as 10 independent binary regression problems, with each bit of the138

output is separately evolved as a circuit or boolean function.139

It’s easy to show that the number of n-bit input m-bit output binary relations are 2m(2n), which grows140

super-exponentially. Multiple output multiplier is the recommended alternative to Multiplexer and Parity141

problems in White et al. (2012)142

We transfer input to and output from GPU with bits packed as a single 32bit integer; hence there is a143

code preamble before first individual to unpack the input bits, and a post-amble after each individual to144

pack the 10 bits computed by evolved expressions as an integer.145

The fitness function for 5-bit multiplier computes the number of bits different between the individual’s146

response and correct answer, by computing the pop count of these two XORed.147

3/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

DEVELOPMENT AND EXPERIMENT SETUP148

Hardware Platform149

All experiments have been conducted on a dual Xeon E5-2670 (8 physical 16 logical cores per CPU, 32150

cores in total) platform running at 2.6Ghz equipped with 60GB RAM, along with dual SSD storage and151

four NVidia GRID K520 GPUs. Each GPU itself consists of 1536 cores spread through 8 multiprocessors152

running at 800Mhz, along with 4GB GDDR5 RAM 2 and is able to sustain 2 teraflops of single precision153

operations (in total 6144 cores and 16GB GDDR5 VRAM which can theoretically sustain 8 teraflops154

single precision computation assuming no other bottlenecks). GPUs are accessed for computation through155

NVidia CUDA v8 API and libraries, running on top of Windows Server 2012 R2 operating system.156

Development Environment157

Codes related to grammar generation, parsing, derivation, genetic programming, evolution, fitness158

computation and GPU access has been implemented in C#, using managedCuda 3 for CUDA API159

bindings and NVRTC interface, along with CUDAfy.NET 4 for interfacing to NVCC command line160

compiler. The grammars for the problems has been prepared such that the languages defined are valid161

subsets of CUDA C language specialized towards the respective problems.162

Experiment Parameters163

We ran each experiment with population sizes starting from 20 individual per population, going up to 300164

with increments of 20. As the subject of interest is compilation times and not fitness, we measured the165

following three parameters to evaluate compilation speed:166

(i) ptx : Cuda source code to Ptx compilation time per individual167

(ii) jit : Ptx to Cubin object compilation time per individual168

(iii) other : All remaining operations a GP cycle requires (i.e compiled individuals running on GPU,169

downloading produced results, computing fitness values, evolutionary selection, cross over, muta-170

tion, etc.)171

The value of other is measured to be always at sub-millisecond level, in all experiments, all problems172

and for all population sizes. Therefore it does not appear on plots. For all practical purposes ptx+ jit can173

be considered as the total time cost of a complete cycle for a generation, with an error margin of 1ms
pop.size

.174

Each data point on plots corresponds to the average of one of those measurements for the corresponding175

(populationsize,measurementtype,experiment) triple. Each average is computed over the measurement176

values obtained for the first 10 generations of 15 different populations for given size (thus effectively177

the compile times of 150 generations averaged). The reason for not using 150 generations of a single178

population directly is that a population gains bias towards to a certain type of individuals after certain179

number of generations, and stops representing the inherent unbiased distribution of grammar.180

The number of test cases used is dependent to the nature of problem; on the other hand as each test181

case is run as a GPU thread, it is desirable that the number of test cases are a multiple of 32 on any182

problem, as finest granularity for task scheduling on modern GPUs is a group of 32 threads which is183

called a Warp. For non multiple of 32 test cases, GPU transparently rounds up the number to nearest184

multiple of 32 and allocate cores accordingly, with some threads from the last warp work on cores with185

output disabled. The number of test cases we used during experiments were 32 for Search Problem, 64186

for regression of Keijzer-6 function and 1024 (= 2(5+5)) for 5-bit Binary Multiplier Problem. For all187

experiments both mutation and crossover rate was set to 0.7; these rates do not affect the compilation188

times.189

EXPERIMENT RESULTS190

Conventional Compilation as Baseline191

NVCC is the default compiler of CUDA platform, it is distributed as a command line application. In192

addition to compilation of cuda C source codes, it performs tasks such as the separation of source code as193

2see validation of hardware used at experiment: http://www.techpowerup.com/gpuz/details/7u5xd/
3https://kunzmi.github.io/managedCuda/
4https://cudafy.codeplex.com/

4/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

population size (#individuals)

0 50 100 150 200 250 300 350

ti
m

e
 (

m
s
)

0

10

20

30

40

50

60

70

80

90

Search Problem

Keijzer-6 Regression

5-bit Multiplier

(a) Per individual compile time

population size (#individuals)

0 50 100 150 200 250 300 350

ti
m

e
 (

s
e
c
)

1

2

3

4

5

6

7

Search Problem

Keijzer-6 Regression

5-bit Multiplier

(b) Total compile time

Figure 1. Nvcc compilation times by population size.

host code and device code, calling the underlying host compiler (GCC or Visual C compiler) for host part194

of source code, and linking compiled host and device object files.195

Fib1(a) shows that compilation times level out at 11.2 ms/individual for Search Problem, at 7.62196

ms/individual for Keijzer-6 regression, and at 17.2 ms/individual for 5-bit multiplier problem. It can197

be seen on Fig.1(b) that, even though not obvious, the total compilation time does not increase linearly,198

which is most observable on trace of 5-bit multiplier problem. As Nvcc is a separate process, it isn’t199

possible to measure the distribution of compilation time between source to ptx, ptx to cubin, and all other200

setup work (i.e. process launch overhead, disk I/O); therefore it is not possible to pinpoint the source of201

nonlinearity on total compilation time.202

The need for successive invocations of Nvcc application, and all data transfers being handled over disk203

files are the main drawbacks of Nvcc use in a real time5 context, which is the case in genetic programming.204

Eventhough the repeated creation and teardown of NVCC process most probably guarantees that the205

application stays on disk cache, this still prevents it to stay cached on processor L1/L2 caches.206

In-process Compilation207

NVRTC is a runtime compilation library for CUDA C, it was first released as part of v7 of CUDA platform208

in 2015. NVRTC accepts CUDA source code and compiles it to PTX in-memory. The PTX string209

generated by NVRTC can be further compiled to device dependent CUBIN object file and loaded with210

CUDA Driver API still without persisting it to a disk file. This provides optimizations and performance211

not possible in off-line static compilation.212

Without NVRTC, for each compilation a separate process needs to be spawned to execute nvcc at213

runtime. This has significant overhead drawback, NVRTC addresses these issues by providing a library214

interface that eliminates overhead of spawning separate processes, and extra disk I/O.215

On figures 2,3 and 4 it can be seen that in-process compilation of individuals not only provides216

reduced compilation times for all problems on all population sizes, it also allows to reach asymptotically217

optimal per individual compilation time with much smaller populations. The fastest compilation times218

achieved with in-process compilation is 4.14 ms/individual for Keijzer-6 regression (at 300 individuals219

per population), 10.88 ms/individual for 5-bit multiplier problem (at 100 individuals per population6), and220

6.89 ms/individual for Search Problem (at 280 individuals per population7). The total compilation time221

speed ups are measured to be in the order of 261% to 176% for the K6 regression problem, 288% to 124%222

for the 5-bit multiplier problem, and 272% to 143% for the Search Problem, depending on population size223

(see Fig.5).224

5not as in hard real time, but as prolonged, successive and throughput sensitive use
6compilation speed at 300 individuals per population is 13.29 ms/individual
7compilation speed at 300 individuals per population is 7.76 ms/individual

5/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

population size (#individuals)

0 50 100 150 200 250 300

c
o
m

p
ile

 t
im

e
 p

e
r

in
d
iv

id
u
a
l
(m

s
)

0

10

20

30

40

50

60

70

80

out of process compilation

inprocess compilation

(a) Per individual

population size (#individuals)

0 50 100 150 200 250 300

p
o
p
u
la

ti
o
n
 c

o
m

p
ile

 t
im

e
 (

s
e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

out of process compilation

inprocess compilation

(b) Total

Figure 2. In-process and out of process compilation times by population size, for Search Problem

population size (#individuals)

0 50 100 150 200 250 300

c
o
m

p
ile

 t
im

e
 p

e
r

in
d
iv

id
u
a
l
(m

s
)

0

10

20

30

40

50

60

70

80

out of process compilation

inprocess compilation

(a) Per individual

population size (#individuals)

0 50 100 150 200 250 300

p
o
p
u
la

ti
o
n
 c

o
m

p
ile

 t
im

e
 (

s
e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

out of process compilation

inprocess compilation

(b) Total

Figure 3. In-process and out of process compilation times by population size, for Keijzer-6 Regression

population size (#individuals)

0 50 100 150 200 250 300

c
o
m

p
ile

 t
im

e
 p

e
r

in
d
iv

id
u
a
l
(m

s
)

0

10

20

30

40

50

60

70

80

out of process compilation

inprocess compilation

(a) Per individual

population size (#individuals)

0 50 100 150 200 250 300

p
o
p
u
la

ti
o
n
 c

o
m

p
ile

 t
im

e
 (

s
e
c
)

0

1

2

3

4

5

6

out of process compilation

inprocess compilation

(b) Total

Figure 4. In-process and out of process compilation times by population size, for 5-bit Multiplier

Parallelizing In-process Compilation225

Infeasibility of parallelization with threads226

A first approach to parallelize in-process compilation, comes to mind as to partition the individuals and227

spawn multiple threads that will compile each partition in parallel through NVRTC library. Unfortunately228

6/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

population size (#individuals)

0 50 100 150 200 250 300

s
p
e
e
d
 u

p
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

Search Problem speedup ratio

K6 Regression speedup ratio

5-bit Multiplier speedup ratio

Figure 5. Compile time speedup ratios between conventional and in-process compilation by problem

it turns out that NVRTC library is not designed for multi-threaded use; we noticed that when multiple229

compilation calls are made from different threads at the same time, the execution is automatically230

serialized.231

Stack trace in Fig.6 shows nvrtc64 80.dll calling OS kernel’s EnterCriticalSection function to block232

for exclusive execution of a code block, and gets unblocked by another thread which also runs a block233

from same library, 853ms later via the release of the related lock. The pattern of green blocks on three234

threads in addition to main thread in Fig.6 shows that calls are perfectly serialized one after another,235

despite being called at the same time which is hinted by the red synchronization blocks preceding them.236

Figure 6. NVRTC library serializes calls from multiple threads

Although NVRTC compiles CUDA source to PTX with a single call, the presence of compiler options237

setup function which affects the following compilation call, and use of critical sections at function entries,238

show that apparently this is a stateful API. Furthermore, unlike CUDA APIs’ design, mentioned state is239

most likely not stored in thread local storage (TLS), but stored on the private heap of the dynamic loading240

7/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

library, making it impossible for us to trivially parallelize this closed source library using threads, as241

moving the kept state to TLS requires source level modifications.242

Parallelization with daemon processes243

Therefore as a second approach we implemented a daemon process which stays resident. It is launched244

from command line with a unique ID as command line parameter to allow multiple instances. Instances245

of daemon is launched as many times as the wanted level of parallelism, and each instance identifies246

itself with the ID received as parameter. Each launched process register two named synchronization247

events with the operating system, for signaling the state transitions of a simple state machine consisting248

of {starting,available, processing} states which represent the state of that instance. Main process also249

has copies of same state machines for each instance to track the states of daemons. Thus both processes250

(main and daemon) keep a consistent view of the mirrored state machine by monitoring the named events251

which allows state transitions to be performed in lock step. State transition can be initiated by both252

processes, specifically (starting → available) and (processing → available) is triggered by the daemon,253

and (available → processing) is triggered by the main process.254

Main Process Compilation Daemon OS

create synchronization events %ID%+”1” and %ID%+”2”

launch process with command line parameter %ID%

wait for event %ID%+”1”

create process

create named memory map ”%MMAP%+%UID%”

create view to memory map

open synchronization event %UID%+”1” and %UID%+”2”

signal event %UID%+”1”

wait for event %UID%+”2”

unblock as event %UID%+”1” signaled

Figure 7. Sequence Diagram for creation of a compilation daemon process and related interprocess

communication primitives

The communication between the main process and compilation daemons are handled via shared views255

to memory maps. Each daemon register a named memory map and create a memory view, onto which256

main process also creates a view to after the daemon signals state transition from starting to available.257

(see Fig.7) CUDA source is passed through this shared memory, and compiled device dependent CUBIN258

object file is also returned through the same. To signal the state transition (starting → available) daemon259

process signals the first event and starts waiting for the second event at the same time. Once a daemon260

leaves the starting state, it never returns back to it.261

When the main process generate a new population to be compiled it partitions the individuals in a262

balanced way, such that the difference of number of individuals between any pair of partitions is never263

more than one. Once the individuals are partitioned, the generated CUDA codes for each partition are264

passed to the daemon processes. Each daemon waits in the blocked state till main process wakes that265

specific daemon for a new batch of source to compile by signaling the second named event of that process266

(see Fig.8). Main process signals all daemons asynchronously to start compiling; then starts waiting for267

the completion of daemon processes’ work. To prevent the UI thread of main process getting blocked too,268

main process maintains a separate thread for each daemon process it communicates with, therefore while269

waiting for daemon processes to finish their jobs only those threads of main process are blocked. Main270

process signaling the second event and daemon process unblocking as a result, corresponds to the state271

transition (available → processing).272

When a daemon process arrives to processing state, it reads the CUDA source code from the shared273

8/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

Main Process Compilation Daemon OS

write CUDA code to shared memory

signal event %ID%+”2”

wait for event %ID%+”1”

unblock as event %ID%+”2” is signaled

read CUDA code from shared memory,

compile CUDA code to PTX with NVRTC,

compile PTX to CUBIN with Driver API,

write CUBIN object to shared memory

signal event %ID%+”1”

wait for event %ID%+”2”

unblock as event %ID%+”1” is signaled

read CUBIN object from shared memory

Figure 8. Sequence Diagram for compilation on daemon process and related interprocess

communication

view of the memory map related to its ID, and compiles the code using NVRTC library.274

Once a daemon finishes compiling and writes the Cubin object to shared memory, it signals the first275

event to unblock the related thread in main process and starts to wait for the second event once again.276

This signaling, blocking pair corresponds to the state transition (processing → available).277

Cost of Parallelization278

The parallelization approach we propose is virtually overhead free when compared to a hypothetical279

parallelization scenario using threads. As the daemon processes are already resident and waiting in the280

memory along with the loaded NVRTC library, the overhead of both parallelization approaches is limited281

to the time cost of memory moves from/to shared memory and synchronization by named events8. The282

only difference between the two is, in a context switch between threads of same process, processor keeps283

the Translation Look Aside Buffer (TLB), but in case of a context switch to another process TLB is284

flushed as processor transitions to a new virtual address space; we conjecture that the impact would be285

negligible.286

About the memory cost, all modern operating systems recognize when an executable binary or shared287

library gets loaded multiple times; OS keeps a single copy of the related memory pages on physical288

memory, and separately maps those to virtual address spaces of each process using those. This not only289

saves physical RAM, but also allows better space locality for L2/L3 processor caches. Hence memory290

consumption by multiple instances of our daemon processes each loading NVRTC library (nvrtc64 80.dll291

is almost 15MB) to their own address space, is almost the same as the consumption of a single instance.292

Speedup Achieved with Parallel Compilation293

At the end of each batch of experiments main application dumps the collected raw measurements to a294

file. We imported this data to Matlab filtered by experiment and measurement types, and aggregated295

the experiment values for each population size to produce the Tables 1,2,3, and to create the Figures296

9,10,11,12,13,14.297

It can be seen that parallelized in-process compilation of genetic programming individuals is faster298

for all problems and population sizes when compared to in-process compilation without parallelization;299

furthermore in-process compilation without parallelization itself was shown to be faster than regular300

command line nvcc compilation on previous section.301

8on Windows operating system named events is the fastest IPC primitive, upon which all others (i.e. mutex, semaphore) are

implemented

9/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

Table 1. Compilation Times by Compilation Methods for Search Problem with 300 individuals

Compilation Time Speedup ratio

Compilation Method Per individual Total In-process compilation Nvcc compilation

Nvcc 11.20 ms 3.36 sec - 1.00

In-process 7.76 ms 2.33 sec 1.00 1.44

2 daemons 3.81 ms 1.14 sec 2.04 2.93

4 daemons 2.53 ms 0.76 sec 3.07 4.41

6 daemons 2.23 ms 0.67 sec 3.48 5.01

8 daemons 2.13 ms 0.64 sec 3.65 5.26

Table 2. Compilation Times by Compilation Methods for Keijzer-6 Regression with 300 individuals

Compilation Time Speedup ratio

Compilation Method Per individual Total In-process compilation Nvcc compilation

Nvcc 7.63 ms 2.29 sec - 1.00

In-process 4.14 ms 1.24 sec 1.00 1.83

2 daemons 2.92 ms 0.88 sec 1.42 2.60

4 daemons 2.45 ms 0.73 sec 1.69 3.10

6 daemons 2.20 ms 0.66 sec 1.88 3.45

8 daemons 2.25 ms 0.67 sec 1.84 3.37

Table 3. Compilation Times by Compilation Methods for 5-bit Multiplier Problem with 300 individuals

Compilation Time Speedup ratio

Compilation Method Per individual Total In-process compilation Nvcc compilation

Nvcc 17.20 ms 5.16 sec - 1.00

In-process 13.29 ms 3.99 sec 1.00 1.24

2 daemons 6.15 ms 1.85 sec 2.16 2.69

4 daemons 3.23 ms 0.97 sec 4.12 5.12

6 daemons 2.42 ms 0.73 sec 5.49 6.82

8 daemons 2.17 ms 0.65 sec 6.11 7.60

10/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

Parallel compilation brought the per individual compilation time to 2.17 ms/individual for 5-bit302

Multiplier, to 2.20 ms/individual for Keijzer-6 regression and to 2.13 milliseconds for the Search Problem;303

these are almost an order of magnitude faster than previous published results. Also we measured304

a compilation speedup of ×3.45 for regression problem, ×5.26 for search problem, and ×7.60 for305

multiplication problem, when compared to the latest Nvcc V8 compiler, without requiring any code306

modification, and without any runtime performance penalty.307

Notice that our experiment platform consisted of dual Xeon E5-2670 processors running at 2.6Ghz;308

for compute bound tasks increase on processor frequency almost directly translates to performance309

improvement at an equal rate9. Therefore we can conjecture that to be able to compile a population of310

300 individuals at sub-millisecond durations, the required processor frequency is around 2.6×2.13 =311

5.54Ghz10 which is currently available.312

CONCLUSION313

In this paper we present a new method to accelerate the compilation of genetic programming individuals,314

in order to keep the compiled approach as a viable option for genetic programming on gpu.315

By using an in-process GPU compiler, we replaced disk file based data transfer to/from the compiler316

with memory accesses, also we mitigated the overhead of repeated launches and tear downs of the317

command line compiler. Also we investigated ways to parallelize this method of compilation, and318

identified that in-process compilation function automatically serializes concurrent calls from different319

threads. We implemented a daemon process that can have multiple running instances and service another320

application requesting CUDA code compilation. Daemon processes use the same in-line compilation321

method and communicate through operating system’s Inter Process Communication primitives.322

We measured compilation times just above 2.1 ms/individual for all three benchmark problems; and323

observed compilation speedups ranging from ×3.45 to ×7.60 based on problem, when compared to324

repeated command line compilation with latest Nvcc v8 compiler.325

All data and source code of software presented in this paper is available at https://github.com/hayral/Parallel-326

and-in-process-compilation-of-individuals-for-genetic-programming-on-GPU327

ACKNOWLEDGMENTS328

Dedicated to the memory of Professor Ahmet Coşkun Sönmez.329

First author was partially supported by Turkcell Academy.330

APPENDIX331

Search Problem332

Grammar Listing333

<expr> : : = <expr2> <bi−op> <expr2> | <expr2>334

<expr2> : : = <i n t> | <var−read> | <var−indexed>335

336

<var−read> : : = tmp | i | OUTPUT | SEARCH337

<var−indexed> : : = INPUT[<var−read> % LENINPUT]338

<var−w r i t e> : : = tmp | OUTPUT339

340

<bi−op> : : = + | −341

342

<i n t> : : = 1 | 2 | (−1)343

344

<s t a t e m e n t> : : = <a s s i gnme n t> | <i f> | <loop>345

<s t a t e m e n t 2> : : = <a s s i gnme n t> | <i f 2>346

<s t a t e m e n t 3> : : = <a s s i gnme n t>347

348

<loop> : : = f o r (i =0 ; i # l e s s e r # LENINPUT ; i ++){<c−block2>}349

350

<i f> : : = i f (<cond−expr >) {<c−block2>}351

<i f 2> : : = i f (<cond−expr >) {<c−block3>}352

9assuming all other things being equal
10once again, under assumption of all other things being equal. 2.13 is the compilation time of Search Problem with 8 daemons

11/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

353

<cond−expr> : : = <expr> <comp−op> <expr>354

<comp−op> : : = # l e s s e r # | # g r e a t e r # | == | !=355

<a s s i gnme n t> : : = <var−w r i t e> = <expr >;356

357

<c−block> : : = <s t a t e m e n t s>358

<c−block2> : : = <s t a t e m e n t s 2>359

<c−block3> : : = <s t a t e m e n t s 3>360

361

<s t a t e m e n t s> : : = <s t a t e m e n t>362

| <s t a t e m e n t><s t a t e m e n t>363

| <s t a t e m e n t><s t a t e m e n t><s t a t e m e n t>364

365

<s t a t e m e n t s 2> : : = <s t a t e m e n t 2>366

| <s t a t e m e n t 2><s t a t e m e n t 2>367

| <s t a t e m e n t 2><s t a t e m e n t 2><s t a t e m e n t 2>368

369

<s t a t e m e n t s 3> : : = <s t a t e m e n t 3>370

| <s t a t e m e n t 3><s t a t e m e n t 3>371

| <s t a t e m e n t 3><s t a t e m e n t 3><s t a t e m e n t 3>372

Listing 1. Grammar for Search Problem

Code Preamble for Whole Population373

c o n s t a n t i n t INPUT [NUMTESTCASE] [MAX TESTCASE LEN] ;374

c o n s t a n t i n t LENINPUT [NUMTESTCASE] ;375

c o n s t a n t i n t SEARCH[NUMTESTCASE] ;376

c o n s t a n t i n t CORRECTANSWER[NUMTESTCASE] ;377

378

379

g l o b a l vo id c r e a t e d F u n c (i n t ∗ OUTPUT)380

{381

i n t ∗INPUT = INPUT [t h r e a d I d x . x] ;382

i n t LENINPUT = LENINPUT [t h r e a d I d x . x] ;383

i n t SEARCH = SEARCH[t h r e a d I d x . x] ;384

385

i n t i ;386

i n t tmp ;387

i n t OUTPUT;388

Listing 2. Code preamble for whole population on Search Problem

Keijzer-6 Regression Problem389

Grammar Listing390

<e> : : = <e2> + <e2> | <e2> − <e2> | <e2> ∗ <e2> | <e2> / <e2>391

| s q r t f (f a b s f (<e2 >)) | s i n f (<e2>) | t a n h f (<e2>)392

| e xp f (<e2>) | l o g f (f a b s f (<e2 >)+1)393

| x | x | x | x394

| <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>395

396

<e2> : : = <e3> + <e3> | <e3> − <e3> | <e3> ∗ <e3> | <e3> / <e3>397

| s q r t f (f a b s f (<e3 >)) | s i n f (<e3>) | t a n h f (<e3>)398

| e xp f (<e3>) | l o g f (f a b s f (<e3 >)+1)399

| x | x | x | x | x | x400

| <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>401

| <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>402

403

<e3> : : = <e3> + <e3> | <e3> − <e3> | <e3> ∗ <e3> | <e3> / <e3>404

| s q r t f (f a b s f (<e3 >)) | s i n f (<e3>) | t a n h f (<e3>)405

| e xp f (<e3>) | l o g f (f a b s f (<e3 >)+1)406

| x | x | x | x | x | x | x | x407

| <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>408

| <c><c>.<c><c> | <c><c>.<c><c> | <c><c>.<c><c>409

| <c><c>.<c><c> | <c><c>.<c><c>410

411

<c> : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9412

Listing 3. Grammar for Keijzer-6 Regression

12/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

5-bit Multiplier Problem413

Grammar Listing414

<s t a r t > : : = o0=<expr >;o1=<expr >;o2=<expr >;o3=<expr >;o4=<expr >;415

o5=<expr >;o6=<expr >;o7=<expr >;o8=<expr >;o9=<expr >;416

<expr> : : = (<expr2> <bi−op> <expr2 >) | <var> | (˜ <var >)417

<expr2> : : = (<expr2> <bi−op> <expr2 >) | <var> | (˜ <var >)418

| <var> | (˜ <var >)419

<var> : : = a0 | a1 | a2 | a3 | a4 | b0 | b1 | b2 | b3 | b4420

<bi−op> : : = & | # or #421

Listing 4. Grammar for 5-bit Multiplier Problem

Code Preamble for each Individual422

g l o b a l vo id c r e a t e d F u n c 0 (i n t ∗ OUTPUT)423

{424

i n t t i d = b l o c k I d x . x ∗blockDim . x + t h r e a d I d x . x ; ;425

426

i n t a0 = t i d & 0x1 ;427

i n t a1 = (t i d & 0x2) >> 1 ;428

i n t a2 = (t i d & 0x4) >> 2 ;429

i n t a3 = (t i d & 0x8) >> 3 ;430

i n t a4 = (t i d & 0x10) >> 4 ;431

i n t b0 = (t i d & 0x20) >> 5 ;432

i n t b1 = (t i d & 0x40) >> 6 ;433

i n t b2 = (t i d & 0x80) >> 7 ;434

i n t b3 = (t i d & 0 x100) >> 8 ;435

i n t b4 = (t i d & 0 x200) >> 9 ;436

437

i n t o0 , o1 , o2 , o3 , o4 , o5 , o6 , o7 , o8 , o9 ;438

Listing 5. Code preamble for 5-bit Multiplier Problem

Compilation Time and Speedup Ratio Plots439

population size (#individuals)

0 50 100 150 200 250 300

ti
m

e
 (

m
s
)

0

5

10

15

20

25

30

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(a) Per individual compile time

population size (#individuals)

0 50 100 150 200 250 300

ti
m

e
 (

s
e
c
)

0

0.5

1

1.5

2

2.5

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(b) Total compile time

Figure 9. Nvcc compilation times for Search Problem by number of servicing resident processes

13/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

population size (#individuals)

0 50 100 150 200 250 300

s
p
e
e
d
 u

p
 r

a
ti
o

0

1

2

3

4

5

6

7

8

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(a) Speedup ratio against conventional compilation

population size (#individuals)

0 50 100 150 200 250 300

s
p
e
e
d
 u

p
 r

a
ti
o

0

1

2

3

4

5

6

7

8

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(b) Speedup ratio against in-process compilation

Figure 10. Parallelization speedup on Search problem

population size (#individuals)

0 50 100 150 200 250 300

ti
m

e
 (

m
s
)

0

5

10

15

20

25

30

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(a) Per individual compile time

population size (#individuals)

0 50 100 150 200 250 300

ti
m

e
 (

s
e
c
)

0

0.5

1

1.5

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(b) Total compile time

Figure 11. Nvcc compilation times for Keijzer-6 regression by number of servicing resident processes

population size (#individuals)

0 50 100 150 200 250 300

s
p
e
e
d
 u

p
 r

a
ti
o

0

1

2

3

4

5

6

7

8

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(a) Speedup ratio against conventional compilation

population size (#individuals)

0 50 100 150 200 250 300

s
p
e
e
d
 u

p
 r

a
ti
o

0

1

2

3

4

5

6

7

8

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(b) Speedup ratio against in-process compilation

Figure 12. Parallelization speedup on Keijzer-6 regression

14/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

population size (#individuals)

0 50 100 150 200 250 300

ti
m

e
 (

m
s
)

0

5

10

15

20

25

30

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(a) Per individual compile time

population size (#individuals)

0 50 100 150 200 250 300

ti
m

e
 (

s
e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(b) Total compile time

Figure 13. Nvcc compilation times for 5-bit Multiplier by number of servicing resident processes

population size (#individuals)

0 50 100 150 200 250 300

s
p
e
e
d
 u

p
 r

a
ti
o

0

1

2

3

4

5

6

7

8

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(a) Speedup ratio against conventional compilation

population size (#individuals)

0 50 100 150 200 250 300

s
p
e
e
d
 u

p
 r

a
ti
o

0

1

2

3

4

5

6

7

8

inprocess

2 service processes

4 service processes

6 service processes

8 service processes

(b) Speedup ratio against in-process compilation

Figure 14. Parallelization speedup on 5-Bit multiplier

REFERENCES440

Ayral, H. and Albayrak, S. (in press). Effects of Population, Generation and Test Case Count on441

Grammatical Genetic Programming for Integer Lists (in press).442

Chitty, D. M. (2007). A data parallel approach to genetic programming using programmable graphics443

hardware. Proc. of the Conference on Genetic and Evolutionary Computation ({GECCO}), 2:1566–444

1573.445

da Silva, C. P., Dias, D. M., Bentes, C., Pacheco, M. A. C., and Cupertino, L. F. (2015). Evolving GPU446

machine code. The Journal of Machine Learning Research, 16(1):673–712.447

Fagan, D., Fenton, M., and O’Neill, M. (2016). Exploring Position Independent Initialisation in Gram-448

matical Evolution. Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016),449

pages 5060–5067.450

Harding, S. and Banzhaf, W. (2007). Fast Genetic Programming on GPUs. In Proceedings of the 10th451

European Conference on Genetic Programming, volume 4445, pages 90–101. Springer.452

Harding, S. S. L. S. and Banzhaf, W. (2009). Distributed genetic programming on GPUs using CUDA. In453

Workshop on Parallel Architectures and Bioinspired Algorithms, pages 1–10.454

Helmuth, T. and Spector, L. (2015). General Program Synthesis Benchmark Suite. In Proceedings of the455

2015 on Genetic and Evolutionary Computation Conference - GECCO ’15, pages 1039–1046, New456

York, New York, USA. ACM Press.457

Keijzer, M. (2003). Improving Symbolic Regression with Interval Arithmetic and Linear Scaling. Genetic458

Programming Proceedings of EuroGP2003, 2610:70–82.459

15/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

Langdon, W. and Harman, M. (2010a). Evolving gzip matches Kernel from an nVidia CUDA Template.460

Technical Report February.461

Langdon, W. B. (2011). Graphics processing units and genetic programming: an overview. Soft Computing462

- A Fusion of Foundations, Methodologies and Applications, 15(8):1657–1669.463

Langdon, W. B. and Harman, M. (2010b). Evolving a CUDA kernel from an nVidia template. IEEE464

Congress on Evolutionary Computation, pages 1–8.465

Lewis, T. E. and Magoulas, G. D. (2011). Identifying similarities in TMBL programs with alignment to466

quicken their compilation for GPUs. Proceedings of the 13th annual conference companion on Genetic467

and evolutionary computation - GECCO ’11, page 447.468

Nicolau, M. and Fenton, M. (2016). Managing Repetition in Grammar-Based Genetic Programming.469

Proceedings of the 2016 on Genetic and Evolutionary Computation Conference - GECCO ’16, pages470

765–772.471

O’Neill, M., Nicolau, M., and Agapitos, A. (2014). Experiments in program synthesis with grammatical472

evolution: A focus on Integer Sorting. In Evolutionary Computation (CEC), 2014 IEEE Congress on,473

pages 1504–1511.474

Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., and Jaros, J. (2011). Acceleration of Grammatical475

Evolution Using Graphics Processing Units. Proceedings of the 13th annual conference companion on476

Genetic and evolutionary computation - GECCO ’11, pages 431–438.477

White, D. R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B. W., Kronberger, G., Jaśkowski, W.,478

O’Reilly, U.-M., and Luke, S. (2012). Better GP benchmarks: community survey results and proposals.479

Genetic Programming and Evolvable Machines, 14(1):3–29.480

16/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2936v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017

