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The use of insects as indicators of postmortem displacement is discussed in many text,

courses and TV shows, and several studies addressing this issue have been published.

However, the concept is widely cited but poorly understood, and only a few forensic cases

have successfully applied such a method. Surprisingly, this question has never be taken

into account entirely as a cross-disciplinary theme. The use of necrophagous insects as

evidence of cadaver relocation actually involves a wide range of data on their biology:

distribution areas, microhabitats, phenology, behavioral ecology and molecular analysis

are among the research areas linked to this problem. This article reviews for the first time

the current knowledge on these questions and analysze the possibilities/limitations of each

method to evaluate their feasibility. This analysis reveals numerous weaknesses and

mistaken beliefs but also many concrete possibilities and research opportunities.
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14 Abstract

15 The use of insects as indicators of postmortem displacement is discussed in many text, courses and 

16 TV shows, and several studies addressing this issue have been published. However, the concept is 

17 widely cited but poorly understood, and only a few forensic cases have successfully applied such 

18 a method. Surprisingly, this question has never be taken into account entirely as a cross-

19 disciplinary theme. The use of necrophagous insects as evidence of cadaver relocation actually 

20 involves a wide range of data on their biology: distribution areas, microhabitats, phenology, 

21 behavioral ecology and molecular analysis are among the research areas linked to this problem. 

22 This article reviews for the first time the current knowledge on these questions and analysze the 

23 possibilities/limitations of each method to evaluate their feasibility. This analysis reveals 

24 numerous weaknesses and mistaken beliefs but also many concrete possibilities and research 

25 opportunities.
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50 A. Introduction

51 A.1 Context

52 Insect analysis has been used in legal investigations for centuries in a practice now known 

53 as forensic entomology (18). Increased interest in this field since the late 20th century has resulted 

54 in more frequent use in investigations and the development of research on necrophagous species. 

55 Previous reviews have gathered and explained the aims and methods of forensic entomology (11, 

56 28, 35, 154), but some fundamental questions remain unresolved, particularly the potential to use 

57 insects as evidence of corpse relocation. 

58 Forensic taphonomy can include a variety of changes due to human activity, especially 

59 steps taken to hide a cadaver (77). Attempts to prevent discovery often include cadaver 

60 concealment, wrapping and displacement. Such post-mortem relocation can occur shortly after 

61 death or after days of concealment and can take place over a short distance (e.g., from the room 

62 where the death occurred to the garden of the house) or a longer distance. In most cases, the 

63 environment where the cadaver was hidden is very different from that of the place where death 

64 occurred (137). Forensic entomology manuals and courses often state that insects can be used as 

65 evidence of cadaver relocation (9, 28, 35, 89, 117, 126, 144) because the biology and ecology of 

66 necrophagous species can convey information on where and how insects live and thus may 

67 highlight inconsistencies regarding cadaver location and decomposition. However, while this idea 

68 is appealing, it may not reflect reality.

69

70 It may seem obvious that <if a body is discovered with insects restricted to a habitat or 

71 geographic region different from that in which it is discovered, this is an indication that the body 

72 may have been moved following death= (117). However, most, if not all, European necrophagous 
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73 species have large distribution areas covering many countries and hundreds of thousands of square 

74 kilometers, making the sampling of non-native species quite unlikely. While each species has an 

75 ecological niche (e.g., forest or synanthropic; sun or shady habitats), such preferences are not rules. 

76 Additionally, as some species can travel kilometers to find carrion, microhabitats are only relative 

77 concepts (22, 118). The long dispersal capability of most necrophagous species, especially 

78 blowflies, makes it difficult to relate a given species to a particular place or habitat and thus draw 

79 inferences regarding cadaver relocation (166).

80 Temporal separation is another characteristic of necrophagous species. The phenology 

81 (cyclic and seasonal phenomena) of blowflies is well known; some species are primarily active 

82 during hot weather, while others are well adapted to cold climates (157). Such seasonality could, 

83 under certain circumstances, contribute useful information regarding the chronology of cadaver 

84 decomposition. However, the presence of larvae of a summer species on a winter cadaver does not 

85 constitute indisputable evidence of cadaver relocation. Colonization time is also strongly 

86 dependent of the stage of decomposition. Although it is far more complex than chronological 

87 succession (94), succession on cadavers has been experimentally shown in several countries and 

88 under multiple conditions (1, 3, 5, 8). Divergence from known succession patterns such as the 

89 absence of certain species or unusual associations might indicate cadaver relocation or 

90 concealment. The presence or absence of some instars is also of great interest, especially with 

91 regard to wandering larvae or pupae of pioneer species (e.g., Calliphoridae flies), which pupate 

92 away from the cadaver and can thus be found after cadaver removal.

93 Advances in genetics also offer numerous opportunities. First, genetics make it possible to 

94 connect individuals to a local population or even sub-population. As noted by Tomberlin et al., 

95 such possibilities are of great interest in the context of cadaver relocation (154). More anecdotally, 
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96 the genetic analysis of gut content has interesting potential to indicate which cadaver larvae have 

97 been feeding on (32, 34). This technique should be developed in the coming years and provide 

98 new tools for forensic entomologists and crime scene investigations.

99 This article reviews the current knowledge and promise of each method and evaluates its 

100 feasibility. This analysis reveals the weaknesses and mistaken beliefs regarding the use of forensic 

101 entomology as evidence of cadaver displacement as well as many concrete possibilities and 

102 development opportunities.

103

104 A.2 Survey methodology

105 The first phase of this survey was the identification of the the magnitude of this problem. 

106 This step was addressed by searching in the main forensic entomology manual published in 

107 English since these last 40 years if the question of corpse relocation was afforded. We found 

108 references to this idea in most of them (9, 28, 35, 89, 117, 126, 144), but only a few case reports 

109 (17, 67, 91). On the other side, we found several research article addressing this question as a main 

110 goal or claiming it a potential application of their findings. Accordingly, use of insects to infer 

111 corpse relocation appears being a complex and unstructured problem with numerous and disparate 

112 information that deserved to be reviewed.    

113 We first searched for the books and publication clearly addressing this question. From this 

114 dataset, we listed the various facets of the problem and gathered them into four main concept: 

115 spatial separation, behavior / development, phenology / colonization time and molecular analyses). 

116 We then searched in the literature specific to each of these fields for data of potential use. This 

117 datased was then analyzed to highlight discrepancies or spot methods with true potential 

118 application.
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119

120     

121 Spatial separation

122 Only a few insect species are associated with cadavers, and even fewer are strictly 

123 necrophagous (requiring a cadaver to feed on during at least a part of their development) (144). 

124 Their diversity is visible in the variability in insect size, shape, behavior, ecological niche and 

125 distribution and reflects species-specific adaptations, which allow species to exploit different 

126 habitats and resources. Johnson defined four orders of habitat selection, from large geographical 

127 areas to local microhabitats (87). Furthermore, Matuszewski et al. defined species indicators of 

128 cadaver relocation as those that at least 1) have a strong preference for a given geographical area 

129 or habitat, 2) are resistant to relocation disturbance, 3) live on cadavers and 4) colonize cadavers 

130 shortly after death (112). Common species are also more likely to be found in association with 

131 criminal cases than are rare species. Unfortunately, the association with habitat appears to be more 

132 pronounced in the less common species than in those that are more common (99).

133

134 B.1 Biogeography of European species of forensic importance

135 According to the common definition, the distribution of a species is the geographical area 

136 within which that species is observed. Species may not be uniformly distributed in this area: 

137 variation in local density (e.g., clumped distribution) is common. However, individuals of a given 

138 species are not often observed outside of their distribution area. Online interactive maps can now 

139 be found on the web for most European taxa. Many of these databases mix old distribution data 

140 and modern records produced by amateur or professional entomologists (65). Such collaborative 

141 work is subject to information gaps and biases, particularly a lack of records. In particular, this 
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142 problem affects necrophagous species, which are infrequently sought out and are poorly known 

143 among entomologists. Accordingly, an apparently unusual/unexpected necrophagous species may 

144 detected simply because the site was previously unsampled (Figure 1).

145

146

147 Figure 1. The distribution of Cynomya mortuorum in Europe (source: www.gbif.org, 09/2016). 

148 While it is not reported on the map/database, this species is also present in northern France (23): 
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149 this map is truncated due to a lack of published/registered data rather than because of geographical 

150 restriction.

151

152 To suspect cadaver relocation, it is necessary to find species that have restricted and well-

153 established distributions. We listed here the few European necrophagous species complaining 

154 these criteria. Some interesting distribution areas can be observed for other necrophagous species, 

155 but most of these species are unusual, difficult to identify and poorly documented. Thus, while 

156 they are theoretically useable, these insects cannot be regarded as true indicators of cadaver 

157 relocation in terms of the criteria listed above. 

158 Two common species of the genus Cynomya have restricted European distribution areas. 

159 C. mortuorum, a large, hairy bluebottle fly, can be found across the entire Palearctic region (25, 

160 30) (Figure 1), but is rarely reported in central European countries, especially in a forensic context 

161 (25, 46, 139, 150, 164). Its distribution partially overlaps that of C. cadaverina (Robineau-

162 Desvoidy, 1830), another cold-adapted species of forensic interest (92, 139). 

163 Two other calliphorid flies, Calliphora loewi and C. subalpina, show a sub-alpine 

164 distribution (54, 139). C. loewi is present in the Holarctic and in a small area of Asia (139). In 

165 Europe, C. loewi is a forest species that is mostly found in northern and central Europe, from 

166 Siberia and the Caucasus to the Central European Territories (144). This limited distribution area 

167 could make it a good indicator of relocation, but its recent discovery in Madeira Island (Portugal) 

168 calls its relevance into question (135). Furthermore, while it has a large distribution, C. loewi is 

169 often recorded at low abundance (151). C. subalpina has a very similar distribution area and is 

170 subject to similar limitations (139).
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171 Chrysomya albiceps is one of the few species that is, at least theoretically, usable as an 

172 indicator of cadaver relocation in Europe (70). The species is meridional, common and abundant 

173 in southern Europe and in most of the neotropical, Afrotropical and Oriental regions (70). 

174 However, while it is mostly found in southern Europe, this species has been observed migrating 

175 northward during the hot summer months (164). Additionally, while it is not a true invasive 

176 species, this fly has become more common in northern Europe. This northward expansion of its 

177 range during hot summers has the potential to cause confusion and precludes its use as evidence 

178 of cadaver relocation. Similar factors affect the use of C. megacephala, an Asian fly recently 

179 recorded in continental Europe and extending its distribution in the Mediterranean region (12, 51, 

180 107, 134).

181 According to this review, the use of insect distribution area as evidence of long-distance 

182 cadaver relocation appears to be more a question for theoretical forensic entomologists than a 

183 forensic reality. Furthermore, the probability of someone transporting a cadaver inside a vehicle 

184 and traveling several hours across Europe to deposit it in the distribution area of a different species 

185 is likely low.

186

187 B.2 Species-specific habitats

188 Many forensic cases involve cadavers that have been transported several kilometers from 

189 the crime scene, especially to low-traffic areas such as forests, dumping sites, rivers or seashores 

190 (secondary decomposition sites) (112). As discussed above, such short-distance relocation cannot 

191 be elucidated using the presence of foreign necrophagous species. However, moving a cadaver can 

192 affect micro-environmental conditions such as climate (temperature, insulation, humidity), 
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193 synanthropy, vegetation and indoor/outdoor location. The population of necrophagous insects at 

194 the secondary decomposition site may thus differ from that of the initial (primary) environment.

195 The effect of habitat on the abundance of certain species is well established (27, 84). 

196 However, published data regarding species-specific habitats vary, highlighting that such 

197 preferences are not rigid and often vary locally. Close inspection of the biology of necrophagous 

198 species exemplifies this complication. To perpetuate the species, adult females must find suitable 

199 carrion for their offspring. However, the occurrence of cadavers is by definition unpredictable 

200 because death is essentially temporally and spatially random. Accordingly, all necrophagous 

201 species have an efficient and highly selective olfactory sense that allows them to quickly detect 

202 cadavers. As noted by MacLeod and Donnelly, blowflies are powerful and active flies capable of 

203 dispersing over large distances (several kilometers per day) (99). It thus seems unlikely that a 

204 gravid fly living in a forested area will stop at the edge of a clearing if carrion is decomposing on 

205 the other side of that clearing (26).

206 Furthermore, many environmental parameters of the landscape or within a given habitat 

207 category can affect the abundance of species. Most studies in forensic entomology use simple 

208 categories (e.g., forest, sunny, indoor) without taking into account the surroundings and the 

209 variability within these categories (e.g., different types of forest or sizes of cities). Additionally, 

210 larger-scale effects and interactions within parameters (e.g., higher temperatures in large cities) 

211 are usually not considered (166). In a 1957 study, MacLeod and Donnelly clearly stated that <there 

212 is nothing to indicate whether the non-uniform distribution of the adult (flies) population is due to 

213 the faunal, floral, vegetation-structural or edaphic element of the environment, or to some 

214 combination of these= (99). More than fifty years later, Zabala et al. concluded that, except for the 

215 summer abundance of C. vomitoria, blowfly community composition cannot be used as evidence 
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216 of cadaver relocation, particularly in heterogeneous and densely populated areas (166). These 

217 authors also noted that any conclusion based on species-specific habitat preferences should be 

218 drawn only from local studies (5, 27, 43, 84). The following sub-section focuses on more particular 

219 habitat characteristics that may be of interest in determining the primary deposition site of a 

220 cadaver.

221

222 Indoor vs. outdoor

223 The question of the inside/outside location of a cadaver is a key point in many 

224 investigations (58) and access to the cadaver by necrophagous insects greatly affect its 

225 decomposition (33, 103). It has furthermore been proved that the location of a cadaver affects its 

226 colonization time (the pre-appearance interval, i.e., the time before insects reach the cadaver) and 

227 thus the PMI estimation (40, 132, 136). An indoor location also protects the cadaver from rain and 

228 is often associated with higher temperatures that can speed the development of the larvae.

229 The species associated with indoor locations have been investigated in many field studies 

230 and case reports. A pioneer study by Goff of 35 forensic entomology cases in Hawaii found that 

231 more insect species were found indoor (67). Centeno et al. also found two more species on carrion 

232 that was sheltered during the winter (36). But Anderson found the same species (except Lucilia 

233 illustris) on inside and outside cadavers (6). By contrast, Cainé et al. found more fly species on 

234 outdoor cadavers in Portugal (31), and Reibe and Madea also found greater species diversity in 

235 outdoor locations (136). In this last experiment, piglet carcasses located indoors (1st-floor room) 

236 were exclusively infested by C. vicina, while a variety of blowfly species (L. sericata, L. caesar, 

237 L. illustris, C. vicina and C. vomitoria) were found on the outdoor (garden) piglet carcasses (136). 

238 The importance of cadaver location for the abundance of larder beetles, which preferentially feed 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2934v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017



239 and breed on dry material, was investigated by Charabidze et al. (39). While feeding larvae were 

240 more common in indoor forensic cases, no clear preference was observed in adults. These authors 

241 also found an effect of cadaver location on the presence of N. littoralis (41). However, they noted 

242 that this trend may be the result of the usually shorter PMI and low accessibility of indoor cases. 

243 Lastly, Leclercq reported Silphidae only from cadavers recovered from forest sites in Belgium 

244 (46), and Dekeirsschieter et al. did not identify any Silphidae species in cadavers found in urban 

245 Belgium (47). However, Chauvet and colleagues recorded the presence of Nicrophorus spp. on 

246 human cadavers discovered inside houses in France (42).

247 In accordance with these discrepancies, Frost et al. noted that although more species and 

248 specimens are often observed indoors compared to outdoors, this trend is not consistent (58). An 

249 extensive table summarizing the insect species reported from human remains found indoors can 

250 be found in their study (58). The authors clearly note that <none of the(se) listed insect species can 

251 be considered as exclusively indoors.= An example of the difficulty in formally linking the 

252 presence of a species to the inside/outside location was shown by Krikken et al. (91). From the 

253 numerous dead L. adult flies (no species name was reported) observed in an upstairs room with 

254 closed windows, the authors concluded that the body had first been outdoors in a warm, sunny 

255 environment and was later relocated into the room. However, this conclusion was only based on 

256 the supposed preference of L. to <oviposit on high temperature surfaces,= which the authors took 

257 to mean <outdoors,= a weak evidence in a forensic context.

258 In the future, mites may provide information regarding the location of the cadaver, but 

259 these species are relatively little known and are overlooked in forensic entomology. For further 

260 information, see Frost et al.9s above-mentioned review (58) and the work of Perotti (58, 128).

261
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262 Open vs. forest and sunny vs. shaded places

263 The distinction between open and forest habitat is in itself not always clear: vegetation 

264 cover can vary according to season, but the exact location of the cadaver within any given open 

265 habitat is not always sunny (e.g., incised valleys). In a field study dating from 1957, MacLeod and 

266 Donnelly reported that C. vomitoria and L. ampullacea were abundant in regions of dense 

267 vegetation (i.e., forest habitats), whereas L. illustris and L. sericata were more common in open 

268 conditions (heliophilic species) (99). More generally, L. sericata is often found in bright sunlight 

269 (81), while L. caesar is associated with shade (121). However, despite evidence of the thermophilic 

270 character of some blowfly species, these preferences vary among local populations (85, 108). As 

271 an example, Joy et al. found the same species on sunlit and shaded pig carcasses in West Virginia, 

272 USA (90) and Hwang and Turner showed the ability of C. vicina populations to locally adapt their 

273 thermal requirements to suit their environment (85). Regarding coleopterans, Matuszewski et al. 

274 investigated species that colonized cadavers in open vs. forest habitats (112). They concluded that 

275 the presence of Dermestes frischi, Omosita colon, and Nitidula spp. could be used as evidence of 

276 relocation from rural open to rural forest habitat. In contrast, only O. thoracicum was classified as 

277 an indicator of relocation in the opposite direction. This conclusion is similar to that of 

278 Dekeirsschieter et al. (46, 47), who recorded seven Silphidae species in forest habitat (Belgium): 

279 all but O. thoracica were also caught in agricultural biotope (open habitat).

280

281 Rural vs. urban

282 The term <synanthropic= is used to characterize species that live near humans and benefit 

283 from them and the artificial habitats they create. Cities, and more generally human activities, are 

284 also often associated with the production of meat waste that can attract necrophagous insects. In 
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285 addition to these direct modifications of the environment, urbanization affects the climate, 

286 resulting in local warming (161). As ambient temperature is of prime importance for insect activity 

287 and development, heat islands such as those observed in large cities can offer thermal refuges for 

288 several species.

289 Although it is present in both rural and urban habitats, C. vicina tends to be found 

290 predominantly in shady and urban areas (14, 52, 71). In contrast, C. vomitoria is often described 

291 as a more rural species that avoids cities (84, 85, 120, 133, 144). C. loewi and C. subalpina are 

292 also known to avoid urban areas (120, 139, 155). In an extensive 2014 study examining a 7,000 

293 km2 landscape in Spain, Zabala et al. found a significant relationship between summer abundance 

294 of C. vomitoria, distance to urban areas and degree of urbanization (166). This pattern was 

295 especially clear during summer, when C. vomitoria was significantly more abundant at points far 

296 from urban areas. However, for the nine other calliphorid flies they investigated (including C. 

297 vicina and L. sericata), no clear synanthropic relationship was found.

298 Several comparative studies on local blowfly populations have also been performed in the 

299 UK (44, 86, 98-101, 143). Using meat-baited bottle traps, Hwang and Turner described three 

300 groups of necrophagous flies corresponding to three habitat types (85): the urban habitat was 

301 characterized by C. vicina, L. illustris and L. sericata, while rural grasslands were inhabited by L. 

302 caesar and rural woodlands were inhabited by C. vomitoria. Wyss also reported that in 

303 Switzerland, L. argyrostoma was found in urban areas, while C. mortuorum avoided them (163). 

304 Souza and Von Zuben found significant differences in the synanthropy of some Calliphoridae and 

305 Sarcophagidae flies in Brazil (147, 148). But in southern Africa, Parry et al. observed that species 

306 assemblages present in human-disturbed areas were very similar to those recorded in natural 

307 habitats (124).
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308 There are few data on necrophagous coleopterans, likely due to the under-representation 

309 of these insects in anthropized environments. Due to their large size and low agility in flight, many 

310 Coleoptera of forensic interest appear to be poorly suited to urban conditions. In 2011, 

311 Dekeirsschieter et al. recorded seven Silphidae species in a Belgian forest environment, six in 

312 agricultural biotopes and none in urban locations (47). According to these results, silphid beetles 

313 may be good indicators of cadaver relocation between rural and urban habitats (11, 111).

314

315 However, most, if not all, species of forensic interest also show inconsistencies or 

316 exceptions in their habitat-association patterns. As an example, many authors have found that L. 

317 sericata is associated to urban habitats (57, 57, 84, 86, 120). A study from Germany even found 

318 that L. sericata had the highest Synanthropy Index (SI) of all blowfly species they studied 

319 (Steinborn, 1981 in 134). Another German study reported L. sericata and C. vicina as the only 

320 blow fly species caught indoors (141). L. sericata was also classified by Greco et al. as the most 

321 synanthropic blowfly in Italy (71). However, L. sericata was also recorded in natural open habitats 

322 in Poland and in open pasture in England (44, 111, 143). Similarly, Greco et al. (71) observed a 

323 preference of L. caesar for wild and rural habitats, a trend supported by some former studies (15, 

324 71, 84) but in opposition to the findings of Fisher (57). Thus, while their presence reflects 

325 ecological preferences, necrophagous insects are not sufficiently clearly repartitioned between 

326 urban and rural areas, and it currently appears that their distribution is too variable to be used as 

327 evidence of corpse relocation in a forensic context.

328

329 Others specific locations

330 Water
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331 The simplest change is the relocation from water to open air. In such a case, the presence 

332 on the cadaver of any aquatic invertebrate could be used as evidence of cadaver relocation. In 

333 contrast, the finding of the usual necrophagous species on an immersed cadaver may be more 

334 challenging to interpret. Four sequential steps have been used by Merrit and Wallace to describe 

335 changes in body position in water over time: 1) the body sinks to the bottom; 2) there is horizontal 

336 movement at the bottom; 3) the body floats to the surface; 4) surface drift occurs (115). The 

337 discovery of a cadaver in water during the initial steps is characterized by the absence of the usual 

338 necrophagous species (e.g., Calliphoridae) and the presence of ubiquitous aquatic invertebrates 

339 (e.g., Chironomidae larvae, snails, etc.) (115). During the first 2 steps of immersion, the cadaver 

340 is fully immersed and the presence of any terrestrial larvae on the cadaver would indicate they 

341 were laid before immersion. This possibility is especially interesting because blowfly larvae can 

342 resist submersion in water and stay alive for several hours (2, 138). However, the finding of the 

343 same species on a floating cadaver (steps 3 and 4) would yield less if any information, as many fly 

344 species can lay eggs on the emerged parts of a floating cadaver (13, 153). 

345 The presence of Coleoptera would be more questionable. The larvae of most Silphidae 

346 species live underneath cadavers and dig pupation chambers into the soil for nymphosis. Thus, 

347 these larvae should not be observed on floating cadavers. Furthermore, large adults are less agile 

348 in flight than are flies and thus avoid landing on small surfaces surrounded by water. Barrios and 

349 Wolff did not observe any necrophagous Coleoptera species on pig cadavers placed in two 

350 freshwater ecosystems, even during the floating phases (13). However, Tomberlin et al. observed 

351 many small staphylinid beetles on rat carcasses in water and even found single adults of the silphid 

352 beetle Necrophila americana and the dermestid beetle Dermestes caninus (153). As dermestid 
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353 beetles usually colonize and feed on dry materials (37, 140), such a finding is a good example of 

354 the risk associated with drawing conclusions on cadaver relocation from general trends.

355 The relocation of a cadaver from freshwater to a marine environment (and the inverse) can 

356 also occur, especially in the case of floating cadavers, which can be carried by tides. As most 

357 aquatic species are limited to a restricted salinity range, the presence of a given species outside of 

358 its range may be useful as evidence of cadaver relocation. Detailed data on species associated with 

359 marine and freshwater environments can be found throughout the literature (4, 146). Cadaver 

360 relocation can also occur within the same aquatic environment. In freshwater, the species 

361 distribution depends on the physico-chemical attributes of the water (oxygen, pollutants, turbidity), 

362 and in running freshwater, there is a succession of habitats and biotopes from source to estuary. 

363 As an example, Ephemeroptera and Trichoptera larvae are found only in clean and well-

364 oxygenated water, while Eristalidae are found in water with a high organic load (110). Abundant 

365 literature can be found on this topic, especially with respect to bioindicators (122).

366

367 Insects of buried/concealed cadavers

368 A relatively common method of cadaver concealment is burial, which greatly affects 

369 carrion decomposition and access by entomofauna (142). Deep burial and/or protection of the body 

370 by a coffin limit but do not prevent postmortem colonization of the body. Experiments on buried 

371 pig carcasses and insect sampling during exhumations have shown the presence of many 

372 necrophahous species (24, 61, 94, 125, 144, 156). Although no necrophagous species appear to be 

373 restricted to buried cadavers, their relative abundance and diversity often vary compared to 

374 exposed cadavers (25). Thus, the absence of the expected species (e.g., calliphorid flies) and the 
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375 presence of many concealment-related species (e.g., Phoridae) may indicate that a cadaver had 

376 been previously buried (82, 83). 

377 C. tibialis is one of the main species found on concealed cadavers; several authors have 

378 reported that this small fly occurs frequently and in large numbers (24, 109, 116). The regular 

379 occurrence of C. tibialis on buried cadavers is linked with its specific behavior: females can burrow 

380 through the soil to a depth of 2 m to oviposit, and larvae can crawl even deeper (117). Megaselia 

381 scalaris is also often found. This fly is a warm-climate species, but it has been carried around the 

382 world by humans and has been associated with indoor forensic cases in temperate regions (50). 

383 However, these two species are also present in other environments, including indoors and in the 

384 open air (49), and their presence cannot be considered to constitute definitive evidence of burial. 

385 More interestingly, Szpila et al. demonstrated the ability of Phylloteles pictipennis and 

386 Eumacronychia persolla (Diptera: Sarcophagidae) to reach deeply buried animal remains and 

387 breed on this food source (152). As noted by the authors, both of these species develop exclusively 

388 on buried food resources, making them potential indicators of cadaver relocation.

389 By contrast, common blowflies and muscid flies have limited abilities to colonize buried 

390 resources, as shown by Gunn and Bird (74). But Muscina stabulans and M. prolapsa have 

391 colonized remains buried up to 40 cm deep (74). As noted by the authors, the presence of large 

392 numbers of larvae of a given species feeding on bodies buried deeper than indicated by their 

393 species-specific limitations may be an indication that the body had been exposed above ground for 

394 sufficient time for eggs to be laid. Indeed, larvae laid before burying are able to fully develop on 

395 cadavers that were subsequently buried (10, 74). Lastly, Gunn and Bird showed the ability of 

396 wandering larvae that have grown on a buried cadaver to reach the surface and pupate (74). 

397 According to this finding, the presence of pupae on the soil above the grave does not indicate that 
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398 the cadaver was buried after the pupal stages emerged. Other inferences can be drawn from the 

399 absence or presence of specific instars, as described in more detail in the section of this review 

400 focusing on larval behavior.

401 Mariani et al. reported the use of an unusual biocenose as evidence of post-exhumation 

402 entomological contamination (105). Entomological investigation revealed the presence on 

403 exhumed remains of numerous necrophagous insects as well as omnivorous and storage pests 

404 (Dermestidae, Nitidulidae and Tenebrionidae beetles; Tineidae moths; and cockroaches). As none 

405 of these insects are able to burrow as adults or as larvae, their presence provides evidence of 

406 contamination during storage in the cemetery after exhumation.

407

408 B. 3 Conclusions related to species-specific habitats

409 As described herein in detail, various species-specific habitats can be used as evidence of 

410 cadaver relocation from one habitat to another (Table 1). However, most of these trends are not 

411 rules and thus are not restrictive enough to formally demonstrate that a cadaver was moved. 

412 Accordingly, while entomological evidence related to species-specific habitats may help support 

413 hypotheses regarding cadaver relocation, strong inferences are usually not appropriate.

414 Finally, other insects (non-necrophagous species) could provide evidence of cadaver 

415 relocation. As reported by Goff, <If a body is outdoors near or under vegetation, it is possible for 

416 insects associated with that vegetation to move onto the body, although typically not to feed or lay 

417 eggs= (66). However, as these insects are not directly linked to the cadaver, it would be difficult 

418 to prove they were moved together with it. Furthermore, the probabilities of 1) having a non-

419 necrophagous species crawling on a cadaver, 2) moving this insect with the cadaver, 3) sampling 
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420 and identifying it at the secondary site and 4) that species being located outside its natural range 

421 are likely very low. We have found no report of any such case in the forensic literature.

422

423 Table 1. Summary of the use of spatial characteristics of necrophagous insects as evidence of 

424 cadaver relocation. The first location is shown in the column, and the second (final) site is shown 

425 in the row. The availability and strength of each clue are modulated by the length of time the 

426 cadaver remained in each place. More details for each scenario can be found in the main text.

427

  Duration on 1st deposition site

  Hours Days Weeks Months/Years

Hours

only 

Calliphoridae 

larvae from 

1st site

various species -  1st site only

Days

Callihoridae 

larvae from 

both sites

mostly late 

colonizers from 1st 

site

Weeks

various species from 

1st site + late 

colonizer from 2nd 

site
late colonizers from 

both sites

Duration 

on 2nd 

deposition 

site

Months/Years

too short to get insects from 

the 1st location empty 

pupae of 

non-

wandering1 

Calliphoridae  

species from 

the 1st site

traces² of various species from 1st site + 

late colonizer from 2nd site

428

429 B. Behavior and development of instars

430 Extensive knowledge of the behavior of necrophagous insects is often key to interpreting 

431 forensic entomology. Knowledge of when adults are attracted by cadavers, how they colonize them 

432 and how their larvae grow allows forensic entomologists to elucidate a coherent post-mortem 

433 chronology. However, this component of the analysis is often underrated. First, only a few studies 

434 focusing on the behavior of necrophagous insects have been published. Furthermore, most of the 

435 available data are descriptive, consisting of field observations or trends rather than quantitative 

436 experiments (154). In a forensic context, these restrictions make it difficult to draw conclusions: 
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437 such evidence is thus easy to contest. However, while it is not always quantifiable, insect behavior 

438 can be used to construct useful hypotheses and help guide investigations.

439

440 C.1 Adult behavior: colonization and egg laying

441 Egg laying depends on climatic conditions as well as species behavior and the accessibility of the 

442 cadaver. Indirectly, these parameters could theoretically be used as evidence of a displacement 

443 between places with different climactic conditions. An average species-specific minimum 

444 temperature is required for egg laying (54, 80). Krikken et al. reported a neat but questionable 

445 example of this phenomenon (91). Building on the disputable idea that L. <oviposit on high 

446 temperature surfaces,= the authors concluded that a cadaver discovered in a room had first been 

447 located outdoors in a warm and sunny place. However, while L. sericata is indeed heliophilic, this 

448 species can still lay eggs indoors. Many other weather parameters such as sun, wind and rain can 

449 also have an impact (38, 162). Furthermore, as fly displacement and egg laying mostly occur 

450 during the daytime, the presence of numerous egg batches on a cadaver located in a dark place 

451 could be suspicious (17, 73, 162). However, Gemmellaro et al. recently demonstrated the ability 

452 of some calliphorid flies, especially C. vicina, to reach meat-baited traps placed inside volcanic 

453 caves (62).

454 Some species are also known to oviposit in specific areas: calliphorid flies preferentially 

455 deposit egg batches on the face (nostrils, mouth, eyes), while most silphid beetles lay their eggs 

456 underneath cadavers (144). However, such behaviors are strongly affected by cadaver 

457 decomposition, wounds, presence of other larvae and species, collective behavior (egg 

458 aggregation) and the environment (41). More striking evidence is provided by the presence of 

459 eggs, especially those of large Calliphorids, in inaccessible places, especially underneath a 
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460 cadaver. Such a case was analyzed in 2013 in France (unpublished data): the presence of numerous 

461 L. sericata and C. vicina egg batches in the folds of clothing underneath a cadaver served as 

462 evidence of the secondary reversal of the cadaver by drug addicts searching for money.

463

464 C.2 Larval development, wandering larvae and pupae

465 Fly larvae live on the cadaver and are thus quite resistant to cadaver relocation. On the 

466 opposite, the probability of transferring the insects present in soil or under the cadaver (wandering 

467 larvae, pupae and most silphid larvae) along with the cadaver is very low. During the post-feeding 

468 stage, larvae of several blowfly species (with the notable exception of Chrysomyinae) start 

469 migrating from the cadaver to pupate away from predators in a protected location (68). Greenberg 

470 (72) observed that more than 80% of the post-feeding larvae of L. sericata and C. vicina moved 

471 out of the cadaver and were observed up to 8 m away. By contrast, only 2% of P. regina, 10% of 

472 M. stabulans, and 16% of C. rufifacies larvae moved away. Due to the robustness of this behavior, 

473 a good deal of information can be derived from the presence and location of the wandering larvae 

474 and pupae/puparia around the cadaver.

475 The presence of necrophagous blowfly pupae and puparia (or dead adult flies) can be used 

476 as evidence of the former presence of a cadaver. Genetic analysis can formally link these insects 

477 to the victim (see the molecular analysis section of this review) (34). Such entomological evidence 

478 was recently used during the famous Casey Anthony Trial (USA) (96), in which a first forensic 

479 entomologist relied on the presence of numerous M. scalaris larvae, pupae and adults in a car trunk 

480 as evidence of the former presence of a cadaver (7). However, an expert witness for the defense 

481 showed that the same insects could also have come from a trash bag discovered in the trunk. As 

482 the gut contents of insect samples were not tested for DNA, there was no evidence to support the 
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483 assertion that the insects originated on human remains. Mariani et al. (2014) also observed that in 

484 blowfly and muscid species, buried larvae ultimately left their food source to move to their usual 

485 pupariation depth. According to the authors, the presence of large numbers of post-feeding blowfly 

486 larvae without a cadaver in the vicinity could therefore indicate that a body may have been buried 

487 nearby rather than relocated.

488 On the opposite, the lack of pupae/puparia of Calliphoridae, together with the presence on 

489 a cadaver of non-wandering species (e.g., Chrysomyinae) may suggest the relocation of the 

490 cadaver after the wandering larvae had left. Such a case involving cadaver relocation in a car trunk 

491 after the larvae have moved was described by Benecke (19). Krikken et al. also reported a case of 

492 a skeleton found during winter in a small forest with <numerous empty pupal cocoons of P. 

493 terraenovae under the bones= (91). From these puparia, the authors concluded that the whole 

494 decomposition process had taken place in that same spot. However, as this species can pupate in 

495 the clothes or even on decomposing tissues, it was also reasonable to hypothesize that pupae had 

496 been moved together with the cadaver. 

497

498 Cadaver relocation can also be characterized by discrepancies between local temperature 

499 and larval development. As an example, a finding of third-instar L. sericata on a cadaver in a cold 

500 location (e.g., a cellar with a constant 9-10°C temperature) would be suspicious. However, this 

501 discrepancy often results from the on-site microclimate (e.g., direct sun exposure), larval-mass 

502 effect or conservation of the cadaver or samples (e.g., high temperature during transport) rather 

503 than relocation. Cadaver relocation should be considered only in the absence of these biases. 

504 Lastly, a less formal but striking clue regarding cadaver relocation is the presence of crushed 

505 pupae/imago on or under the cadaver. We observed the presence of flattened pupae or newly 
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506 hatched flies (flat, dry individuals with a still-visible ptilinum) directly under the cadaver in several 

507 forensic cases. Relocation of the cadaver likely occurred after numerous flies had started to 

508 emerge, and some specimens were compressed under the cadaver during or after moving. If such 

509 specimens are observed on site (before the cadaver was moved by the forensic team), relocation 

510 after larval pupation can be suspected.

511

512 C. Phenology and colonization time

513 The temporal activities of flies vary due to intrinsic rhythms (e.g., life history, reproductive 

514 cycle, development time, etc.) and extrinsic seasonal effects (e.g., temperature, photoperiod and 

515 availability of resources) (166). Accordingly, species-specific phenology can be an indicator of 

516 the season of death and, at least theoretically, of cadaver relocation (90). For example, the finding 

517 of only <late= colonizers on a cadaver and no traces of pioneer species should be suspicious and 

518 suggests that the cadaver was not accessible to insects (e.g., concealed or hidden under inclement 

519 weather conditions) during the first stages of decomposition. An example is given by Krikken et 

520 al.: only a small number of insect eggs (attributed to blowflies) were found on a cadaver discovered 

521 during a warm summer (90). Considering the total absence of maggots from the body and the post-

522 mortem interval calculated by the pathologist, the authors concluded that the body must have been 

523 sheltered, delaying colonization by blowflies.

524 M�dra et al. (102) observed clear seasonality trends for 9 Staphylininae species and 

525 concluded that they are good candidates as indicators of cadaver relocation. The results for flies 

526 are far more divergent. In Spain, Zabala et al. observed that L. sericata, L. illustris and Ch. albiceps 

527 were clear indicators of summer (166), while C. vicina and C. vomitoria were common year round 

528 with maximum abundance in the spring. However, due to the wide variability in these results 
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529 according to landscape, the authors concluded that they cannot be used as evidence of cadaver 

530 relocation. The same conclusion can be drawn from the results obtained by Greco et al. in Italy 

531 (71). The authors showed differences in the abundances of Calliphoridae by month of sampling. 

532 However, this effect was also strongly dependent on trap location. For example, C. vicina was 

533 observed throughout the sampling period (except from June to September) in rural and urban areas 

534 but was absent during the cooler months (November to January) in the wild area. This interaction 

535 of phenology and spatial distribution clearly prevents the use of these species as evidence of post-

536 mortem displacement.

537 This question is also linked to the effect of time on colonization by necrophagous insects. 

538 This subject is widely studied and debated within the forensic-entomology community. It is widely 

539 understood that some species are early colonizers, while others are observed during later stages of 

540 decomposition (144). However, the colonization period of a given species varies depending on 

541 many parameters, including climate, season, geographic area, local environment, insect 

542 populations, and other factors (33). These points must be carefully examined before any attempt 

543 to use unusual succession as evidence of cadaver relocation. Furthermore, open habitats allow easy 

544 access to the cadaver for predators or parasites such as wasps, Silphidae and Cleridae. They can 

545 decrease the number and diversity of Diptera larvae, especially if predation occurs during the early 

546 developmental stages (e.g., egg removal by wasps). Thus, the absence of some pioneer species 

547 does not imply cadaver concealment during the first stage of decomposition.

548 Finally, duration is fundamental in considering cadaver relocation. Different amounts of 

549 time spent in the first location, during transportation and in the secondary decomposition site are 

550 associated with different types of evidence. Table 2 summarizes the overall scenarios and 
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551 corresponding timeframes for <simple= cases. However, the problem of time must be considered 

552 in each particular context (Table 1 and above in this review).

553

554 Table 2. Effects of time spent in the first (columns) and secondary (lines) decomposition sites on 

555 the necrophagous entomofauna. According to the time spent in each location, different species and 

556 developmental instars may be found on the cadaver, affecting the interpretation of entomological 

557 samples as evidence of cadaver relocation. More details on the entomological phases of the 

558 colonization process can be found in Tomberlin et al. (154).

559

1 - First 

location

Indoor 

(closed)

Outdoor Other

2 - Final location Rural Urban Forest Open Freshwater Salted 

water

Burried/Concealed

Indoor 

(closed)

X All usual terrestrial necrophagous species. 

Groud-living Coleoptera larvae would be 

especially informative

Aquatic species on the 

cadaver

Outdoor Rural Mainly 

Phoridae, 

few 

Calliphoridae 

(no 

wandering 

larvae / only 

Chrysomiinae 

pupae) 

X X Mainly Phoridae, 

few Calliphoridae 

(no wandering 

larvae / only 

Chrysomiinae 

pupae) 

Urban X

Forest X Lucilia sericata, Dermestes frischi, Omosita colon, Nitidulae

Open X O. 

thoracicum

X

Other Freshwater 

(immersed)

Lot of 

Phoridae 

with only a 

few other 

terrestrial 

species - no 

large species

All usual terrestrial necrophagous species. 

Groud-living Coleoptera larvae would be 

especially informative

X Freshwater 

species

Lot of Phoridae 

with no other 

terrestrial species

Salted water (immersed) Salted 

water 

species

X

Burried/Concealed Calliphoridae, Sarcophagidae, Muscidae 

(possibly other) - all developmental stages

Aquatic species on the 

cadaver

X

X = Not possible Questionable Blank: Unknown / Not enough data

560
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561

562 D. Contribution of molecular analyses

563 E. 1 Cuticular hydrocarbons 

564 The ability to identify forensic species at different developmental stages and to link them 

565 to local populations can be crucial in determining whether a body was moved from the crime scene. 

566 Simple molecular analyses concern cuticular hydrocarbon profiles. This thin epicuticular layer of 

567 wax consists of free lipids, a class of compounds that includes hydrocarbons, alcohols, fatty acids, 

568 waxes, acylglycerides, phospholipids and glycolipids (64). This phenotype is biologically very 

569 stable and almost entirely determined by genotype (127, 158). Byrne et al. (29) demonstrated that 

570 the cuticular hydrocarbons of three geographically distinct populations of P. regina are 

571 differentiable. However, some local populations can interbreed with adjacent populations, and the 

572 minimal interval over which adjacent populations can be considered distinct is still unknown. 

573 Accordingly, this method could be used as evidence of the presence of a non-local population on 

574 a cadaver (which suggests cadaver relocation) but will not yield results in the case of short-distance 

575 relocation (29). More research on this promising topic should be conducted in the future (154).

576

577 E. 2 Genetics of insect populations

578 If post-mortem changes are suspected, relocation can be shown by determining the 

579 relationships between insects sampled at the initial and secondary sites (129). Several studies have 

580 highlighted significant genetic differences between populations of the same species on different 

581 continents (21, 48, 145) but also across a continent (78, 97). To identify genetic variations between 

582 populations, methods such as simple conformation polymorphism strand (SSCP) analysis and 

583 AFLP (amplified fragment length polymorphism) are available. However, all kinship analyses 
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584 require a solid genetic database including the variability among geographical sites, the 

585 development of which requires thorough field samplings (93), precise morphological identification 

586 and complete genetic characterization of each collected individual.

587 DNA-based identification has been shown to be a valuable tool with which to identify adult 

588 insects of forensic interest as well as immature stages and fragments of cuticles or puparia (75, 76, 

589 88, 95, 113, 114, 123, 145, 149, 160, 165, 167, 168). These DNA-based identifications can be used 

590 to create a reference library of identified specimens. On this basis, databases such as GenBank and 

591 the Barcode of Life Data Systems (BOLD) have been used to detect genetic variation within local 

592 populations of the same species (158). Using SSCP analysis, inter-population differences have 

593 been detected between the African and North American populations of the common housefly, 

594 Musca domestica (106). Harvey et al. also found differences in the COI gene between South 

595 African and Australian populations of two species of forensic interest, Chrysomya rufifacies and 

596 L. cuprina (79). Furthermore, Desmyter and Gosselin (48) and Boehme et al. (20) found sequence 

597 differences between Phormia regina specimens from North America and Europe (Belgium, France 

598 and Germany) (20, 48). Jordaens et al. confirmed this divergence in the COI with newly sequenced 

599 material (88). However, sequence divergence within each continent was only ca. 0.4%, making 

600 genetic differentiation of local strains difficult. New scientific projects dedicated to building 

601 datasets that reflect the diversity of necrophagous entomofauna at the European scale are currently 

602 expanding and should address this question in the near future (63, 145).

603 Using AFLP surveys, Picard and Wells observed that groups of adult L. sericata and P. 

604 regina trapped together on a bait were predominantly composed of related individuals, with a 

605 genetic diversity lower than that observed at a larger scale (130, 131). This pattern also holds true 

606 for gravid females and therefore probably for larvae, suggesting that the population genetic 
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607 structure of adults could be extended to the larval population growing on a cadaver. If so, this 

608 result might support the use of genetic tests to infer post-mortem relocation of a cadaver by 

609 connecting a larva found in one location to the larval population growing on a cadaver in a second 

610 location. Faulds et al. confirmed the validity of this AFLP method: kinship testing based on AFLP 

611 data yields adequate kinship estimates with limited error (55). As noted by the authors, this type 

612 of analysis can be performed on any life stage of the insect and on any species. Regarding species 

613 of interest in forensic entomology, AFLP data are already available for P. regina, L. sericata and 

614 C. megacephala (12, 130, 131). These results support the idea that AFLP analysis for full sibship 

615 is a promising method for the detection of postmortem relocation.

616

617 E. 3 Identification of human DNA 

618 Another contribution of molecular analyses is the identification of human DNA in the 

619 digestive tract of the larvae. This method can be used to determine the genetic profile of the victim 

620 (16, 33, 160) and can be used in the absence of a cadaver as well as after its relocation (60). Indeed, 

621 the presence of necrophagous larvae or pupae in an empty place can suggest the former presence 

622 of a cadaver. If genetic analysis of the gut content reveals the victim9s DNA, entomological 

623 evidence can be used as evidence of relocation (96, 159). In 2001, Wells et al. demonstrated that 

624 mitochondrial DNA sequences can be obtained from the dissected gut of a maggot that had fed on 

625 human tissue. In 2012, Chaves-Briones et al. reported the first forensic case of victim identification 

626 from human DNA isolated from the gastrointestinal tract of necrophagous larvae (45). Still more 

627 striking evidence of the potential of this method was provided by Marchetti et al. (104). In this 

628 study, the authors used short tandem repeat (STR) analysis to extract and type human DNA from 

629 empty puparia collected in two forensic cases. As puparia cases are highly durable, they offer a 
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630 unique opportunity to indicate cadaver relocation a long time after the event. Njau et al. also 

631 demonstrated that DNA analysis could be used to determine whether the larvae sampled on a 

632 cadaver were introduced from an alternative food source (e.g., a dead animal or a trash can near 

633 the cadaver) (119). However, due to the rapid degradation of DNA by gut digestive enzymes, such 

634 analyses are limited to two days post-feeding (39, 130).

635

636

637

638 E. Conclusion

639 1/ The question of cadaver relocation has arisen in many forensic cases, but it has received little 

640 attention in the forensic science literature, except in forensic entomology. 

641 2/ Even if some species are preferentially found in some biotopes, most are not sufficiently 

642 geographically restricted to serve as evidence of cadaver relocation. 

643 3/ Only field studies performed at a local scale and focusing on a clear question (e.g., differences 

644 between rural and urban areas) should be used as references. 3/ Time is a key point: a cadaver that 

645 remained in the first location for too short a time is not likely to have been colonized by local 

646 insects, while any that remained too long would likely have been abandoned by the insects before 

647 cadaver relocation. 

648 4/ Specific sets of circumstances allowing inference of corpse relocation from cadaver 

649 entomofauna are:

650 - relocation from open air to an aquatic environment (and the converse),

651 - relocation from open air to a grave or burial site (and the converse),

652 - removal from an indoor location if some larvae or pupae remain in the first location,
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653 - evidence of cadaver relocation with the support of molecular analysis.

654 5/ Analyses can be performed only by trained forensic entomologists and require early discussion 

655 with investigators, extensive on-site sampling, the conservation and analysis of relevant samples, 

656 and a considerable amount of chance. 

657 6/ We recommend that forensic entomologists perform experiments a posteriori to comply with 

658 the circumstances of a given forensic case and not rely on general trends or previous results at a 

659 broader scale.
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