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Texas is the second largest state in the United States of America, and the largest state in

the contiguous USA at nearly 700,000 sq. km. Several Texas bumble bee species have

shown evidence of declines in portions of their continental ranges, and conservation

initiatives targeting these species will be most effective if species distributions are well

established. To date, statewide bumble bee distributions for Texas have been inferred

primarily from specimen records housed in natural history collections. To improve upon

these maps, and help inform conservation decisions, this research aimed to (1) update

existing Texas bumble bee presence databases to include recent (2007-2016) data from

citizen science repositories and targeted field studies, (2) model statewide species

distributions of the most common bumble bee species in Texas using MaxEnt, and (3)

identify conservation target areas for the state that are most likely to contain habitat

suitable for multiple declining species. The resulting Texas bumble bee database is

comprised of 3,581 records, to include previously compiled museum records dating from

1897, recent field survey data, and vetted records from citizen science repositories. These

data yielded an updated state species list that includes 12 species, as well as species

distribution models (SDMs) for the most common Texas bumble bee species, including two

that have shown evidence of range-wide declines: B. fraternus (Smith, 1854) and B.

pensylvanicus (DeGeer, 1773). Based on analyses of these models, we have identified

conservation priority areas within the Texas Cross Timbers, Texas Blackland Prairies, and

East Central Texas Plains ecoregions where suitable habitat for both B. fraternus and B.

pensylvanicus are highly likely to co-occur.
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14 Abstract:

15 Texas is the second largest state in the Unites States of America, and the largest state in the 

16 contiguous USA at nearly 700,000 sq. km. Several Texas bumble bee species have shown 

17 evidence of declines in portions of their continental ranges, and conservation initiatives targeting 

18 these species will be most effective if species distributions are well established. To date, 

19 statewide bumble bee distributions for Texas (USA) have been inferred primarily from specimen 

20 records housed in natural history collections. To improve upon these maps, and help inform 

21 conservation decisions, this research aimed to (1) update existing Texas bumble bee presence 

22 databases to include recent (2007-2016) data from citizen science repositories and targeted field 

23 studies, (2) model statewide species distributions of the most common bumble bee species in 

24 Texas using MaxEnt, and (3) identify conservation target areas for the state that are most likely 

25 to contain habitat suitable for multiple declining species. The resulting Texas bumble bee 

26 database is comprised of 3,581 records, to include previously compiled museum records dating 

27 from 1897, recent field survey data, and vetted records from citizen science repositories. These 

28 data yielded an updated state species list that includes 12 species, as well as species distribution 

29 models (SDMs) for the most common Texas bumble bee species, including two that have shown 

30 evidence of range-wide declines: B. fraternus (Smith, 1854) and B. pensylvanicus (DeGeer, 

31 1773). Based on analyses of these models, we have identified conservation priority areas within 

32 the Texas Cross Timbers, Texas Blackland Prairies, and East Central Texas Plains ecoregions 

33 where suitable habitat for both B. fraternus and B. pensylvanicus are highly likely to co-occur. 
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34 Introduction:

35 Bumble bees (Bombus spp.) are an important group of insect pollinators that provide 

36 sustaining pollination services for both agricultural systems and biological communities (Corbet 

37 et al., 1991; Klein et al., 2007; Potts et al., 2010; Garibaldi et al., 2013). Unfortunately, bumble 

38 bees face many modern challenges, including those posed by pesticide use (Gill et al., 2012; 

39 Whitehorn et al., 2012; Rundlöf et al., 2015), climate change (Kerr et al., 2015), disease (Szabo 

40 et al., 2012), and habitat loss (Kearns et al., 1998; Grixti et al., 2009; Winfree et al., 2009). 

41 Consequently, bumble bee losses have been noted across Europe (Carvell, 2002; Sarospataki et 

42 al., 2005; Goulson et al., 2006; Fitzpatrick et al., 2007; Kosior et al., 2007; Goulson, 2010), Asia 

43 (Yang, 1999; Matsumura et al., 2004; Inoue et al., 2008; Xie et al., 2008)), and North America 

44 (Thorp, 2005; Thorp & Shepherd, 2005; Colla & Packer, 2008; Grixti et al., 2009; Colla & Ratti, 

45 2010; Cameron et al., 2011; Colla et al., 2012). Furthermore, evidence presented by Bartomeus 

46 et al. (2013) suggests that bumble bees are among the most vulnerable of North American bee 

47 taxa. 

48 Because bumble bees are the primary pollinators of several agricultural crops, declines in 

49 bumble bee populations may threaten the permanence of foods such as blueberries, tomatoes, 

50 and peppers (Hatfield et al., 2012; Shipp et al., 1994; Whittington & Winston, 2004). 

51 Additionally, research has indicated that the loss of bumble bees from wild ecosystems could 

52 result in a pronounced decline in overall plant diversity (Memmott et al., 2004), limited seed 

53 production by native plants, and less effective pollination by other pollinators (Brosi & Briggs, 

54 2013). 

55 Historically, eight species of bumble bees have been documented in Texas (Franklin, 

56 1913; Warriner, 2012): B. auricomus (Robertson, 1903), B. bimaculatus Cresson, 1863, B. 
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57 fervidus (Fabricius, 1798), B. fraternus (Smith, 1854), B. griseocollis (DeGeer, 1773), B. 

58 impatiens Cresson, 1863, B. pensylvanicus (DeGeer, 1773), and B. variabilis (Cresson, 1872). 

59 Additionally, B. pensylvanicus sonorus, sometimes classified as the distinct species B. sonorus 

60 Say, 1837 (Franklin, 1913; Stephen, 1957; Thorp et al., 1983; Warriner, 2012), has been 

61 documented in Texas. For the purposes of this research we have treated this taxon as a western 

62 morphological variant of B. pensylvanicus following Milliron (1973), LaBougle (1990), Poole 

63 (1996), and Williams et al. (2014), and refer to it hereafter as B. pensylvanicus sonorus. 

64 However, it should be noted that the taxonomic status of this taxon is still debatable, and genetic 

65 studies are warranted to address this question. 

66 Though bumble bee declines can be difficult to assess owing to a lack of long-term 

67 monitoring data (Berenbaum et al., 2007), some studies have suggested regional and national 

68 declines for several species whose ranges extend into Texas, including B. auricomus (Colla et al., 

69 2012; Kopec, 2017), B. fervidus (Colla & Packer, 2008; Colla et al., 2011; Colla et al., 2012), B. 

70 fraternus (Colla & Packer, 2008; Grixti et al., 2009; Hatfield et al., 2014), B. pensylvanicus 

71 (Berenbaum et al., 2007; Colla & Packer, 2008; Grixti et al., 2009; Cameron et al., 2011; Colla et 

72 al., 2011; Colla et al., 2012), and B. variabilis (Grixti et al., 2009; Colla et al., 2011; Colla et al., 

73 2012). To our knowledge, the only recent attempt to assess the current status of Texas bumble 

74 bee populations took place in a 24-county region of northeast Texas, where five species had 

75 historically been found (Beckham et al., 2016). In that study, the results of targeted field surveys 

76 (2010-2014) were compared to natural history specimen records. While the researchers did not 

77 reconfirm presence of the regionally rare B. bimaculatus or B. variabilis in northeast Texas, they 

78 showed that the current relative abundances of the potentially declining B. fraternus and B. 

79 pensylvanicus were equivalent to historic levels in the study region, as was that of the nationally 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2932v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017



80 stable B. griseocollis. Nevertheless, compelling evidence for bumble bee declines across North 

81 America has raised awareness of the need for conservation measures. In Texas this has led to 

82 three taxa (B. pensyvlanicus, B. pensylvanicus sonorus, and B. variabilis) being designated as 

83 species of greatest conservation need in the Texas Conservation Action Plan (Texas Parks 

84 &Wildlife Department, 2012). 

85 An effective species conservation program requires delineation of the distribution of the 

86 species of interest (Eken et al., 2004), as well as an understanding of their habitat. Prior to the 

87 current study, efforts to establish Texas bumble bee distributions included the compilation and 

88 mapping of Texas specimen data from natural history collections by Warriner (2012) and 

89 targeted field studies in the northeastern portion of the state (Beckham et al., 2016). Williams et 

90 al. (2014) also modeled range-wide species distributions for North American bumble bees, to 

91 include Texas species. While informative and foundational, these studies left some question as to 

92 the fine-scale distributions of Texas bumble bee species, as well as gaps in data for portions of 

93 the state. 

94 Unlike many insect taxa, bumble bees can often be identified to species in the field and in 

95 photographs, and so data collected by citizen scientists can provide invaluable information for 

96 bumble bee research. These data have been used to monitor populations and nesting densities 

97 (Osborne et al., 2008; Lye et al., 2011), and have served as presence data for species distribution 

98 models (SDMs) (Kadoya et al., 2009). In recent efforts to spread awareness and fill gaps in 

99 presence data, two citizen scientist projects were established specifically for Texas volunteers to 

100 submit their bumble bee sightings, in the form of photographs with locality data: the Texas 

101 Bumblebees Facebook page, founded in 2011, and the iNaturalist Bees and Wasps of Texas 

102 project, founded in 2014. These repositories now contain hundreds of sightings recorded by 
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103 numerous volunteers from across the state that can be used as additional presence data for SDMs, 

104 complementing those provided by natural history collection records and field surveys.               

105 SDMs estimate the geographic distribution of a species using field observations and 

106 associated environmental predictor variables. Over the last few decades, SDMs have become 

107 increasingly useful tools for conservation planning (Guisan & Thuiller, 2005). The Maximum 

108 Entropy (MaxEnt) algorithm is attractive because its implementation is straightforward and 

109 makes use of presence-only data, along with environmental variables associated with presence 

110 localities, to produce robust distribution models (Phillips et al., 2004; Phillips et al., 2006). 

111 In recent years MaxEnt has successfully been used for a variety of applications related to 

112 bumble bees. To aid in conservation planning, Koch & Strange (2009) used historic specimen 

113 data to construct range maps for four North American species, and Penado et al. (2016) predicted 

114 the potential ranges of rare species in the Iberian Peninsula, also revealing the possibility of 

115 undiscovered populations in mountainous areas. Others have used MaxEnt to evaluate species 

116 trends, including Cameron et al. (2011), who assessed the rangewide persistence of eight North 

117 American species, and Dellicour et al. (2017), who inferred past and present distributions of 

118 European bumble bees to investigate range shifts. And, to aid in invasive species management 

119 decisions, Kadoya et al. (2009) implemented citizen science presence data in MaxEnt to predict 

120 the potential for invasion by B. terrestris in Japan. These studies underscore the utility of models 

121 produced by MaxEnt for bumble bee species policy and planning purposes. 

122 In an effort to update and increase the understanding of statewide bumble bee species 

123 presence in Texas, and to inform the planning and implementation of state conservation actions, 

124 this study9s aims were to: 
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125 1) Compile statewide bumble bee presence records from novel data sources (citizen 

126 science repositories and recent field studies) and natural history collections to produce an 

127 updated database of known bumble bee presence in Texas. 

128 2) Create SDMs using MaxEnt to illustrate the potential ranges of common bumble bee 

129 species in Texas.

130 3) Identify conservation target areas that are likely to contain multiple declining bumble 

131 bee species.       

132 Materials &Methods:

133 Species Presence Data4 

134 Bumble bee presence data were gathered from natural history museum collections, citizen 

135 science repositories, and recent field collection data. These were compiled into one database for 

136 mapping and species distribution modeling purposes. 

137 Previously compiled natural history collection records (Warriner, 2012; L. Richardson, 

138 unpublished dataset) included data from the following institutions: Elm Fork Natural Heritage 

139 Museum, Texas A&M University Insect Collection, Texas Memorial Museum, Illinois Natural 

140 History Survey Insect Collection, Cornell University Insect Collection, Florida State University 

141 Collection of Arthropods, Mississippi State University Entomological Museum, K.C. Emerson 

142 Entomology Museum, Purdue Entomological Research Collection, Smithsonian Natural History 

143 Museum, University of Arkansas Arthropod Museum, University of Georgia Collection of 

144 Arthropods, University of Michigan Museum of Zoology, University of Minnesota Insect 

145 Collection, American Museum of Natural History, Canadian National Collection, Essig Museum 

146 of Entomology, Los Angeles County Museum, Ohio State University, Bohart Museum of 
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147 Entomology, University of Colorado Museum of Natural History, California State Collection of 

148 Arthropods, University of California Riverside Entomology Research Museum, Lyman 

149 Entomological Collection, Bee Biology and Systematics Laboratory, USGS Patuxent Wildlife 

150 Research Center, and the Yale Peabody Museum. When possible, records lacking geographic 

151 coordinates were georeferenced using Google Earth; record localities given as county names 

152 were georeferenced to coordinates corresponding to the county seat.

153 Two citizen scientist repositories, iNaturalist and the Texas Bumblebees Facebook page 

154 (hereafter referred to as <Texas Bumblebees=), were also mined for presence records. Only 

155 records that included photographs that could be identified to species, as well as location data, 

156 were incorporated into the modeling database. The iNaturalist platform allows contributors to 

157 include locality coordinates with their submissions; when available, these coordinates were 

158 included in the presence database. Records lacking coordinates, as well as all submissions from 

159 Texas Bumblebees, were georeferenced based on locality information provided by the observer 

160 using Google Earth. Several citizen scientist records were also directly submitted as photographs 

161 to J. Beckham. Species determinations followed Williams et al. (2008) and Colla et al. (2011). 

162 Additionally, field collection data were gathered from recent research projects performed by J. 

163 Beckham and M. Warriner in 2010-2016 (Beckham et al., 2016; Beckham, unpublished dataset). 

164 Correcting for Sampling Bias4 

165 A fundamental assumption in MaxEnt is that the presence data upon which models are 

166 built have been acquired from random sampling across the study area. However, museum and 

167 citizen science data are not typically collected in a systematic fashion, resulting in spatially 

168 biased data. Running MaxEnt without correcting for this sampling bias results in overfitting of 

169 models to reflect survey effort rather than actual species distributions. When sample size is 
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170 sufficient, spatial filtering is recommended to minimize errors of omission and commission in 

171 MaxEnt resulting from using spatially biased presence data (Kramer-Schadt et al., 2013). 

172 Additionally, because MaxEnt uses presence-only data to produce SDMs, background points are 

173 selected to contrast against the presence locations. By default, MaxEnt assigns every pixel the 

174 same probability of being selected as a background point. Selecting background points so that 

175 they carry the same bias as (unfiltered) presence data aids in the production of more accurate 

176 distribution models (Phillips et al., 2009; Merow et al., 2013). In order to achieve this end, a bias 

177 grid with cell values weighted to reflect non-uniform sampling effort (following Elith et al. 

178 2010) can be implemented in MaxEnt for biased apriori background point selection.  

179  The presence data included in the present study were biased towards heavily populated 

180 areas, especially the Dallas-Fort Worth metroplex, San Antonio, Houston, and Austin. To 

181 account for this bias, presence data were spatially filtered and a bias grid was produced to 

182 modify the random selection of background points using tools from the SDMtoolbox (Brown, 

183 2014) implemented in ArcMap 10.2.2. Presence data were spatially filtered using the 

184 SDMtoolbox rarefy occurrence data for SDMs tool that reduces spatial autocorrelation by 

185 removing duplicate occurrence points and reduces occurrence records to a single point within a 

186 specified area; for our data we used a 15-km2 resolution. The bias grid was created using the 

187 SDMtoolbox Gaussian kernel density of sampling localities tool loaded with presence points 

188 from all species; a sampling bias distance of 30 km was chosen. The resulting spatially filtered 

189 presence data and bias file were utilized in MaxEnt.  

190 Preparation of Environmental Variables4 

191 Environmental layers of 19 derived bioclimatic variables were downloaded from the 

192 WorldClim global climate database (Hijmans et al., 2005, available at www.worldclim.org) at a 
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193 resolution of 10 minutes (~344 km2) as ESRI grids. This resolution was chosen because it 

194 allowed us to include lower resolution data that had been georeferenced to county. All rasters 

195 were clipped to match the boundaries of the state of Texas using the extract by mask tool in 

196 ArcMap 10.2.2; the cartographic boundary file for the mask was downloaded from 

197 https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html and a shapefile of Texas 

198 was produced and projected to WGS_1984. All clipped environmental rasters were converted to 

199 ASCII files in ArcMap for use in MaxEnt.  

200 It is recommended that correlation be minimized between predictor variables 

201 implemented in MaxEnt, as would be done for a traditional statistical model (Merow et al., 

202 2013). A Pearson9s correlation analysis was performed on all 19 layers using the correlation and 

203 summary stats tool in SDMtoolbox, and pairs of environmental layers with correlation 

204 coefficients >0.85 were identified. Variables were ranked prior to analyses according to 

205 perceived ecological importance, and the less ecologically applicable predictor of each correlated 

206 pair was removed, resulting in a total of ten environmental predictors being maintained for 

207 species distribution analyses (Table 1). 

208

209 [TABLE 1 approximately HERE]

210 Production of Species Distribution Models (SDMs)4

211 Input data for species distribution modeling in MaxEnt consisted of the aforementioned 

212 spatially filtered presence data (occurrence records) and the 10 environmental layers (predictor 

213 variables). The Gaussian kernel density bias file was also loaded to alter selection of background 

214 points to reflect sampling bias. MaxEnt was run for 100 replicates for each species with default 
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215 settings, except as follows: jackknifing was selected to measure variable importance, 30% test 

216 percentage was implemented, and 5000 max iterations were allowed. The average logistic output 

217 over 100 replicates was calculated in MaxEnt for each species, and resulting SDM rasters were 

218 visualized in ArcMap 10.2.2. MaxEnt9s logistic output assigns each pixel in the study area a 

219 value between 0 and 1, and is the closest approximation of the probability of species presence 

220 (Elith et al., 2011). The default MaxEnt species prevalence value (an estimate of the probability 

221 of species presence at <typical= presence locations for the target species) was used to transform 

222 the raw MaxEnt output into the logistic output for each SDM. The reasoning behind using 

223 MaxEnt9s default value of 0.5, which can be interpreted as there being a 50% chance of the 

224 target species being present in a suitable location, is that the actual species prevalence values are 

225 rarely known and hard to approximate. Thus, calculated probability values from MaxEnt9s 

226 logistic output are interpreted not as the probability of species occurrence, but instead as the 

227 probability of suitable habitat being present for the target species. For detailed mathematical 

228 explanations of MaxEnt9s logistic output see Elith et al. (2011) and Phillips et al. (2006). 

229 SDM Raster Processing and Analyses4

230 For visualization and analyses purposes, SDM rasters were reclassified using the 

231 Reclassify tool in ArcMap9s Spatial Analyst toolbox from the continuous scale of 0 3 1 

232 probability calculated in MaxEnt to a categorical 0 3 2 scale, with 0 being low probability of 

233 suitable habitat being present (< 0.25), 1 being medium probability (0.25 3 0.49), and 2 being 

234 high probability (> 0.5). These rasters were then displayed with the underlying EPA Level III 

235 ecoregions (spatial layer downloaded from https://www.epa.gov/eco-research/ecoregion-

236 download-files-state-region-6; see Figure 1). Identifying the ecoregions associated with each 

237 bumble bee species will help inform decisions regarding the planning and implementation of 
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238 conservation plans. Furthermore, because funds and manpower dedicated to conservation can be 

239 limited, we identified areas where suitable habitat was likely to be present for both of the 

240 declining species studied (B. fraternus and B. pensylvanicus). In order to do this, the Combine 

241 tool in ArcMap9s Spatial Analyst toolbox was used to overlay the reclassified B. fraternus and B. 

242 pensylvanicus rasters, and cells with high (>0.5) probabilities of suitable habitat for both were 

243 identified.    

244 [FIGURE 1 approximately HERE]

245 Model Validation4

246 The accuracy of each SDM was evaluated using values of the area under the Receiver 

247 Operating Characteristic (ROC) curve, or AUC value, plotted and calculated in MaxEnt based on 

248 the training and test data. These values convey the predictive performance of the model as 

249 compared to a selection of random background points, and can be interpreted as the probability 

250 that any presence site is ranked higher in terms of habitat suitability for the target species than a 

251 random background site (Merow et al., 2013). An AUC value of 0.5 reflects a model that is no 

252 better than random, while an AUC of 1 would be considered a <perfect= model. We trained each 

253 model on 70% of the presence data points, and then tested it with the remaining 30% of the data, 

254 resulting in both training and test AUC values for each target species9 SDM. 

255 We then tested the null hypothesis that the average test AUC values generated for each 

256 species were significantly different from those predicted by a null model, as described in Raes & 

257 ter Steege (2007). We generated a null distribution for each species by first randomly drawing 

258 999 sets of random collection localities from the study area; the number of points in each set was 

259 equal to the corresponding number of spatially filtered presence points used for the target 
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260 species9 SDM. A model was then produced in MaxEnt for each set of points, with all settings 

261 identical to those used to produce the actual SDMs. The test AUC was calculated for each null 

262 SDM, and a null distribution of the 999 test AUCs for the random replicates was produced. The 

263 actual model9s average test AUC was then compared to the upper 95% confidence limit of the 

264 null distribution to test the null hypothesis (alpha level of 0.05). Random draws were performed 

265 in R (version 3.3.3, https://cran.r-project.org/index.html, 2017) using the RandomPoints function 

266 contained in the dismo package (Hijmans et al., 2017), and confidence limits  were calculated in 

267 SAS (version 9.4, SAS Institute, 2013). 

268 Results:

269 Species Presence4

270 A total of 3,581 Texas records spanning 1897-2016 were compiled from museum 

271 collections, citizen science repositories and recent fieldwork (Table 2). These data included 747 

272 previously unpublished citizen science records from the past ten years that were recorded in 

273 iNaturalist and Texas Bumblebees (Figure 2). Twelve species were identified from these records, 

274 including one specimen of B. appositus Cresson, 1878, five specimens of B. morrisoni Cresson, 

275 1878, two specimens of B. nevadensis Cresson, 1874, and two specimens of B. vagans Smith, 

276 1854, which had not previously been documented in the list of Texas bumble bee species 

277 compiled by Warriner (2012). The updated species list for Texas, along with numbers of 

278 specimens records, is as follows: B. appositus (n=1), B. auricomus (n=13), B. bimaculatus (n=5), 

279 B. fervidus (n=4), B. fraternus (n= 239), B. griseocollis (n=108), B. impatiens (n=173), B. 

280 morrisoni (n=5), B. nevadensis (n=2), B. pensylvanicus (n=3,010), B. vagans (n=1), and B. 

281 variabilis (n=20). Notably, a subset of 314 B. pensylvanicus records were also logged as 

282 presenting the sonorus morphology.   
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283

284 [TABLE 2 approximately HERE]

285 [FIGURE 2 approximately HERE]

286

287 Species Distribution Models4

288 Of the twelve species represented by the data, four species comprised 99% of the records, 

289 and so we only modeled the distributions for these most abundant species: B. fraternus, B. 

290 griseocollis, B. impatiens, and B. pensylvanicus. Sample sizes for the other species known from 

291 Texas were deemed insufficient for spatial filtering and modeling purposes. The logistic outputs 

292 of SDMs produced in MaxEnt, as well as the reclassified visualizations of these models, for B. 

293 fraternus, B. griseocollis, B. impatiens, and B. pensylvanicus are shown in Figures 3-6, 

294 respectively.

295

296 [FIGURES 3-6 approximately HERE]

297

298 The contribution of each bioclimatic variable to each SDM varied across the four species, 

299 as did the most important variables for each model. Annual precipitation (BIO12) was the top 

300 contributor to SDMs for B. griseocollis (71.6%), B. impatiens (73.8%), and B. pensylvanicus 

301 (20.3%). Isothermality (BIO03), calculated as [[mean diurnal temperature range / mean annual 

302 temperature]*100] was the top contributor to the SDM for B. fraternus (51% contribution), and 

303 was the second and fifth most important variable for B. griseocollis (8.5%) and B. impatiens 
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304 (2.1%) SDMs, respectively. The mean temperature of the driest quarter (BIO09) was also a top-

305 five contributor for all models. The top five bioclimatic variables contributing to each SDM, as 

306 well as their percent contributions, are presented in Table 3. 

307

308 [TABLE 3 approximately HERE]

309

310 To evaluate the validity of each SDM, we calculated both training and test AUC values 

311 on 70% and 30% of the presence data, respectively. As expected, test AUC values were lower 

312 than training AUCs, but all values were above 0.65. We then tested the hypothesis that the 

313 average test AUC for each SDM was significantly different from that of a random null 

314 distribution (alpha=0.05). All average test AUC values from actual SDMs were significantly 

315 higher than the values calculated from the null distributions (p<0.01), and so we concluded that 

316 all models were statistically significant. The average training and test AUC values for each 

317 SDM, as well as the upper 95% confidence intervals of the null distributions, are contained in 

318 Table 3. 

319 According to our results, B. pensylvanicus is both the most common and the most 

320 widespread bumble bee species in Texas, representing 84% of the specimens in this study. While 

321 it is most likely to be found in the central and eastern portions of the state, there have been 

322 specimens recorded in every ecoregion. B. fraternus (~7% of specimens) is most likely to be 

323 found in the northeast portion of the state, but its range may extend to far north and far west 

324 Texas. By contrast, the ranges of both B. impatiens (5% of specimens) and B. griseocollis (3% of 

325 specimens) are currently limited primarily to the eastern portions of Texas. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2932v1 | CC BY 4.0 Open Access | rec: 19 Apr 2017, publ: 19 Apr 2017



326 Priority areas for actions targeting the conservation of declining species were identified 

327 by overlaying the reclassified maps of B. fraternus and B. pensylvanicus in ArcMap to ascertain 

328 whether there were areas of the state that carried high probabilities of suitable habitat being 

329 present for both species (Figure 7). This analysis revealed a region of northeast Texas that covers 

330 portions of the Cross Timbers, Texas Blackland Prairies, and East Central Texas Plains 

331 ecoregions where habitat is likely to be highly suitable for both species. 

332

333 [FIGURE 7 approximately HERE]

334

335 Discussion:

336 The species presence records documented in this study included four new, albeit 

337 historically very rare, species from the list of Texas bumble bees previously published by 

338 Warriner (2012): B. appositus (n=1), B. morrisoni (n=5), B. nevadensis (n=2), and B. vagans 

339 (n=2). These records were retrieved from the database of museum records managed by Leif 

340 Richardson (L. Richardson, unpublished dataset), and records were validated with museums of 

341 origin. As such, we have revised the species list of Texas bumble bees to include 12 species. 

342 In comparison to the Texas portion of the range map presented in Williams et al. (2014), 

343 our model for B. fraternus was somewhat contracted, lacking the high likelihood of presence 

344 predicted by Williams et al. across the Western Gulf Coastal Plain, and throughout the 

345 Southwestern Tablelands and High Plains. By contrast, we identified novel presence records for 

346 both B. impatiens and B. griseocollis in the East Central Texas Plains and South Central Plains, 

347 resulting in a shift of the western edges of these species9 Texas ranges from those predicted by 
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348 Willliams et al. (2014). Because B. griseocollis populations are considered stable across its range 

349 (Colla & Packer, 2008; Colla et al., 2010), and B. impatiens populations are considered stable 

350 (Cameron et al., 2011) or possibly expanding (Colla & Packer, 2008), our results suggest that 

351 Texas populations should be monitored for further evidence of range expansion for these species. 

352 The model of the range of B. pensylvanicus presented by Williams et al. (2014) is similar to our 

353 model, which is virtually statewide. Had we included presence records from the neighboring 

354 states of Louisiana, Oklahoma, and New Mexico, our models, especially the model for B. 

355 fraternus, might have been extended further into border ecoregions. Future work should include 

356 further improvement of SDMs for these species that include records from neighboring states.   

357 One drawback to presence-only species distribution modeling is that models can be 

358 biased towards areas that contain more presence records (Kramer-Schadt et al., 2013). In the case 

359 of our data, presence records from areas with larger human populations (i.e., the Dallas-Fort 

360 Worth metroplex, Austin, San Antonio, and Houston) were more common than less populated 

361 areas of the state. In order to address this problem, presence records were spatially filtered and a 

362 Gaussian bias file was implemented in MaxEnt. However, these techniques did not completely 

363 resolve the issue of sampling bias, and individual species distributions were still biased towards 

364 highly populated areas. Conversely, SDMs for areas that were not well sampled, such as the 

365 Southwestern Tablelands and High Plains ecoregions located in north central Texas, predicted 

366 low or moderate likelihood of any bumble bee species presence. Syfert et al. (2013) similarly 

367 showed that, save an intentional sampling strategy across the study area, SDMs will be 

368 somewhat biased towards clustered data. Thus, we consider our SDMs to be conservative, and 

369 suggest cautious interpretation of species presence in marginally sampled ecoregions. Targeted 
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370 field surveys in these areas are needed to achieve both a more uniform statewide bumble bee 

371 sampling effort and less clustered data for SDMs.

372 Of the ten predictor variables included in the SDMs, we interpret our results to mean that 

373 annual precipitation, isothermality, and the mean temperature of the driest quarter are the most 

374 important bioclimatic factors for predicting bumble bee habitat suitability in Texas. Precipitation 

375 was the top variable contributing to the SDMS for three of the four species studied (B. 

376 griseocollis, B. impatiens, and B. pensylvanicus), and isothermality was the top contributor to the 

377 B. fraternus model, as well as a top-five contributor to two other SDMs. The mean temperature 

378 of the driest quarter was one of the top five environmental predictors for all SDMs. As global 

379 climate change threatens to disrupt temperature and precipitation patterns, the current models 

380 may change drastically. Furthermore, though these environmental factors are undoubtedly 

381 important for bumble bee habitat, it should be noted that other factors for which data were not 

382 available may also influence the suitability of habitat, such as pesticide use, available nesting and 

383 foraging sites, and habitat connectivity.    

384 While multiple factors have been implicated in bumble bee declines, habitat loss, often 

385 associated with urban sprawl and agricultural intensification, is considered to be a leading cause 

386 (Kearns et al., 1998; Winfree et al., 2009). Bumble bee conservation initiatives designed to curb 

387 these declines should include actions that establish, enhance, and maintain habitat. The declining 

388 B. fraternus and B. pensylvanicus persist in northeast Texas, where a substantial area of native 

389 rangeland remains (Beckham et al., 2016); across the state, native rangelands comprise 

390 approximately 63% of the state9s nonfederal rural land (U.S. Department of Agriculture, 2013), 

391 and encouraging the conservation of these lands amidst rapid population growth and urbanization 

392 may prove beneficial to bumble bees. Additionally, practices such as targeted agri-environment 
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393 schemes that increase floral biodiversity have been shown to increase bumble bee diversity and 

394 abundance in agricultural systems (Pywell et al. 2006; Carvell et al. 2007; Carvell et al. 2011) 

395 and, within urban environments, green spaces such as parks and community gardens can provide 

396 valuable habitats for bumble bees in otherwise unfavorable landscapes (McFrederick & LeBuhn, 

397 2006; Ahrne et al., 2009; Goulson et al., 2010; Beckham,  2016). In Texas, where over 95% of 

398 land is privately owned (Texas Land Trends, 2014), the conservation of bumble bee species will 

399 require a multifaceted approach, including public education and outreach, as well as working 

400 with municipalities and private landowners to create and maintain pollinator habitat. 

401 The results of our multi-species analyses suggest starting points for conservation 

402 programs when funding and manpower is limited. The target area includes portions of Texas9 

403 Cross Timbers, Blackland Prairies, and East Central Plains, where suitable habitat for both B. 

404 fraternus and B. pensylvanicus is highly likely to co-occur. Notably, this target area fully 

405 contains the Dallas-Fort Worth metroplex, a heavily urbanized area that saw a decrease in 

406 working lands acreage of almost 316,000 acres and whose human population grew by about 2.3 

407 million people from 1997-2012 (Texas Land Trends, 2015). However, the conservation target 

408 area also contains surrounding rural areas across the region, and so our results have underscored 

409 the need for conservation strategies that will address both urban and rural environments.       

410 Conclusions:

411 Our study has updated the knowledge of presence and distribution of the four most 

412 common bumble bee species in Texas, to include B. griseocollis, B. impatiens, and the declining 

413 B. fraternus and B. pensylvanicus. By combining novel data from vetted citizen science records 

414 reported over the last ten years (i.e., 2007-2016) and data from recent field surveys (2010-2016), 

415 with previously compiled museum specimen records, the most complete database of Texas 
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416 bumble bee records available has been established. These records have resulted in a revised 

417 species list for the state that includes four species previously not known to Texas. Additionally, 

418 while continental range maps have previously been modeled for bumble bee species found in 

419 Texas, we have produced fine-scale SDMs using MaxEnt and identified priority areas for bumble 

420 bee conservation efforts that will be practical for state-level conservation planning.   
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Table 1(on next page)

Derived WorldClim bioclimatic variables used for species distribution modeling.
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WorldClim

Code

Environmental Predictor Variable

BIO01 Annual Mean Temperature

BIO02 Mean Diurnal Range (Mean of monthly (max 

temp - min temp))

BIO03 Isothermality (BIO2/BIO7) (*100)

BIO04 Temperature Seasonality (Standard Deviation 

*100)

BIO08 Mean Temperature of Wettest Quarter

BIO09 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO18 Precipitation of Warmest Quarter
1
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Table 2(on next page)

Sources of bumble bee presence data.
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1

Data Source (Time Period) Number of Records

Museum Collections (1897-

2012)

2,106

iNaturalist (2007-2016) 377

Texas Bumble Bees 

Facebook (2007-2016)

370

Field Data (2010-2016) 728

Total 3,581
2
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Table 3(on next page)

Training and test ACUs and SDMs.

Confidence intervals for model validation, and top variables contributing to bumble bee SDMs

(N=number of total occurrence records; N9=number of occurrence records after spatial

filtering used for SDM production).
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Species N N9 Avg. Training 

AUC ± S.D. 

(number of 

training points in 

each replicate)

Avg. Test AUC ± 

S.D. (number of 

test points in 

each replicate)

Upper 95% C.I. of 

Null Distribution9s 

Test AUC 

(p-value of 

comparison of actual 

SDM vs. null)

Top five 

variables 

contributing to 

model (percent 

contribution)

B. fraternus 239 69 0.826 ± 0.027 (49) 0.745 ± 0.06 (20) 0.6102 (p<0.01) bio03 (51%); 

bio09 (11%); 

bio08 (10.2%); 

bio18 (9.2%); 

bio01 (4.4%)

B. griseocollis 108 39 0.903 ± 0.02 (28) 0.866 ± 0.04 (11) 0.6572 (p<0.01) bio12 (71.6%); 

bio03 (8.5%); 

bio08 (5.6%); 

bio09 (4.2%); 

bio04 (2.8%)

B. impatiens 173 24 0.931 ± 0.015 (17) 0.9 ± 0.05 (7) 0.6958 (p<0.01) bio12 (73.8%); 

bio09 (8.6%); 

bio08 (7.6%); 

bio01 (4.1%); 

bio03 (2.1%) 

B. pensylvanicus 3,010 321 0.747 ± 0.012 

(226)

0.667 ± 0.03 (96) 0.5217 (p<0.01) bio12 (20.3%); 

bio09 (15.2%); 

bio11 (12.9%); 

bio02 (12.5%); 

bio04 (11.7%)

1

2
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Figure 1

EPA Level III ecoregions in the state of Texas (shapefile downloaded from

https://www.epa.gov/eco-research/ecoregion-download-files-state-region-6).
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Figure 2

Novel presence data (n=747) compiled from the citizen science repositories iNaturalist

and Texas Bumblebees Facebook page.

Included species: B. auricomus (n=11), B. fraternus (n=48), B. griseocollis (n=60), B.

impatiens (n=29), B. pensylvanicus (n=557), and B. pensylvanicus sonorus (n=42). EPA

Level III ecoregions are shown for reference (see Figure 1 for ecoregion key).
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Figure 3

Modeling results for B. fraternus.

A) Mean logistic output from MaxEnt, averaged over 100 replicates, showing probability of

suitable habitat being present for B. fraternus (average training AUC over 100 runs = 0.826

± 0.027 and average test AUC 0.745 ± 0.06). Unfiltered species presence data are

represented as black dots. B) Reclassified SDM for B. fraternus in Texas shown with EPA Level

III ecoregions outlined (see Figure 1 for ecoregion key). Suitable habitat for B. fraternus is

likely across the northern half of Texas, with highest modeled probabilities found in the Cross

Timbers, Texas Blackland Prairies, and East Central Texas Plains ecoregions.
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Figure 4

Modeling results for B. griseocollis.

A) Mean logistic output from MaxEnt, averaged over 100 replicates, showing probability of

suitable habitat being present for B. griseocollis (average training AUC over 100 runs = 0.903

± 0.02 and average test AUC 0.866 ± 0.04). Unfiltered species presence data points are

represented as black dots. B) Reclassified SDM for B. griseocollis in Texas shown with EPA

Level III ecoregions outlined (see Figure 1 for ecoregion key). The eastern half of the state is

most likely to contain suitable habitat for B. griseocollis, with the highest probabilities in the

northern portions of the Texas Blackland Prairies, East Central Texas Plains, and South

Central Plains ecoregions.
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Figure 5

Modeling results for B. impatiens.

A) Mean logistic output from MaxEnt, averaged over 100 replicates, showing probability of

suitable habitat being present for B. impatiens (average training AUC over 100 runs = 0.931

± 0.015 and average test AUC 0.9 ± 0.05). Unfiltered species presence data points are

represented as black dots. B) Reclassified SDM for B. impatiens in Texas shown with EPA

Level III ecoregions outlined (see Figure 1 for ecoregion key). The highest probabilities of

suitable habitat modeled for B. impatiens in Texas are in the eastern portion of the state,

especially in the South Central Plains ecoregion.
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Figure 6

Modeling results for B. pensylvanicus.

A) Mean logistic output from MaxEnt, averaged over 100 replicates, showing probability of

suitable habitat being present for B. pensylvanicus (average training AUC over 100 runs =

0.747 ± 0.012 and average test AUC 0.667 ± 0.03). Unfiltered species presence data are

represented as black dots. B) Reclassified SDM for B. pensylvanicus in Texas shown with EPA

Level III ecoregions outlined (see Figure 1 for ecoregion key). Suitable habitat for this species

is likely to be observed in most parts of the state.
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Figure 7

Areas where there is a high (<0.5) probability of suitable habitat being present for two

declining species being present.

Calculated using the Combine tool in ArcMap9s Spatial Analyst Toolbox. EPA Level III

ecoregions are outlined (see Figure 1 for ecoregion key). Reclassified distributions of B.

fraternus and B. pensylvanicus were overlaid in implementation of this tool to achieve

results. A region of northeast Texas including portions of the Cross Timbers, Texas Blackland

Prairies, and East Central Texas Plains ecoregions were identified as target areas for

conservation actions.
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