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ABSTRACT 

 

The accurate prediction of the conformation of Complementarity-Determining Regions (CDRs) 

is important in modelling antibodies for protein engineering applications. Specifically, the 

Canonical paradigm has proved successful in predicting the CDR conformation in antibody 

variable regions. It relies on canonical templates which detail allowed residues at key positions 

in the variable region framework or in the CDR itself for 5 of the 6 CDRs. While no templates 

have as yet been defined for the hypervariable CDR-H3, instead, reliable sequence rules have 

been devised for predicting the base of the CDR-H3 loop. Here a new method termed Disjoint 

Combinations Profiling (DCP) is presented, which contributes a considerable advance in the 

prediction of CDR conformations. This novel method is explained and compared with 

canonical templates and sequence rules in a 3-way blind prediction. DCP achieved 93% 

accuracy over 951 blind predictions and showed an improvement in cumulative accuracy 

compared to predictions with canonical templates or sequence-rules. In addition to its overall 

improvement in prediction accuracy, it is suggested that DCP is open to better implementations 

in the future and that it can improve as more antibody structures are deposited in the databank. 

In contrast, it is argued that canonical templates and sequence rules may have reached their 

peak.  
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Introduction 

 

Antibodies can recognise virtually any given molecule mainly by variation in the length 

and sequence of their Complementarity-Determining Regions (CDRs), which form the 

antibody’s binding interface. Three CDRs are found in the antibody’s Heavy chain (CDR-H1, -

H2, -H3) and three in the Light chain (CDR-L1, -L2, -L3). The first definition of CDRs was by 

Wu & Kabat (1970) while performing an analysis of the variable domains of Bence-Jones 

proteins and myeloma Light chains. Later, Kabat and colleagues compared the sequences of 

the hypervariable regions in the then known structures and observed that at 13 sites in the Light 

and 7 in the Heavy chains (Kabat, Wu & Bilofsky, 1977), the residues are conserved. They 

suggested that these positions in the sequence are involved with structure rather than 

specificity, introducing for the first time a possible relationship between sequence and loop 

conformation in antibodies. A second set of observations of the crystal structures of Fab 

fragments and myeloma proteins revealed that, in many cases, hypervariable regions with the 

same length but different sequences have the same main chain conformation (de la Paz et al., 

1986). 

 It was in 1986 (Chothia et al., 1986) that specific residues were directly associated with 

the conformation of the hypervariable regions during a visual analysis of the sequence and 

structure of antibody D1.3, thus introducing the notion of the “canonical model”. From this 

point, various further studies enriched the table of structurally-determining residues (canonical 

residues), by observing the amino acid similarities at key interacting positions within 

sequences of members of any given conformational class, of the known and newly defined 

canonical structures, for the three CDRs in Light and the first two in Heavy chains (Chothia & 

Lesk, 1987; Chothia et al., 1989; 1992; Barré et al., 1994; Tomlinson et al., 1995; Guarne et 

al., 1996; Martin & Thornton, 1996; Morea, Lesk & Tramontano, 2000; Vargas-Madrazo & 

Paz-Garcia, 2002). Therefore, these collections of structurally-determining residues created 

canonical templates for each known conformational class, which defined the allowed residues 

per identified position in the variable chain. These canonical templates could then be used for 

prediction, from sequence alone, of the conformation of a new CDR by requiring its variable 

chains match as many, if not all, of the allowed residues present in the template. Regarding the 

sixth and final CDR-H3, a number of studies (Shirai, Kidera & Nakamura, 1996; 1999; 
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Furukawa et al., 2001; Kuroda et al., 2008) provided structure-determining sequence rules for 

the prediction of the CDR-H3-base (or ‘take-off’, ‘torso’ or ‘anchor’) conformation.   

In the latest relevant study (North, Lehmann & Dunbrack, 2011), it was inferred that 

the effect of canonical residue overlap between templates caused by the proliferation of 

structures was diminishing the efficacy of the canonical model. Instead, a mixed approach was 

proposed for prediction of CDR conformation, sometimes based on the presence of a very 

small number of statistically prominent structurally-determining residues, the gene source, 

CDR length or even the use of Hidden Markov Models (HMMs). Therefore most 

conformational clusters/classes were noted as not canonical, while a considerable number were 

characterised as non-predictable altogether. Furthermore, concerns were raised regarding the 

predictability from sequence of the bulged (including double-bulged) CDR-H3-base 

conformation. 

  The accurate prediction of CDR conformation is important in modelling antibodies for 

protein engineering applications (e.g. ab initio design of antibodies, antibody humanisation, 

vaccine design, etc.). Specifically, knowledge of the CDR conformation is crucial for the 

creation of a stable binding interface, modification of the antibody’s binding affinity or even 

identification of an epitope. Computational methods such as the canonical model or CDR-H3 

sequence rules, which attempt conformational prediction of CDRs from sequence alone, have 

the advantage of being inexpensive and fast while requiring only a simple input; their major 

drawback being the inability to predict conformations that were never observed before 

experimentally. In this context, a re-evaluation of the performance of the canonical model in 

predicting the class of CDR conformation from sequence alone is presented in light of the 

latest new and multi-level complete CDR clustering (Nikoloudis, Pitts & Saldanha, 2014, PeerJ 

preprint server, DOI: 10.7287/peerj.preprints.291). The key residues are updated in the existing 

canonical templates from the sequences of members of each level-1 cluster/class, and 

correspondingly the canonical templates for new clusters in a given length are populated, using 

the key positions defined for that length by Martin & Thornton (1996). Those defined key 

positions are identical for all clusters of a given length. In this way, an assessment as to 

whether the canonical model is still effective as the quickest and simplest prediction method 

for antibody CDR conformation is carried out, and the effect of canonical residues’ overlap 

between templates caused by the proliferation of cluster sequence populations can be 

evaluated.  

  For the hypervariable (both in sequence and conformation) CDR-H3, the sequence 

rules for CDR-H3-base prediction described in Shirai, Kidera & Nakamura (1999) are tested, 
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as well as their updated versions in Kuroda et al., (2008). The goal here is to compare the 

accuracy of the two sets of rules and, more importantly, to find out if the continual adaptation 

to new sequences with additional rules, exceptions and overrides is beneficial to this predictive 

model. 

  Besides testing these two popular and historic approaches on an updated dataset, a new 

predictive model from sequence alone is also introduced which aims to bring improved 

accuracy over previous sequence-based methods, while retaining their rapid execution and 

simplicity of usage. All the characteristics of the new method are detailed, step-by-step: 

inception, goals, basic concepts and definitions, implementation strategies, training and 

prediction workflows. A demonstration is presented of a standard predictive model derived 

from the method as well as an assessment of its efficacy on the same set of CDRs employed for 

the testing of the canonical model and CDR-H3-base rules. As this new method allows 

parameterisation, future dedicated work could take advantage of the general framework 

provided and propose a number of different or improved implementations.  

 The prediction results obtained by the new method are directly compared to those from 

previous approaches, and complemented by statistical characteristics of the training, validation 

and test sets. Additionally, special importance is attributed to each method’s performance in 

predicting the major cluster/conformation (class-I) in any given CDR/length combination (e.g. 

CDR-L1 11-residues). Indeed, as is revealed by the population percentages per cluster in 

Nikoloudis, Pitts & Saldanha, 2014 (PeerJ preprint server, DOI: 10.7287/peerj.preprints.291), 

in each CDR/length with more than 10 unique sequences there is usually a single cluster which 

regroups the large majority of the known conformations, while the remaining fraction may be 

populating a considerable number of much smaller clusters. In the 15 lengths (first 5 CDRs) 

that contained more than 10 unique sequences in their clustered population and produced more 

than one cluster, the major cluster of each length represented on average 74% of the available 

unique sequences (median: 86%). As a consequence, these major conformations are expected 

to occur more frequently and are accordingly more probable to prove of interest in research 

scenarios. For this reason further analysis is undertaken of the prediction results to calculate the 

precision, recall and F-measure for all major clusters, and the corresponding comparisons 

between methods are presented. 
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Methods 
 
 
A new blind dataset 

 

 As the clustering dataset in Nikoloudis, Pitts & Saldanha, 2014 (PeerJ preprint server, 

DOI: 10.7287/peerj.preprints.291) was locked on the 31/12/2011 edition of the PDB (Berman 

et al 2000), this presented an opportunity to conduct a true blind-testing by downloading the 

antibody structures that were released subsequently. Hence for the new dataset, a search was 

performed in the PDB for structures released between 01/01/2012-21/11/2013, using the same 

methodology as in Nikoloudis, Pitts & Saldanha, 2014 (PeerJ preprint server, DOI: 

10.7287/peerj.preprints.291), which returned 312 files, two of which contained structures from 

3 antibodies (PDB codes 3ULU, 3ULV). After removing redundant sequences, there remained 

a total of 230 antibody structures: 210 had both Heavy and Light chains, 4 had only a Light 

chain and 16 were VHH (camelid antibodies that have only Heavy chains). One of the 230 

structures was retained despite the fact that it was redundant (4DN4), because a different CDR-

L1 conformation was observed between the two crystal structures (4DN3/4DN4, free and 

bound versions, respectively).  

 As DCP required parameter tuning, a validation step had to be inserted. However, since 

the initial structure of the data to be predicted presented a majority of clusters with only 

between one to three unique sequences, it proved impractical to perform a traditional k-fold 

cross-validation on the clustered set as these smaller clusters could not be further subdivided in 

a meaningful way. Instead a 3-way experiment was designed, where the previously clustered 

dataset was used for training, while the new dataset was divided approximately in half into a 

validation set and a test set. The validation set comprised of all PDB files released between 

01/01/2012 and 14/03/2013 (113 non-redundant antibody structures), while the test set 

included all the subsequently released structures (15/03/2013 to 21/11/2013, 117 non-

redundant antibody structures).  

 By using this new dataset, it was possible to retain the previous entire clustered set as a 

prior knowledgebase and to assess the sequence-based prediction methods in realistic 

conditions without discarding or ignoring any data, both during training/updating and testing. 

This ensured that DCP training and canonical templates’ updating remained blind toward the 

new PDB files. In terms of predictions with canonical templates, the entire new dataset served 
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for testing since no validation step was required. However, for practical reasons, the above first 

subset will henceforth be called “the validation set” (for DCP) and the second subset “the test 

set” (for DCP), despite the fact that both constitute test sets for the canonical method. 

 All conformational predictions were applied at the first level of the clustering set’s 

nested scheme. New Fv sequences were numbered, using the numbering scheme and CDR 

extents described in Nikoloudis, Pitts & Saldanha, 2014 (PeerJ preprint server, DOI: 

10.7287/peerj.preprints.291). The C�-backbones of new CDRs were then successively 

superposed onto the medoid structure of every cluster of the same length, in order to determine 

the actual conformation of new CDRs. For a new CDR to be assigned to a pre-existing 

conformational cluster, its RMSD to the cluster’s medoid was required to be lower than the 

cluster’s radius.   

 
 
A new method for prediction of CDR conformation from sequence 

 

Method presentation 

 

 It has been made clear through various studies (Chothia et al., 1989; 1992; Alzari et al., 

1990; Al-Lazikani, Lesk & Chothia, 1997; Martin & Thornton, 1996; Morea, Lesk & 

Tramontano, 2000; Vargas-Madrazo & Paz-Garcia, 2002; Shirai, Kidera & Nakamura, 1996; 

1999; Kuroda et al., 2008) that the CDR sequence is not always solely determinant of the CDR 

conformation. Several residues external to the CDR, from the framework, other CDRs or the 

second Fv chain, were retained as structurally-determinant and included in predictive canonical 

templates or sequence rules. These residues were spotted after pedantic visual examination of a 

number of antibody structures of interest, as making important contacts with CDR residues. 

However, this process can potentially lead to misleading generalisations due to crystal errors, 

or the intrinsic backbone and side-chain flexibility of surface residues such as those in CDR 

sequences.  

 In the new method now presented, a generalisation for the presence of class-specific 

combinations of residues is proposed. These combinations of residues would represent 

conformation-influencing synergies that are expected to appear exclusively or preferentially in 

members of one cluster. As far as the physico-chemical aspect of the residues’ interaction is 

concerned, these combinations may be representing steric effects, creation of a hydrophobic 
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pocket or local environment, hydrogen-bonding, van der Waals’ contacts, salt bridges, 

backbone flexibilities, etc. Of course any investigation of sequence sets with such physico-

chemical criteria would dramatically increase the complexity of any method. Instead a simpler 

model is proposed where the nature of these interactions, as well as the very residues which 

participate, remain irrelevant to the prediction procedure. More specifically, it would be of 

interest to search for those combinations of positions in the antibody Fv sequences that contain 

combinations of residues that are always different between different conformational clusters, 

i.e. combinations of positions that present disjoint combinations of residues between classes. In 

this way the sequence differences between different classes are examined, instead of the 

sequence similarities within a class as is the case with the canonical model. This approach was 

named ‘Disjoint Combinations Profiling’, or DCP, and all its characteristics are further detailed 

in the following sections. 

 

Basic definitions 

 

 For the formulation of this new method a number of novel features needed to be 

defined, which are detailed later. The basic terms used in the DCP prediction method are 

provided here in a table (Table 1), as both an introduction and for quick reference.  

 

DCP setting-up and training  

 

 In this demonstration of DCP, all neighbouring residues of a CDR are included, within 

a radius of 4Å, 6Å or 8Å, as potentially interacting with the CDR in a way that is influencing 

its conformation. The initial assumption is that these neighbourhoods of members of the same 

conformational cluster have equivalent influence on the observed conformation. Therefore, it is 

expected that within these neighbourhoods there exist combinations of positions that make 

distinct conformational-influencing synergies, and whose sequences are never observed in 

members of a different cluster. These synergies could be caused by any number of the 

aforementioned residue-to-residue interactions. The theoretical basis behind this parameter 

could be the chained influence that residues may have on a local conformational feature, also 

implicating residues that make indirect contact with the CDR; e.g. a cascade of interactions 

between 3 or 4 residues where the last residue resides on the CDR but makes no contact 

whatsoever with the first residue of the cascade. It is therefore possible that DCP captures such 

chained synergies, which are different between different conformational classes. 
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 All the Fv positions that are predominantly found within the selected radius of an 

examined CDR, its residues included, define its ‘Interaction Frame’ (IF). This frame of 

positions was constructed after visual examination with the graphics program Swiss-

PdbViewer (Spdbv; Guex & Peitsch, 1997) of a large number of antibody structures. During 

visual examination, all positions that satisfied the radius criterion and were common to all 

members of all clusters, were retained. As the antibody framework is very stable, the vast 

majority of neighbouring positions that were observed (over 90%) was topologically preserved 

between the examined CDRs. This operation was repeated for each CDR. 

 Once the IF is selected for a given CDR, the sequences of all cluster members per 

CDR/length combination are parsed for the residues that occupy the Fv positions found in the 

IF. These residues are then arranged in the same order as the respective positions appear in the 

IF, in order to form the corresponding ‘IF sequence’. This way, each cluster now has a set of IF 

sequences that can be compared with each other for the detection of disjoint combinations of 

residues between them. A graphical representation of these setting-up steps can be seen in 

Figure 1.  

 A common problem in CDR conformational prediction from sequence alone is the 

presence of sparsely populated clusters/classes. The sequence examples of those clusters are 

often so few that it becomes impossible to detect sequence features that are at the same time 

common between members of that cluster but different from other clusters. Especially so when 

the major cluster in a given length also has few members; any comparisons between the 

different clusters’ sequences become prohibitively risky. For the DCP training process, this 

obstacle was overcome by regrouping the sequences of all clusters in that length, except for the 

one that is being profiled. Indeed, in searching for differences, the profiled class needs to be 

presented against an ‘anti-reference’ rather than a traditional ‘reference’ used in many 

prediction methods. For example, it is possible to screen class A against what 

“is_not_class_A”, so by regrouping all “non_class_A” instances there is a practical enrichment 

of the volume of sets of sequences to be compared. 

 The ‘Query IF sequence set’ was defined as the group of non-redundant IF sequences 

of all members of the cluster under examination and the ‘Target IF sequence set’ was defined 

as a group of non-redundant IF sequences from members of all clusters except for the one that 

is being profiled. For example, when examining cluster-1 in a CDR/length with 4 clusters, a 

comparison is made of Query IF sequence set [cluster-1] versus Target IF sequence set 

[clusters-2/3/4]. The profiling for disjoint combinations can then be initiated by cycling 

through all combinations of Fv positions within the IF, up to the maximum combinatorial order 
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that is pre-selected (e.g. singlets, couplets, triplets, quadruplets, or quintets, etc., each time 

including combinations of lower order), and extracting the corresponding amino acid 

sequences from the Query/Target IF sequence sets. Each combination of positions was called 

an ‘IF fragment’ and, accordingly, the corresponding extracted residues formed an ‘IF 

fragment sequence’.  

 Once all respective amino acid fragment sequences are acquired from both Query and 

Target sets, the corresponding fragment sets are then examined for disjointness, i.e. that no 

sequence fragment is shared between the two sets. If the sets prove to be disjoint, that IF 

fragment is retained as pointing to a potentially significant difference between the two sets. 

This IF fragment is called a ‘Signature signal’. The rationale is that if any sequence 

combination of the examined IF fragment is shared even once between the members of the 

different clusters, then the examined IF fragment sequences are not mutually exclusive and 

therefore cannot be theoretically considered as unique to any conformation. The complete list 

of signature signals constitutes the ‘DCP signature’ of the examined (Query) cluster/class, 

which is consequently used for its prediction with new sequences. A graphic representation of 

this training process can be seen in Figure 2. 

 As a note, the basic properties of combinations imply that the observance of any 

signature signal of lower order automatically renders equally disjoint any combination of 

greater order, which contains all the IF positions of the lower order combination. For example, 

when IF fragment L90-L95 is disjoint, thus becoming a signature signal, any higher order 

combinations containing the previous IF positions are also disjoint; e.g. L90-L91-L95, L89-

L90-L95, L89-L90-L91-L95, etc. are all equally signature signals. Therefore, in order to avoid 

unnecessary redundancies within a DCP signature which may affect prediction scoring, a 

filtering is performed that removes signature signals from the DCP signature when they contain 

other signals of lower order. 

 

Prediction of CDR conformation with DCP signatures 

 

 Once a DCP signature and a Target IF sequence set are acquired for each 

conformational class, it becomes possible to predict the unknown conformation of CDRs (from 

new Fv sequences) by scoring the differences (disjoint combinations). New Fv sequences will 

henceforth be referred to as “Query” sequences, as they become the profiled object. The first 

step is, again, to number the Query Fv sequence and to assemble the respective IF sequence for 

each CDR to be predicted from the residues that correspond to the IF positions (defined 
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previously during training). Subsequently, the DCP signature and the corresponding Target IF 

sequence set for each class of the corresponding CDR/length are loaded in turn. For each 

screened class, the signature signals are read one-by-one and the corresponding sets of IF 

fragment sequences are re-constructed. These sets of Target IF fragment sequences are then 

examined for disjointness versus the corresponding Query IF fragment sequence from the 

unknown CDR. If disjointness is observed between the Query fragment sequence and the 

Target fragment sequences in a given IF fragment (i.e. the Query fragment sequence is not in 

the list of Target fragment sequences), then the comparison score is increased by 1 and 

comparisons proceed with the next signature signal until all comparisons are performed. It is 

important to note again that signal matching is achieved by observing sequence differences (i.e. 

disjoint fragments) and not sequence similarities as is more common in the canonical model. 

 The final signature matching score (RDCPsignature) of a given class is equal to the 

comparison score (total number of disjoint signals), divided by the total number of signature 

signals in the DCP signature: 

 

signalssignaturetotal

signalsdisjo
R reDCPsignatu

int
�                       (1) 

 

Once all classes in the given CDR/length are scored, the predicted conformation is the one with 

the RDCPsignature ratio closest to 1, and the workflow is repeated for the next CDR conformation 

to be predicted. A representation of the prediction workflow by DCP signatures can be seen in 

Figure 3. 

 

 

Canonical templates 

 

 The canonical templates were derived for every applicable conformational cluster, 

using the definitions of structurally-determining residues described in Martin & Thornton, 

(1996). This choice was guided by the fact that the aforementioned study remains the most 

extended work on canonical residues, providing detailed tables of canonical templates for each 

conformational class.  

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.292v3 | CC-BY 4.0 Open Access | received: 20 Mar 2014, published: 20 Mar 2014

P
re
P
ri
n
ts



12 

 Table 2 shows the canonical positions used for the creation of predictive templates in 

each applicable cluster, while the detailed canonical templates employed during blind-testing 

can be consulted in supplementary material: ‘all_Canonical_Templates.doc’. These templates 

were derived from the exact same training sequences used during DCP training, in order to 

allow a straight comparison between the two methods. It can be argued, that due to the nature 

of the level-1 clusters produced in Nikoloudis, Pitts & Saldanha (2014, PeerJ preprint server, 

DOI: 10.7287/peerj.preprints.291), the respective canonical templates may contain an 

unwarranted number of allowed residues, leading to misclassifications. This eventuality was 

explored by concurrently constructing, in selected cases (e.g. CDR-L3/9-residues, CDR-H1/13-

residues), canonical templates from a small centralised portion of the cluster’s population, 

where conformation variations are minimal; namely those members that belonged to the 

cluster’s core. However, this training restriction led to an increased rate of misclassifications 

by canonical templates, probably because the sets of allowed canonical residues were not rich 

enough. For both this reason and for complete training conformity between the two methods, 

the exact same training sequences were used for DCP and canonical prediction from sequence.  

 

Sequence rules for CDR-H3-base prediction 

 

 Two sets of sequence rules for the prediction of the CDR-H3-base conformation were 

used: the first set from Shirai, Kidera & Nakamura (1999) and the updated set from Kuroda et 

al., (2008). The second set is an extension of the original set of rules based on examination of 

314 new, non-redundant structures from the PDB. Blind-testing both sets of rules on the 

available test sets presented a good opportunity to examine their validity and, importantly, 

assess their extensibility by constant adaptation to new sequence findings. Although the 

respective publication was made in 2008, the updated set is referred to as “H3-rules 2007” in 

the corresponding text, so will henceforth be referred to accordingly. 

 

Identification of multi-conformation full-rogue CDRs 

 

 During clustering, two conformational clusters that contain one or more members with 

identical CDR sequences were defined as ‘rogue’. For the DCP training and construction of 

canonical templates, it was also essential to search for, and deal with, structures that have the 
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exact same Light and Heavy chain sequences within the clustering (training) dataset, but 

contain a CDR that belongs to different conformational clusters. These CDR structures were 

named ‘multi-conformation full-rogue CDRs’. Indeed, the presence of such CDRs in the 

training set would void DCP, as it would no longer be possible to detect any disjoint 

combinations between the sequences of the affected clusters. To a lesser degree, the same 

event would be detrimental for canonical predictions as well, since these full-rogue CDRs 

would have rogue templates, in the sense employed by Martin & Thornton (1996). However, as 

noted in North, Lehmann & Dunbrack (2011) and also observable in the detailed updated 

canonical templates (see Results section), the constantly increasing number of new antibody 

structures is already transforming most canonical templates into a ‘rogue’ status. 

 A visual examination of all detected occurrences was performed and detailed 

observations for Light and Heavy chain CDRs, and CDR-H3-base can be found in 

supplementary material: ‘all_Rogue_Members.doc’. Based on these findings, it was decided to 

make no arbitrary exclusion of CDRs from the training set. The reason was that many rogue 

cases could warrant a dedicated study in order to make inferences on structure validity or 

potential conformational switches due to antigen/ligand contacts or backbone flexibility. 

Instead, it was decided that the affected clusters be merged into a combination of predictable 

conformations. In other words, affected clusters were treated as one during training for DCP 

and derivation of canonical templates. The implications of this choice are debated in the 

Discussion section. Finally, this identification of multi-conformational full-rogue members is 

presented as a piece of subsequent analysis based on the results of the complete clustering 

performed in Nikoloudis, Pitts & Saldanha (2014, PeerJ preprint server, DOI: 

10.7287/peerj.preprints.291). 

   

 

Validation of DCP training parameters 

 

The DCP method allows selection of the CDR neighbourhood radius (IF) and the 

maximum combinatorial order of IF fragments. In this demonstration, IF radii of 4Å, 6Å and 

8Å (3 possible selections) were considered, as well as maximum orders up to triplets and up to 

quadruplets (2 possible selections). Therefore, DCP training per CDR/length was repeated for 

all 6 combinations of parameters and validated each time on the validation set. The 

combination of parameters that resulted in the higher predictive accuracy was retained for the 
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final evaluation of the method on the test set. For the prediction of the CDR-H3-base 

conformation, quintets were also considered resulting in 3 additional training sessions. The 

selected parameters are listed in the Results section. 

 

 

Blind-testing of sequence-based prediction methods for CDR 

conformation 

 

   

  Prediction results were categorised into four types: accurate, uncertain, false predictions 

and novel conformations. Predictions were considered failed in all cases other than the 

category “accurate”. As the prediction result from DCP signatures and canonical templates is 

based on the ratio of matched over the total number of signals/canonical residues, it is possible 

for two conformational classes to obtain the same maximum score. In these cases, the 

prediction is ‘uncertain’, and all classes with identical maximum score are output for reference. 

For an accurate prediction, the RMSD distance of the examined CDR conformation from a 

single cluster’s medoid was required to fall within that cluster’s radius. If this requirement was 

not matched, then the conformation was considered novel. In a few cases, the examined 

conformation appeared as an outlier between two clusters, displaying very similar RMSD 

distances to both their medoids; these outliers were also considered as novel conformations. 

Conformations with a CDR length with only one available cluster did not count towards any 

evaluation. 

 For the assessment of each method’s performance with regard to the prediction of the 

major cluster (class-I) in each CDR/length, the following measures are calculated:  

 

FNFPTNTP

TNTP
Accuracy

���

�
�                                (2) 

 

FPTP

TP
ecision

�

�Pr                                  (3) 
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FNTP

TP
call

�

�Re                                  (4) 

 

with TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative. Here, the 

positive class is the major conformation and the negative class refers to all the other 

conformations in that length. Therefore, ‘True Negative’ refers to the accurate prediction of a 

conformation other than the major in that length. Accordingly, ‘False Negative’ refers to the 

false prediction of a conformation other than the major one in the given length, while the actual 

conformation is the positive class. 

Finally, as a technical appreciation of the combination of precision and recall, the F-measure is 

also provided: 

 

callecision

callecision
F

RePr
Re*Pr*2

�

�                                                     (5) 

 

 

For the ‘uncertain’ predictions, with more than one class attaining equal maximum score, it 

was judged as more equitable to consider them as Negative results in all cases, since their 

predictive value is minimal in practice (i.e. the true conformation may be one or none of those 

reported). For those cases, if the true conformation of a CDR matches the major cluster in 

CDR/length, then that prediction counted as a False Negative for all further calculations – and 

as a True Negative in the case of the true conformation not matching the major class.  

 

Post-evaluation DCP training and canonical templates’ updating 

 

 In order to evaluate the evolution in predictive accuracy of the different methods, an 

experiment was performed where both the training set and the validation set were combined 

and subsequently used for DCP training and canonical templates’ updating. The DCP 

parameters were retained from the previous validation step, meaning that parameters were not 

re-validated in this phase. Then, a final evaluation was performed on the test set. This stage 

was called ‘Phase 2’ and was analogous to a single cycle holdout experiment (Table 3). Phase-

2 allowed an appreciation of the methods’ performances in time, as more antibody structures 

become available.  
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RESULTS 

 

Selected Interaction Frames for testing  

 

 Although during blind-testing 3 IFs were assessed, in the following comparison of 

prediction results only the IF neighbourhood radius that gave the best predictive accuracy was 

considered. Table 4 shows the IFs that gave the best prediction results and their corresponding 

CDR neighbourhood radius. Positions at the end of the IF, marked as ‘n-x‘, refer to CDR-H3 

positions at a sequential number x from the last residue n (H102). Since CDR-H3’s length is 

hypervariable, it was found that this notation better reflects the topological equivalence of 

numbered positions.  

 Notations ‘E’, ‘K’ and ‘K+’, at the end of the CDR-H3-base IF, refer to the �-hairpin 

type that is favoured at the CDR-H3 apex, depending on the formation of an Extended E 

(Extended Negative EN and Extended Positive EP both resulting in the same �-hairpin ladder), 

single-bulged Kinked (K) or Kinked with double-bulged (K+) base. The hypothetical �-hairpin 

types (A/B/C/D) were derived from the definitions of the base type in Shirai, Kidera & 

Nakamura (1999). The profiling of an IF fragment that contains a hypothetical �-hairpin type 

would give the following correspondence in English: “is the co-existence of specific residues at 

specific Fv positions with a hypothetical �-hairpin type in CDR-H3 distinct within a class and 

therefore a disjoint event between different classes?” These categorical IF positions were 

introduced experimentally to the CDR-H3 IF and proved beneficial in practice. It was thus 

demonstrated that IFs may also include categorical features (another categorical example 

would be the CDR length) in order to allow the consideration of more complex combinations, 

for instance between residues and structural features.  

  

Summary results for all experiments 

 

 Tables 5 and 6 show the accuracy of each method in each subset and experiment. 

Novel/non-previously clustered conformations observed in the new dataset are removed from 

the totals, in order to only assess performances on conformations that are predictable. 

Similarly, structures with a CDR length that contained less than 10 unique sequences in the 
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clustered set were not considered. Canonical templates’ results show a reduced total test 

population in CDR-L3, because no templates were available for a length of 11-residues. 

Individual results are commented on later, per corresponding CDR. 

 All predictions for every CDR in the test sets, along with a measure of RMSD distance 

of the Query conformation from the closest cluster medoid, can be consulted in detailed tables 

in supplementary material: ‘individual_CDR_predictions.xls’. Detailed tables with accuracy 

ratios per CDR/length, as well as extended statistics measuring the methods’ performance in 

predicting the major cluster in each CDR/length, are presented and commented on below 

(Tables 7-8 for CDR-L1/L3, Tables 9-10 for CDR-H1/H2 and Tables 11/12 for CDR-H3-

base). In order to allow a direct comparison between methods, cumulative results (i.e. the 

entire new dataset) are considered in these detailed tables, but summaries of each method’s 

performance per subset and per experiment are also separately provided (Tables 5 and 6). 

 

Predictions for CDR-L1 

 

 For the DCP method in CDR-L1 predictions, validated training parameters were a 6Å 

IF and a combinatorial order up to triplets. The entire clustered dataset was used during 

training (excluding outlying members in order to reduce the complexity of the predictable 

testing structure). The method achieved an overall ratio of accurately predicted CDR-L1 of 

92% (163/177), while the number of novel conformations in the test set, represented another 

7% (12/177; Table 7). Of special note is the fact that in 12- and 13-residue CDR-L1 lengths, 

classified as non-predictable or statistically uncertain (‘type III’) in North, Lehmann & 

Dunbrack (2011), the method predicted successfully 79% and 94% of the test CDRs 

respectively (11/14, 1/14 being a novel conformation, and 16/17, 1/17 being novel, 

respectively). This becomes more striking when considering that 79% (11/14) and 88% (15/17) 

respectively of the test CDR sequences were new and not represented in the training set. 

 Predictions with canonical templates were overall accurate in 88% (155/177) of the test 

set (Table 7). This prediction score was mainly lowered by the existence of a number of 

uncertain predictions (~5%, 9/177), where more than one conformation achieved the same 

maximum canonical matching. As far as the prediction performance towards the major cluster 

in each length is concerned (level-1 clusters: class-I; Nikoloudis, Pitts & Saldanha, 2014, PeerJ 

preprint server, DOI: 10.7287/peerj.preprints.291), DCP signatures proved superior to or as 

effective as canonical templates in most measures, except for the precision in 12-residue CDR-
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L1 (0.88 vs. 1.0); and also accuracy (0.95 vs. 1.00) and precision (0.95 vs. 1.00) in 13-residue 

CDR-L1 (Table 8). In both lengths, this result is due to the fact that canonical templates output 

an uncertain prediction in actual conformations other than the one corresponding to the major 

cluster in that length (i.e., not a class ‘-I’ tag), which technically counted as True Negatives in 

our assessment. These True Negatives increased the respective accuracy and precision scores 

for the canonical model. In contrast, canonical templates scored very low in recall in 12-

residue CDR-L1 (0.44) vs. DCP (0.88). Concerning the most voluminous cluster in CDR-L1, 

i.e. L1-11-I (160/434 or ~37% of total CDR-L1 clustered sequences; Nikoloudis, Pitts & 

Saldanha, 2014, PeerJ preprint server, DOI: 10.7287/peerj.preprints.291), both methods 

performed equally well with an F-measure of 0.98 (Table 8), while 65% (70/107) of the test 

CDRs were new sequences (Table 7). Thirty-three structures had a CDR-L1 length where only 

one cluster was available (7, 10 and 17 residues), or less than 10 unique sequences were 

available during clustering (9 residues). Two structures had a CDR-L1 with a new, non-

clustered length (8 residues).  

 After discarding non-predictable CDRs (novel conformations, very low clustered 

populations, or only one cluster per length), DCP signatures achieved an overall accuracy of 

99% (163/165), as compared to 94% (155/165) for canonical templates (Table 2). Although 

both methods performed very well, DCP signatures’ performance proved slightly superior in 

all individual assessments. However, post-evaluation DCP training and re-assessment (Phase-

2) on the test set, resulted in two wrong and one correct prediction switches, resulting in a 

roughly 1% lowering of the final accuracy of the method (Table 5; comparison between 

“Initial” and “Updated DCP signatures, Evaluation: test set”). Accordingly, post-evaluation 

updating of canonical templates didn’t have any effect on the predictions obtained for the new 

dataset (96% in both cases). Results suggest stability of both methods in view of the new 

structures, although assessment with bigger test sets will be required in the future for a safer 

conclusion. 

 

Predictions for CDR-L2 

 

 Nearly all 178 new structures with a Light chain had a CDR-L2 belonging to cluster 

L2-7-I (175/178, ~98%). This was expected, since over 96% (272/282) of the clustered CDRs 

had this conformation (Nikoloudis, Pitts & Saldanha, 2014, PeerJ preprint server, DOI: 

10.7287/peerj.preprints.291). Moreover, conformational differences between the three 

observed clusters are rather minimal (mostly peptide flips that additively result in inter-cluster 
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medoid distances ranging between 1.1Å and 1.36Å) and can be marginally characterised as 

variants of the main L2-7-I conformational theme. For these reasons, the predictive methods 

were not applied in CDR-L2. Future work targeting, with greater precision, the variants within 

a cluster could reveal whether these conformational differences are predictable by sequence 

alone, or even the result of experimental errors. 

 

Predictions for CDR-L3 

 

 For the construction of CDR-L3 DCP signatures, a 4Å IF was used and for detection of 

disjoint signals, IF fragment combinations were examined up to triplets. The DCP method 

achieved an overall ratio of accurately predicted conformations of 85% (152/178), while 7% 

(13/178) of the test set were novel conformations (Table 7), of which 12/13 had new CDR 

sequences (supplementary material: ‘individual_CDR_predictions.xls’). The lowest accuracy 

was observed in 10-residue CDR-L3; a length that, interestingly, seems hypervariable in 

conformation. From the 26 unique sequences of CDR-L3/10-residues in the initial dataset, 12 

clusters were formed each containing between 1 and 4 unique CDR sequences, while 6 more 

CDRs were labelled as outliers/singletons (Nikoloudis, Pitts & Saldanha, 2014, PeerJ preprint 

server, DOI: 10.7287/peerj.preprints.291). Nonetheless, since 7/15 test structures with CDR-

L3/10-residues were novel conformations (all with new CDR sequences; Table 7) it was 

impractical to make any conclusions regarding predictive efficacy in this CDR length. The 

biggest cluster in CDR-L3 is L3-9-I containing 328/480, or ~68%, of the clustered, non-

redundant structures, all CDR-L3 lengths considered (Nikoloudis, Pitts & Saldanha, 2014, 

PeerJ preprint server, DOI: 10.7287/peerj.preprints.291); a percentage that is interestingly 

verified in the present new dataset (119/178, or 67% of the unique CDR-L3 sequences, Table 

7). For this cluster, the DCP method achieved an accuracy of 0.93, while its F-measure was 

0.96 (Table 8). 

 The canonical model achieved comparable overall prediction accuracy of 86% 

(131/153), excluding predictions for CDR-L3/11-residues as no template was available (Table 

7). For a direct comparison, total accurate predictions for DCP signatures for 8-, 9- and 10-

residue CDR-L3 were 133/153 (87%). Canonical model’s score was lowered, for this method 

as well, mainly by the presence of many novel conformations in CDR-L3/10-residues, and also 

a few uncertain predictions obtained in CDR-L3/8- and 9-residues. Overall, both methods 

performed equally well, with an only marginal superiority of the DCP method in CDR-L3/8- 

and 9-residues. Canonical templates also achieved a slightly better score in accuracy (0.95 vs. 
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0.93) and precision (0.96 vs. 0.93) of the major class-I in CDR-L3/9-residues (Table 8), which 

is again due to the fact that uncertain predictions output for non-class-I conformations 

technically counted as True Negatives. No predictions were made for a length of 5-residues as 

only one cluster was available, and for 12- and 13-residues as less than 10 unique CDR 

sequences were available in the clustered data (6 and 3, respectively; Nikoloudis, Pitts & 

Saldanha, 2014, PeerJ preprint server, DOI: 10.7287/peerj.preprints.291).  

 Initial cumulative performances after removing non-predictable conformations were 

comparable: 92% (154/167) for DCP signatures and 91% (131/144) for canonical templates 

(Table 5), although DCP was applied in one additional length (11-residues). In all individual 

assessments DCP performed equally or slightly better, while both methods took equal benefit 

from post-evaluation training/updating (Phase-2), gaining roughly 2% in overall accuracy 

(Table 5, comparison between “Initial” and “Updated DCP signatures/canonical templates, 

Evaluation: test set”). 

 

Predictions for CDR-H1 

 

 For the construction of DCP signatures for the CDR-H1 prediction, training parameters 

were the following: an 8Å IF and fragment combinations up to triplets. Clustered populations 

in CDR-H1 lengths 13- and 15-residues represented 96% (446/465) of the total non-outlying, 

non-redundant CDR-H1 population (Nikoloudis, Pitts & Saldanha, 2014, PeerJ preprint server, 

DOI: 10.7287/peerj.preprints.291) and are the only ones that formed more than one 

conformational cluster. The DCP method achieved an overall ratio of correct predictions of 

87% (182/210), while 9% (18/201) were novel/non-clustered conformations (Table 9), most of 

which were observed in 13-residue CDR-H1. The method’s performance was rather poor in 

15-residue CDR-H1 (56%, 5/9 accurate predictions); although the small number of test 

structures in this length doesn’t allow any concrete conclusion. It is notable that two out of 

three structures with H1-15-II conformations (3TJE, 3THM, supplementary material: 

‘individual_CDR_predictions.xls’) were not predicted correctly – all 3 represented by new 

CDR-H1 sequences. A possible reason for this could be the small training population for the 3 

clusters in CDR-H1/15-residues (24/2/1 unique sequences, respectively; Nikoloudis, Pitts & 

Saldanha, 2014, PeerJ preprint server, DOI: 10.7287/peerj.preprints.291). In CDR-H1/13-

residues, 88% (177/201) were accurately predicted, 4% (8/201) were false predictions, and 8% 

(16/201) were novel conformations (Table 9).  
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 Generated canonical templates for CDR-H1 displayed an increased degree of allowed 

residues’ overlap. This was expressed by an increased number of uncertain predictions 

(maximum score by more than one template): 26/210, or 12% (Table 9). The overall ratio of 

accurate predictions was 74% (156/210), while false prediction represented approximately 5% 

(10/210) (Table 9). Comparing the performance of both methods in predicting the major 

clusters in each CDR-H1 length, the DCP method was from marginally to significantly 

superior to the canonical model in all measures (Table 10). 

 After removal of non-predictable conformations, DCP signatures achieved a cumulative 

accuracy of 95% (182/192) as opposed to the canonical model with 81% (156/192; Table 6). 

The performance of DCP signatures was accordingly superior in all individual assessments, 

while post-evaluation training/updating benefited both methods by ~1%-2% (Table 6, 

comparison between “Initial” and “Updated DCP signatures/canonical templates, Evaluation: 

test set”). 

 

Predictions for CDR-H2 

 

 Predictions for CDR-H2 conformation concerned three lengths, where there were more 

than one cluster and more than 10 unique clustered CDR sequences: 9-, 10-, and 12-residue 

CDR-H2. Length 10-residues was of additional interest as it represented the only case, all 

CDRs considered, that featured both a considerable total population (350 unique clustered 

sequences) and two well-populated clusters with an approximate 1:2.5 ratio in non-redundant 

members. For the construction of DCP signatures, a 6Å IF was employed and fragments up to 

quadruplets were compared. The method achieved accurate predictions in 89% of the test 

CDRs (193/217), made an uncertain prediction in 6 cases (~3%), and a false prediction in 14 

cases (~6%), while 4 more CDRs were novel conformations (~2%, Table 9). For CDR-H2 

lengths 9- and 10-residues alone, North, Lehmann & Dunbrack (2011) reported a theoretical 

percentage of correct predictions of 80%, consulting extensively the identity of the residue at 

position H71, and of 78%, using hidden Markov models.  

 Canonical templates for CDR-H2 displayed a very pronounced degree of overlap 

between allowed residues, which was even more severe than was observed in CDR-H1. This 

caused the percentage of uncertain predictions to rise to 34% (74/217), while the false 

predictions were 7% (16/217). The overall accuracy was therefore only 57% (123/217, Table 

9). Canonical performance in predicting the major cluster in each length suffered accordingly, 
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although not as dramatically as the global accuracy would suggest (F-measure: 0.79 for CDR-

H2/9-residues, 0.74 for CDR-H2/10-residues, Table 10).  

 In the case of CDR-H2 then, the advantage of comparing combinations of residues 

(DCP) was observed in a more prominent manner. Therefore, observations here support the 

initial hypothesis of the degree of sequence-to-structure residue synergistic complexity and the 

non-linear determination of conformation by local and neighbouring residue preferences. 

However, post-evaluation DCP training resulted in the severe reduction of signals in the 

signatures of clusters H2-10-I and H2-10-II. This led to an increased rate of uncertain 

predictions during re-evaluation with the updated signatures, which was reflected by a 6% loss 

in accurate predictions (Table 6, comparison between “Initial” and “Updated DCP signatures, 

Evaluation: test set”), although only less than 1% loss when comparing the respective 

cumulative results (Table 6). Re-updating of canonical templates, on the other hand, resulted 

expectedly in a slight decrease in accuracy (~1%), as updating could only accentuate the 

existing template overlap effect; although cumulatively, re-updating increased the ratio of 

accurate predictions by ~2% (Table 6). Normally, this behaviour of DCP would suggest the 

need for re-parameterisation, using e.g. an increased order of combinations (e.g. quintets) in 

order to preserve predictive performance in time. Nonetheless, since the difference in global 

performance of the two methods is already so dramatically in favour of the DCP method 

(Tables 6 and 9), it was judged preferable to demonstrate rather than attenuate this effect, as a 

useful piece of critical assessment for this new method that will allow improved future 

implementations.  

 

 

Predictions for CDR-H3-base conformation 

 

 The pronounced sequence, length and conformational hypervariability in CDR-H3 was 

verified during the clustering (Nikoloudis, Pitts & Saldanha, 2014, PeerJ preprint server, DOI: 

10.7287/peerj.preprints.291) and in this landscape of variability it was completely impractical 

to apply predictive DCP on the complete CDR-H3 conformation, at least not in the form of the 

current implementation of this new method; a remark also arising from the earliest conception 

of the canonical model. Nonetheless, as a major advance in the prediction of CDR-H3 

conformation from sequence concerns the formulation of sequence rules for the CDR-H3-base, 

DCP was applied on three CDR-H3-base categories: Kinked (K), Extended negative (EN) and 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.292v3 | CC-BY 4.0 Open Access | received: 20 Mar 2014, published: 20 Mar 2014

P
re
P
ri
n
ts



23 

Extended positive (EP). Prediction of the double-bulged Kinked base (K+), was not attempted 

on this occasion for simplicity. 

 For DCP signatures, a 4Å IF was used and compared fragments up to quintets were 

compared. The DCP method made 195/216 correct predictions (90%) for the CDR-H3-base 

conformation. Comparatively, application of sequence rules resulted in 183/216 (85%) 

accurate predictions, for both the 1999 (Shirai, Kidera & Nakamura, 1999) and 2007 (Kuroda 

et al., 2008) sets of rules respectively (Table 11). More specifically, the updated set of rules 

resulted in 11 correctly switched predictions (~5%) and 13 falsely switched predictions (~6%, 

two switches were from a wrong prediction to another wrong prediction, the rest were from 

correct to wrong); 21 incorrect predictions made by the original set were retained in the 2007 

set (~10%; supplementary material: ‘individual_CDR_predictions.xls’).  

 The methods’ performances were evaluated separately in predicting the Kinked base, 

which represents the most frequent base conformation (roughly 7:2:1 ratio between K-EN-EP 

conformations in all datasets combined). The updated rule set presented an almost identical 

performance, over all measures, to the original set (Table 12). It therefore cannot be verified 

that the updating of sequence rules on the basis of new structures is beneficial; it can be argued 

that a point may appear where the rules’ predictive performance may no longer warrant their 

increasing complexity. In comparison, predictions with DCP signatures brought a slight 

improvement over both sets of sequence rules, all measures considered (accuracy 0.90 vs. 0.85, 

F-measure 0.95 vs. 0.92, Table 12). Although this improvement is still marginal, it confirms 

the new method’s consistency in out-performing, or performing at least as well as, the existing 

methods in all CDRs including CDR-H3. 

 

Discussion 

 

 The historical approach used for CDR prediction from sequence alone relies on 

canonical templates or in simpler cases the existence of a single conformational cluster for a 

given CDR length. For the hypervariable CDR-H3, where sequences, lengths and 

conformations show great diversity, sequence rules were formulated in order to allow the 

prediction of only the base of the loop. While the canonical model has been, and still is, 

effective in predicting a number of CDR conformations, its strength is inevitably weakened as 

more antibody structure become available. As the construction of canonical templates consists 

of identifying structurally-determining residues at specific positions that are exclusive to each 
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canonical class, the proliferation of sequences in CDR clusters gradually creates overlapping, 

or rogue, templates (not to be confused with the multi-conformation, full-rogue CDRs in this 

work). This was first observed by Martin & Thornton (1996) and was acknowledged by North, 

Lehmann & Dunbrack (2011) where canonical templates discreetly gave way to statistical 

consensus sequences.  

 A typical problem with canonical templates, and by extension with statistical consensus 

sequences, is that they require the presence of previously observed residues in specific 

positions, without the consideration that certain overlapping combinations of residues may 

render the targeted CDRs unpredictable. While this could be statistically acceptable in the past 

as far as positive predictability was concerned, the great increase of CDRs in the PDB results 

in conformational clusters with highly overlapping canonical templates or consensus 

sequences; for example in CDR-H2/10-residues, all 14 canonical positions contain at least one 

overlapping residue between one or more other templates of the same length (supplementary 

material: ‘all_Canonical_Templates.doc’). Additionally, another fact that becomes prominent 

with richer datasets is that many CDR conformations do not depend solely on their own 

sequence but receive structurally-determining influence from the antibody’s framework 

(Tramontano, Chothia & Lesk, 1990; Martin & Thornton, 1996; Morea et al., 1997; North, 

Lehmann & Dunbrack, 2011). These problems can sometimes be dealt with by application of 

Hidden Markov Model (HMM) analysis. However this requires a considerable number of 

cluster members for the model to remain reliable, and to some extent removes the simplicity 

that made the canonical model attractive in predicting the conformations of antibody CDRs.  

 Based on the present prediction results, a conclusion that can be drawn regarding the 

canonical model is that it still presents an acceptable predictive capability, at least in most 

Light chain CDR lengths. Overall, accurate predictions by canonical templates were 565/757 

(74.6%) in CDR-L1, -L3, -H1 and -H2, with 47/757 (~6%) being novel, non-predictable 

conformations (sum of results in Tables 7 and 9); after removal of non-predictable 

conformations, total cumulative accurate predictions were then 565/710 or 79.6% (sum of 

results in Tables 5 and 6). Its performance in Heavy chain CDRs though, where the overlap of 

canonical templates resulted in important accuracy loss (Tables 6 and 9), could suggest that the 

efficacy of the canonical model may be bound to decrease over time as more structures become 

available. One possible solution for retaining the practicality of the canonical model could be a 

k-fold cross-validation analysis of a dataset in order to obtain the canonical templates that best 

predict the available conformations; and then keep those templates locked until the assessed 

performance of the model begins to decline again in the future. Alternatively, the re-sampling 
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of established canonical positions in each CDR length could also potentially result in better 

performance, i.e. a cross-validation analysis with reduced sets of canonical positions. Such a 

process is expected to virtually remove several heavily overlapping positions and allow better 

template specificity.  

 Following a much more supervised approach, sequence rules used for prediction of 

CDR-H3 features still demonstrate a satisfactory predictive potential as confirmed by the 

blind-testing sessions. With an overall accuracy of 85% during testing over the two sets of 

rules, it can be supported that the sequence basis for the CDR-H3-base conformation is 

essentially acquired. On the other hand the addition of 8 new rules or rule-adaptations in the 

updated set, on top of the original 4, didn’t procure an improvement in accuracy. It can be 

argued that the test set of 216 sequences was relatively small for safe conclusions, compared to 

the 311 sequences used during the formulation of the updated rules. However, these additional 

rules were created for the correct identification of only 47/311 (15%) of CDR-H3-bases that 

were misclassified by the original set of rules (Kuroda et al., 2008). Interestingly, exactly the 

same percentage of misclassified bases (15%; Table 11) was again also displayed by the 

updated rules during the testing session, suggesting a possible attained limit in the efficacy of 

the sequence rules. Moreover, false switches from the original set’s prediction were not 

avoided (13 cases), while the correct prediction switches were fewer than the number of false 

predictions retained from the original set (11 and 21, respectively in supplementary material: 

‘individual_CDR_predictions.xls’). Therefore, the test set was generally representative of the 

predictive challenge a researcher may encounter and, as previously mentioned, that sequence 

rules could already have reached a point where their further specialisation towards 

improvement of accuracy has become impractical, ineffective, or both. 

 The newly proposed predictive method (DCP) achieved an overall score of correct 

predictions in all examined CDRs of 88.7% (885/998), while approximately 5% (47/998) of the 

test CDRs represented novel, unpredictable conformations (sum of results in Tables 7, 9 and 

11); after removal of non-predictable conformations, total cumulative accurate predictions 

were then 885/951 or 93.1% (sum of results in Tables 5 and 6). The improvement over the 

canonical model or sequence rules was consistent in all CDRs, ranging from 1% in CDR-L3 to 

33% in CDR-H2 (average 10.8%, median 6%) cumulatively over the entire new dataset 

(comparison between cumulative results in Tables 5 and 6), and ranging from 2% to 30% 

(average 9.7%, median 5.5%) over the test subset only (initial evaluation of test set, Tables 5 

and 6). This improvement was verified during the evaluation of prediction performance for the 

most populated, and thus statistically most important, cluster in each predictable length. Over 
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60 total measures (15 common categories, 4 statistical evaluations per category), the DCP 

method’s score ranged from equal to significantly better in all but 6 cases, in which canonical 

templates performed marginally better mainly due to technicalities of the assessment that were 

discussed previously (Tables 8, 10 and 12). With all but two F-measure scores (L3/10-residues, 

H1/15-residues) being better than 0.88 (average 0.90, median 0.96), confidence for accepting 

or rejecting the adoption of the major conformation in length by the unknown CDR can be 

relatively high.  

 This performance was deemed encouraging, considering the method’s novel and 

embryonic nature. It can therefore also be argued that the threshold-free approach of the initial 

clustering was advantageous for prediction as it created richer clusters by including more 

sequence examples and possible variants of a conformational theme. These variants could have 

diminished the predictive efficiency of the assessed methods, if considered as separate clusters 

in the first place. Indeed, unless these variants were later detected as multi-conformation full-

rogues which would lead to their predictive merging, their separation from the main 

conformational theme would produce poorer training/updating results due to considerably 

fewer examples per profiled cluster. In any case, it would also be interesting to apply DCP at 

levels -2 and -3 of the nested initial classification, in order to explore the potential of prediction 

of the more subtle variants, which would be of increased importance to antibody engineering, 

if successful. Moreover, future dedicated work on DCP signatures may bring further 

improvements in the overall predictive potential by proposing more elegant implementations 

than the basic approach employed in this work.  

  Clusters that contained members with the exact same Fv sequences were merged for 

training/updating and prediction. Hence, DCP signature or canonical template matching of a 

combined predictable conformation reported all the affected conformations at the same time. In 

these cases there was inevitably a loss of specificity towards the prediction of each separate 

conformation. However in practice, in 295/301 (~98%) related cases of accurate prediction by 

DCP signatures of a combination of clusters, the true conformation was always that of the 

major class of the set. This could suggest that those smaller clusters that contain multi-

conformation full-rogue CDRs are more valuable for merely being part of the known 

conformational repertoire of that CDR and for becoming the object of sequence-to-structure 

and/or CDR induced-fit studies, rather than representing important predictable conformations.  

 Alternatives to the above approach for successful training would be to exclude the 

sequences of all involved members from their respective cluster sets, or to exclude the 

sequence sets of the smaller cluster altogether as not important for prediction; both scenarios 
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hiding potential training inconveniences. Therefore, the predictive cluster merging preserves 

the availability of sequence information, did not practically reduce prediction sensitivity and 

presented no obvious bias toward one of the two predictive methods that are compared for each 

CDR. On the contrary, most merges may be pointing to closely related conformations whose 

divergence is due to external factors, in which case it makes more sense to consider them in a 

combined fashion. 

 Perhaps the biggest future challenge for the DCP method would be to detect the 

presence of a novel class - not the novel conformation itself - but merely the potential to avoid 

a false positive identification. This is an inconvenience shared by all sequence-based methods, 

since they always attribute a class to an unknown structure. The avoidance of false positives 

(all classes considered) could be achieved in time as signatures become more specific, in which 

case a positive identification would require a ratio score better than a defined threshold (e.g. no 

positive prediction below RDCPsignature < 0.5, Equation 1). Alternatively, this could be achieved 

with the definition of a negative class. The training protocol of the DCP method may indeed 

allow for such a process, precisely because it is searching for differences between the 

compared IF sequence sets instead of similarities. An exploratory approach could be the 

selective mixing of different classes divided between Query and Target sets, in order to 

represent a non-existent conformation or combinatorial chimera, for profiling of disjoint 

combinations. Signatures obtained from such training should then be tested for positively 

attracting unknown conformations, without interfering with known classes. 

 The biggest culprit during DCP training was undoubtedly its execution complexity 

which scales in factorial time. In practice with a short 4Å IF, single-threaded execution time 

was acceptable for DCP with IF sequence fragments up to quintets, or even sextets (i.e. up to 

2-3 minutes per CDR). However with longer (up to 8Å) IFs, execution time becomes very 

quickly prohibitive, with quartets’ training requiring sometimes close to 50 minutes per CDR 

on the available computational setup (2.67MHz Intel i5 quad-Core processor). As was revealed 

by the test results, supervised exploration of a number of selected [IF length]/[fragment order] 

combinations of training sets proved sufficient in order to reach and surpass the performance of 

the other established methods. However for optimisation of DCP signatures, a k-fold cross-

validation of the signature signals may be required, which will be the focus of a future study. 

Of course, it cannot be ruled out that future dedicated studies may also propose a more efficient 

training procedure, e.g. by defining shorter IFs based on a criterion other than the structural 

neighbourhood of a CDR. Also, another way for producing more accurate and specific DCP 

signatures could be in the statistical validation of the disjoint combinations/events. Toward this 
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end, a probabilistic closed-form equation for selecting only statistically significant signature 

signals is proposed as an appendix in supplementary material: 

‘appendix_Statistical_Validation.doc’. As a final suggestion, the representation of IF sequence 

sets using reduced non-overlapping amino acid alphabets is another intriguing possibility to be 

explored for an improved implementation of the DCP method. 

 It should be noted that both DCP signatures and canonical templates are by design able 

to achieve a maximum score with the totality of a training set, but with DCP an uncertain retro-

prediction is not possible. After post-evaluation training/updating on both the clustering and 

the validation sets, re-evaluation of the validation set showed superior aptitude of DCP 

signatures in retro-predicting the set they were trained upon (100% correct predictions, Tables 

5 and 6). This behaviour was expected as DCP signatures capture all the combinatorial 

differences between one class and all the others. Additionally, the IF sequence of any Query 

structure gets included into the Target IF sequence sets of all clusters except for the one that 

corresponds to the Query structure. Hence, no disjointness can be observed between the Query 

IF sequence fragments and any non-corresponding cluster, so uncertain predictions are 

essentially avoided. In contrast, canonical templates display a more linear ensemble of intra-

class similarities that become overlapping, which penalises the predictive accuracy of the 

model. This means that, at least in theory, updating of DCP signatures by adding new 

sequences to the training set should produce more stable and accurate predictive models. Thus, 

provided that an optimised set of training parameters (IF radius and combinatorial order) is 

acquired, disjoint signals should become naturally filtered and signatures should be 

increasingly specific to each class, as more structures and their sequences bring additional 

examples of clustered conformational themes. Analysis of the individual signals within these 

increasingly specific signatures could then potentially assist in discovering important 

interactions that contribute to CDR conformation; a feature that is not easily accessible in other 

analytical methods such as HMM or neural networks.  

 Important advancements are being made in other methods for the prediction of CDR 

conformation or loop conformation in general. These include general ab initio modelling 

techniques (e.g. Loopbuilder, Soto et al., 2008), fragment assembly techniques (e.g. 

RosettaAntibody, Sivasubramanian et al., 2009), or database search techniques (e.g. FREAD, 

Choi & Deane, 2011). While the accuracy of these methods is typically measured in average 

RMSD from the tested crystal structures; respective publications usually avoid mentioning the 

ratio of wrongly predicted conformations based on an acceptable RMSD threshold, as was the 

case in this work. To allow future comparisons with such methods, it is worth reporting that 
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.292v3 | CC-BY 4.0 Open Access | received: 20 Mar 2014, published: 20 Mar 2014

P
re
P
ri
n
ts



29 

this new classification-based prediction method (DCP) presented an average RMSD (and 

median in Å) to the medoids of the correctly identified class of 0.36(0.30)-0.40(0.33)-

0.54(0.41)-0.36(0.32) for CDR-L1-L3-H1-H2, respectively (figures calculated from “RMSD 

distance of observed conformation to cluster medoid”, supplementary material: 

‘individual_CDR_predictions.xls’). These numbers are by far lower than any reported result for 

alternative methods (typical average RMSD ranging between 0.80Å-1.0Å for the best results of 

the aforementioned ab initio, fragment assembly and database search methods). For CDR-L1, -

L3, -H1 and -H2 with DCP signatures, only 30/692 (~4%) of correctly identified 

conformations had an RMSD from the medoid greater than 1Å (1.03Å-1.58Å, average 1,21Å, 

median 1.19Å).  

 

Conclusion 

 

A new predictive model was developed for CDR conformation, its training workflow 

was designed and a first application was demonstrated on a new test set of structures. 

Prediction performance was shown to be superior to previous sequence-based methods over all 

CDRs. The method permits increased parameterisation and presents implementation flexibility. 

These characteristics allow a considerable margin for performance improvement in future 

work, and also suggest the possibility that it can be exploited in other fields of biological 

research. To the best of our knowledge, there existed no similar method with the particular 

features of DCP at the time of development, i.e. the search for common differences represented 

by disjoint, mixed sequence combinations between sets of classified sequences, or classified 

instances in general. Therefore it can be claimed that the method is novel, original and 

adaptable. It proved impractical to fully verify whether other methods with similar 

characteristics or features were not developed in research areas other than the biological arena, 

and therefore this possibility cannot be completely ruled out, e.g. in document-related areas 

that perform intensive combinatorial operations such as cryptography/decryption. Should this 

be the case, then only the claim of the method’s novelty regarding the specific application to 

antibody CDR conformation was demonstrated in this study. In any case and in conclusion, 

although the development of alternative prediction methods is important, especially ones with 

an ab initio or fragment-based approach for predicting novel conformations, it is suggested that 

the strictly sequence-based methods examined here fully retain their innate advantages in 

prediction time, input simplicity and conformational precision upon positive identification.  
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Tables 

 

 

 

 

Interaction Frame (IF) 
A list of Fv positions that are found in the neighbourhood of the 

examined CDR, its residues included. 

IF sequence 
A sequence of residues derived from an antibody's Fv that 

correspond to the positions included in the IF. 

Query IF sequence set 
A group of non-redundant IF sequences from all members of 

the cluster that is being profiled. 

Target IF sequence set 

A group of non-redundant IF sequences from the members of 

all clusters in the examined length, excluding the cluster that is 

being profiled. 

IF fragment 
A singlet or a non-necessarily consecutive combination of IF 

positions (couplet/triplet/quadruplet/etc.). 

IF fragment sequence The corresponding sequence of residues in an IF fragment. 

Query/Target fragment sequence 
IF fragment sequences from the Query/Target IF sequence 

sets form Query/Target fragment sequences, respectively. 

Signature signal 
An IF fragment that presents disjoint IF fragment sequences 

between Query and Target sets. 

DCP signature 
The complete set of signature signals that are consequently 

used for the prediction of a given cluster. 

 

Table 1: A list of terms that were used for the formulation of the DCP method and their 

definitions. 
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CDR/Length Canonical positions 

CDR-L1/11  L2 L4 L25 L26 L28 L29 L30 L33 L34 L36 L46 L49 L51 L71 L90 L93 

CDR-L1/12  L2 L4 L25 L29 L33 L71 L90 L91 L93 

CDR-L1/13  L4 L25 L29 L30 L33 L66 L71 

CDR-L1/14  L4 L25 L29 L30 L31 L33 L66 L71 L90 

CDR-L1/15  L2 L4 L24 L25 L26 L28 L29 L30 L30c L33 L34 L51 L71 L90 L92 L93 

CDR-L1/16  L2 L4 L25 L26 L27 L29 L30a L30b L30c L30d L32 L33 L34 L51 L71 L90 L92 L93 

CDR-L3/8  L36 L89 L90 L91 L94 L95 L97 L98 

CDR-L3/9  L2 L3 L4 L28 L30 L31 L32 L33 L89 L90 L91 L92 L93 L94 L95 L96 L97 L98 H47 

CDR-L3/10  L4 L32 L36 L89 L90 L91 L92 L95a L96 L97 L98 H47 

CDR-H1/13  H2 H4 H20 H24 H26 H29 H32 H33 H34 H35 H48 H51 H69 H78 H80 H90 H94 H102 

CDR-H1/15  H20 H24 H26 H28 H29 H34 H48 H53 H78 H80 H94 

CDR-H2/9  H47 H51 H55 H59 H69 H71 

CDR-H2/10  H33 H47 H50 H51 H52 H53 H54 H55 H56 H58 H59 H69 H71 H78 

CDR-H2/12  L94 H47 H50 H51 H54 H55 H59 H69 H71 H78 

 

Table 2: Table showing the canonical positions per CDR/length, used for CDR conformation 

prediction by canonical templates. 
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Usage 

Dataset 
Phase 1 – initial evaluation 

Phase 2 – post-evaluation    
re-updating 

clustering set - DCP training                 
- Canonical templates' updating 

- DCP training                 
- Canonical templates' updating 

subset 1 
(“validation set”) 

- DCP validation               
- Canonical templates' testing     

- Sequence rules' testing 

- DCP training                 
- Canonical templates' updating 

blind set 

subset 2       
(“test set”) 

- DCP testing                 
- Canonical templates' testing     

- Sequence rules' testing 

- DCP testing                 
- Canonical templates' testing 

 

Table 3: Summary of experiments performed, explaining the usage of datasets in each phase. 
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CDR Interaction Frames 
CDR 

Neighbourhood 
radius (Å) 

CDR-L1 
L2 L3 L4 L5 L22 L24 L25 L26 L27 L28 L29 L30 L30a L30b L30c L30d 

L30e L30f L31 L32 L33 L34 L36 L46 L48 L49 L50 L51 L52 L66 L67 L68 
L69 L70 L71 L87 L89 L90 L91 L92 L93 L94 L95 H96 n-4 n-3 

6 

CDR-L2 
L30 L30a L30b L30c L30d L30e L30f L31 L32 L33 L34 L46 L47 L48 L49 
L50 L51 L51a L51b L51c L51d L52 L53 L54 L55 L56 L57 L58 L59 L60 

L61 L62 L63 L64 L65 L66 L67 L71 L72 L91 H32 H101 H102 n-5 n-4 n-3 
4 

CDR-L3 

L1 L2 L3 L4 L27 L28 L29 L30 L30a L30b L30c L30d L30e L30f L31 L32 
L33 L34 L36 L49 L50 L87 L89 L90 L91 L92 L93 L94 L95 L95a L95b 

L95c L95d L96 L97 L98 L99 H35 H45 H46 H47 H50 H58 H59 H60 H61 
H95 n-6 n-5 n-4 n-3 n-2 

4 

CDR-H1 

L91 L92 L93 L96 H1 H2 H3 H4 H5 H6 H7 H20 H23 H24 H25 H26 H27 
H28 H29 H30 H31 H31a H31b H31c H31d H31e H31f H31g H31h H31i 
H31j H31k H32 H33 H34 H35 H47 H48 H49 H50 H51 H52 H52a H52b 
H52c H52d H52e H52f H53 H56 H58 H69 H71 H72 H73 H74 H75 H76 

H77 H78 H79 H80 H90 H91 H93 H94 H95 H96 H97 H98 H99 H100 
H102 n-4 n-3 n-2 

8 

CDR-H2 

H24 H28 H29 H30 H31 H31a H31b H31c H31d H31e H31f H31g H31h 
H31i H31j H31k H32 H33 H34 H35 H47 H48 H49 H50 H51 H52 H52a 

H52b H52c H52d H52e H52f H53 H54 H55 H56 H57 H58 H59 H60 H61 
H64 H68 H69 H70 H71 H72 H73 H74 H75 H76 H77 H78 H79 L94 L96 

6 

CDR-H3-
base 

L34 L36 L43 L44 L45 L46 L49 L55 L87 L89 L91 L96 L98 H4 H27 H35 
H37 H45 H47 H49 H91 H93 H94 H95 H96 H101 H102 n-3 n-2 E K K+ 4 

 

Table 4: Interaction Frames that resulted in the construction of the most accurate DCP 

signatures, and their respective CDR neighbourhood radius. Notations ‘E’, ‘K’ and ‘K+’, at the 

end of the CDR-H3-base Interaction Frame, refer to the �-hairpin type that is favoured at the 

CDR-H3 apex, depending on the formation of an Extended (E), Kinked (K) and Kinked with 

double-bulged base (K+). 
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CDR-L1 predictions 

Phase-1 Initial DCP signatures  Phase-2 Updated DCP signatures Phase-1 Initial canonical templates Phase-2 Updated canonical templates 

Training: 
clustering set  
Evaluation: 

validation set 

Training: 

clustering set    

Evaluation: 

test set 

Training: 
clustering+validation 

sets                 
Evaluation: 

validation set 

Training: 
clustering+validation 

sets              
Evaluation: test set 

Template 
Updating: 

clustering set        
Evaluation: 

validation set 

Template 

Updating: 

clustering set   

Evaluation: 

test set 

Training: 
clustering+validation 

sets                 
Evaluation: 

validation set 

Template Updating: 
clustering+validation 

sets                   
Evaluation: test set 

99% (86/87) 99% (77/78) 100% (87/87) 98% (76/78) 92% (80/87) 96% (75/78) 98% (85/87) 96% (75/78) 

Cumulative evaluation on 
validation+test sets 

Cumulative evaluation on validation+test 
sets 

Cumulative evaluation on 
validation+test sets 

Cumulative evaluation on validation+test sets 

99% (163/165) 99% (163/165) 94% (155/165) 97% (160/165) 

CDR-L3 predictions 

Phase-1 Initial DCP signatures Phase-2 Updated DCP signatures Phase-1 Initial canonical templates Phase-2 Updated canonical templates 

Training: 
clustering set  
Evaluation: 

validation set 

Training: 

clustering set    

Evaluation: 

test set 

Training: 
clustering+validation 

sets                 
Evaluation: 

validation set 

Training: 
clustering+validation 

sets              
Evaluation: test set 

Template 
Updating: 

clustering set        
Evaluation: 

validation set 

Template 

Updating: 

clustering set   

Evaluation: 

test set 

Training: 
clustering+validation 

sets                 
Evaluation: 

validation set 

Template Updating: 
clustering+validation 

sets                   
Evaluation: test set 

95% (84/88) 89% (70/79) 100% (88/88) 91% (72/79) 95% (69/73) 87% (62/71) 100% (73/73) 89% (63/71) 
Cumulative evaluation on 

validation+test sets 
Cumulative evaluation on validation+test 

sets 
Cumulative evaluation on 

validation+test sets Cumulative evaluation on validation+test sets 

92% (154/167) 96% (160/167) 91% (131/144) 94% (136/144) 

 

Table 5: Individual accuracy percentages per experiment in CDR-L1 and -L3, excluding non-predictable (novel) conformations. The previously 

acquired clustering set was used for initial DCP training and canonical templates’ updating. The newly downloaded blind dataset was divided in 

two subsets: for DCP, subset 1 was used for parameter validation (“validation set”), while subset 2 was used for evaluation (“test set”). Both 

subsets were used for evaluation of canonical templates, as no parameterisation was necessary, however the terms “validation” and “test” were 

retained for the two subsets for disambiguation and in order to allow direct comparisons. In post-evaluation Phase-2, the validation set was 

merged to the clustering set for DCP re-training and canonical templates’ re-updating. Updated methods were then evaluated on the test set that 

remained blind, but also were applied for retro-prediction on the validation set. 
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CDR-H1 predictions 

Phase-1 Initial DCP signatures Phase-2 Updated DCP signatures Phase-1 Initial canonical templates Phase-2 Updated canonical templates 

Training: 
clustering set  
Evaluation: 

validation set 

Training: 

clustering set      

Evaluation: test 

set 

Training: 
clustering+validation 

sets                 
Evaluation: 

validation set 

Training: 
clustering+validation 

sets              
Evaluation: test set 

Template Updating: 
clustering set          
Evaluation: 

validation set 

Template 

Updating: 

clustering set   

Evaluation: test 

set 

Training: 
clustering+validation 

sets                  
Evaluation: validation 

set 

Template Updating: 
clustering+validation sets    

Evaluation: test set 

95% (91/96) 95% (91/96) 100% (96/96) 96% (92/96) 79% (76/96) 83% (80/96) 83% (80/96) 85% (82/96) 
Cumulative evaluation on 

validation+test sets 
Cumulative evaluation on validation+test sets 

Cumulative evaluation on validation+test 
sets 

Cumulative evaluation on validation+test sets 

95% (182/192) 98% (188/192) 81% (156/192) 84% (162/192) 

CDR-H2 predictions 

Phase-1 Initial DCP signatures Phase-2 Updated DCP signatures Phase-1 Initial canonical templates Phase-2 Updated canonical templates 

Training: 
clustering set  
Evaluation: 

validation set 

Training: 

clustering set      

Evaluation: test 

set 

Training: 
clustering+validation 

sets                 
Evaluation: 

validation set 

Training: 
clustering+validation 

sets              
Evaluation: test set 

Template Updating: 
clustering set          
Evaluation: 

validation set 

Template 

Updating: 

clustering set   

Evaluation: test 

set 

Training: 
clustering+validation 

sets                  
Evaluation: validation 

set 

Template Updating: 
clustering+validation sets    

Evaluation: test set 

93% (98/105) 87% (94/108) 100% (105/105) 81% (87/108) 58% (61/105) 57% (62/108) 64% (67/105) 56% (61/108) 
Cumulative evaluation on 

validation+test sets 
Cumulative evaluation on validation+test sets 

Cumulative evaluation on validation+test 
sets 

Cumulative evaluation on validation+test sets 

91% (193/213) 90% (192/213) 58% (123/213) 60% (128/213) 

CDR-H3-base predictions 

Phase-1 Initial DCP signatures Phase-2 Updated DCP signatures 1999 sequence rules 2007 sequence rules 

Training: 
clustering set  
Evaluation: 

validation set 

Training: 

clustering set      

Evaluation: test 

set 

Training: 
clustering+validation 

sets                 
Evaluation: 

validation set 

Training: 
clustering+validation 

sets              
Evaluation: test set 

Evaluation: 
validation set 

Evaluation: test 

set 

Evaluation: validation 
set Evaluation: test set 

89% (93/104) 91% (102/112) 100% (104/104) 88% (99/112) 83% (86/104) 87% (97/112) 86% (89/104) 84% (94/112) 

Cumulative evaluation on 
validation+test sets 

Cumulative evaluation on validation+test sets 
Cumulative evaluation on validation+test 

sets 
Cumulative evaluation on validation+test sets 

90% (195/216) 94% (203/216) 85% (183/216) 85% (183/216) 

Table 6: Individual accuracy percentages per experiment in CDR-H1, -H2 and -H3, excluding non-predictable (novel) conformations. Also see 

notes in Table 5. 
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 DCP signatures  Canonical Templates   

CDR/Length 
Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

Novel 
conformations 

Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

New CDR 
sequences in 

test set       
(not present 
in training 

set) 

Unique 
CDR 

sequences 
in training 

set 

CDR-L1-11 97/107 (91%) 0/105 0/107 10/107 (9%) 93/107 (87%) 4/107 (4%) 0/107 70/107 
(65%) 177 

CDR-L1-12 11/14 (79%) 0/14 2/14 (14%) 1/14 (7%) 8/14 (57%) 4/14 (29%) 1/14 
 (7%) 

11/14 (79%) 25 

CDR-L1-13 16/17 (94%) 0/17 0/17 1/17 (6%) 16/17 (94%) 0/17 0/17 15/17 (88%) 26 
CDR-L1-14 10/10 (100%) 0/10 0/10 0/10 10/10 (100%) 0/10 0/10 6/10 (60%) 26 
CDR-L1-15 11/11 (100%) 0/11 0/11 0/11 10/11 (91%) 1/11 (9%) 0/11 9/11 (82%) 16 

CDR-L1-16 18/18 (100%) 0/18 0/18 0/18 18/18 (100%) 0/18 0/18 11/18 (61%) 71 

Total 163/177 (92%) 0/177 2/177 (1%) 12/177 (7%) 155/177 (88%) 9/177 (5%) 1/177 (0.5%) 122/177 
(69%) 341 

 DCP signatures  Canonical Templates   

CDR/Length 
Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

Novel 
conformations 

Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

New CDR 
sequences in 

test set       
(not present 
in training 

set) 

Unique 
CDR 

sequences 
in training 

set 

CDR-L3-8 18/19 (95%) 0/19 1/19 (5%) 0/19 17/19 (89%) 1/19 (5%) 1/19 (5%) 12/19 (63%) 44 

CDR-L3-9 111/119 (93%) 1/119 (1%) 6/119 (5%) 1/119 (1%) 110/119 (92%) 4/119 (3%) 4/119 (3%) 88/119 
(74%) 359 

CDR-L3-10 4/15 (27%) 0/15 4/15 (27%) 7/15 (47%) 4/15 (27%) 2/15 (13%) 2/15 (13%) 14/15 (93%) 26 

CDR-L3-11 19/25 (76%) 0/25 1/25 (4%) 5/25 (20%) N/A N/A N/A 23/25 (92%) 36 

Total 152/178 (85%) 1/178 (1%) 12/178 (7%) 13/178 (7%) 131/153 (86%) 7/153 (5%) 7/153 (5%) 
137/178 
(77%) 465 

Table 7: Summary table of Phase-1 prediction results over all test data belonging to non-single cluster lengths, for CDR-L1 and -L3. 

Percentages are rounded to the closest unit. Totals for canonical templates in CDR-L3 are marked in italics because they don’t include 

predictions for a length of 11-residues (no template available). For a direct comparison, total accurate predictions for DCP signatures for 8-, 9- 

and 10-resides CDR-L3 were 133/153 (87%).  Totals include novel conformations. 
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DCP signatures 
 

Class-I predictions Statistics 

CDR/Length 
True 

Positives 
True 

Negatives 
False 

Positives 
False 

Negatives Accuracy Precision Recall F-
measure 

CDR-L1-11 82 21 4 0 0,96 0,95 1,00 0,98 
CDR-L1-12 7 5 1 1 0,86 0,88 0,88 0,88 
CDR-L1-13 18 0 1 0 0,95 0,95 1,00 0,97 
CDR-L1-14 8 2 0 0 1,00 1,00 1,00 1,00 
CDR-L1-15 11 0 0 0 1,00 1,00 1,00 1,00 
CDR-L1-16 18 0 0 0 1,00 1,00 1,00 1,00 

Canonical templates 
 

Class-I predictions Statistics 

CDR/Length True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives Accuracy Precision Recall F-

measure 
CDR-L1-11 82 21 4 0 0,96 0,95 1,00 0,98 
CDR-L1-12 4 5 0 5 0,64 1,00 0,44 0,62 
CDR-L1-13 18 1 0 0 1,00 1,00 1,00 1,00 
CDR-L1-14 8 2 0 0 1,00 1,00 1,00 1,00 
CDR-L1-15 10 0 0 1 0,91 1,00 0,91 0,95 
CDR-L1-16 18 0 0 0 1,00 1,00 1,00 1,00 

DCP signatures 
 

Class-I predictions Statistics 

CDR/Length True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives Accuracy Precision Recall F-

measure 
CDR-L3-8 14 4 1 0 0,95 0,93 1,00 0,97 
CDR-L3-9 107 4 8 0 0,93 0,93 1,00 0,96 
CDR-L3-10* 1 11 0 3 0,80 1,00 0,25 0,40 
CDR-L3-11 19 1 5 0 0,80 0,79 1,00 0,88 

Canonical templates 
 

Class-I predictions Statistics 

CDR/Length True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives Accuracy Precision Recall F-

measure 
CDR-L3-8 13 4 1 1 0,89 0,93 0,93 0,93 
CDR-L3-9 105 8 4 2 0,95 0,96 0,98 0,97 
CDR-L3-10* 1 11 0 3 0,80 1,00 0,25 0,40 
CDR-L3-11 - - - - - - - - 

 

Table 8: Extended performance measures for major cluster (class-I) predictions in each CDR-

L1 and -L3 length (Phase-1). No canonical templates were available for CDR-L3/11-residues. 

The asterisk points the fact that clusters in CDR-L3/10-residues are all small, however cluster 

CDR-L3-10-I was technically considered here for consistency with all other major clusters. 
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 DCP signatures  Canonical Templates   

CDR/Length 
Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

Novel 
conformations 

Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

New CDR 
sequences in 

test set         
(not present in 

training set) 

Unique 
CDR 

sequences 
in training 

set 

CDR-H1-13 
177/201 
(88%) 0/201 8/201 (4%) 16/201 (8%) 

153/201 
(76%) 

24/201 
(12%) 8/201 (4%) 138/201 (69%) 419 

CDR-H1-15 5/9 (56%) 0/9 2/9 (22%) 2/9 (22%) 3/9 (33%) 2/9 (22%) 2/9 (22%) 8/9 (89%) 27 

Total 182/210(87%) 0/210 10/210 
(5%) 

18/210 (9%) 
156/210 
(74%) 

26/210 
(12%) 

10/210 
(5%) 146/210 (70%) 446 

 DCP signatures  Canonical Templates   

CDR/Length 
Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

Novel 
conformations 

Accurately 
predicted 

conformations 

Uncertain 
predictions 

False 
predictions 

New CDR 
sequences in 

test set         
(not present in 

training set) 

Unique 
CDR 

sequences 
in training 

set 

CDR-H2-9 41/41 (100%) 0/41 0/41 0/41 27/41 (66%) 14/41 
(34%) 0/41 31/41 (76%) 117 

CDR-H2-10 
145/168 
(86%) 6/168 (4%) 14/168 

(8%) 
3/168 (2%) 89/168 (53%) 60/168 

(36%) 
16/168 
(10%) 129/168 (77%) 350 

CDR-H2-12 7/8 (88%) 0/8 0/8 1/8 (13%) 7/8 (88%) 0/8 0/8 5/8 (63%) 39 

Total 193/217 
(89%) 6/217 (3%) 14/217 

(6%) 
4/217 (2%) 

123/217 
(57%) 

74/217 
(34%) 

16/217 
(7%) 165/217 (76%) 506 

 

 Table 9: Summary table of Phase-1 prediction results over all test data belonging to non-unique-cluster lengths, for CDR-H1 and -H2. 

Totals include novel conformations. 

 

 

 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.292v3 | CC-BY 4.0 Open Access | received: 20 Mar 2014, published: 20 Mar 2014

P
re
P
ri
n
ts



42 

 

 

 

 

Table 10: Extended performance measures for major cluster (class-I) predictions in each CDR-

H1 and -H2 length (Phase 1). 

 

 

 

 

 

 

 

 

 

 

 

DCP signatures 
 

Class-I predictions Statistics 

CDR/Length 
True 

Positives 
True 

Negatives 
False 

Positives 
False 

Negatives Accuracy Precision Recall F-measure 

CDR-H1-13 173 6 21 1 0,89 0,89 0,99 0,94 
CDR-H1-15 4 1 4 0 0,56 0,50 1,00 0,67 

Canonical templates 
 

Class-I predictions Statistics 

CDR/Length 
True 

Positives 
True 

Negatives 
False 

Positives 
False 

Negatives Accuracy Precision Recall F-measure 

CDR-H1-13 153 7 20 21 0,80 0,88 0,88 0,88 
CDR-H1-15 3 2 3 1 0,56 0,50 0,75 0,60 

DCP signatures 
 

Class-I predictions Statistics 

CDR/Length 
True 

Positives 
True 

Negatives 
False 

Positives 
False 

Negatives Accuracy Precision Recall F-measure 

CDR-H2-9 41 0 0 0 1,00 1,00 1,00 1,00 
CDR-H2-10 103 45 4 16 0,88 0,96 0,87 0,91 
CDR-H2-12 7 0 1 0 0,88 0,88 1,00 0,93 

Canonical templates 
 

Class-I predictions Statistics 

CDR/Length 
True 

Positives 
True 

Negatives 
False 

Positives 
False 

Negatives Accuracy Precision Recall F-measure 

CDR-H2-9 27 0 0 14 0,66 1,00 0,66 0,79 
CDR-H2-10 74 43 6 45 0,70 0,93 0,62 0,74 
CDR-H2-12 7 0 1 0 0,88 0,88 1,00 0,93 
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DCP signatures H3-rules, 1999 edition H3-rules, 2007 edition 

Accurately 
predicted 

conformations 

False 
predictions 

Accurately 
predicted 

conformations 

False 
predictions 

Accurately 
predicted 

conformations 

False 
predictions 

CDR-H3-
base 

conformation 

195/216(90%) 21/216 
(10%) 

183/216 
(85%) 

33/216 
(15%) 

183/216 
(85%) 

33/216 
(15%) 

 

Table 11: Summary table of Phase-1 prediction results for the CDR-H3-base conformation 

over all test data. 
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DCP signatures 

Class-I predictions Statistics 

True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives 

Accuracy Precision Recall F-measure 

191 4 13 8 0,90 0,94 0,96 0,95 
H3-rules, 1999 edition 

Class-I predictions Statistics 

True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives Accuracy Precision Recall F-measure 

182 1 15 18 0,85 0,92 0,91 0,92 
H3-rules, 2007 edition 

Class-I predictions Statistics 

True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives Accuracy Precision Recall F-measure 

CDR-H3, 
kinked base 
conformation 

178 5 13 20 0,85 0,93 0,90 0,92 
 

Table 12: Extended performance measures for Kinked base predictions in CDR-H3 (Phase 1). 
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Figures 

 

Figure 1: Preparatory steps for DCP. (Continued on next page) 
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Figure 1: Preparatory steps for DCP. Here, an Interaction Frame (IF) is selected for CDR-L1 

and the corresponding IF sequences are synthesised for each one of the four clusters of the 

given length. For computational reasons the same IF is defined for all lengths of any given 

CDR (here, CDR-L1 for illustration purposes). Therefore, observed gaps in IF sequences 

correspond to insertions populated in longer lengths than the one shown in the illustrated 

example – gaps are filled accordingly in those lengths’ IF sequences. Spare gaps, on the other 

hand, may correspond to IF positions pointing to unpopulated insertions from other CDRs or 

deletions in the Fv sequence. Also, gaps are present if there is no Light or Heavy chain in that 

particular structure. Positions at the end of the IF, marked as ‘n-x‘, refer to CDR-H3 positions 

at a sequential distance x from the last residue n (H102; see text). 
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Figure 2: The training procedure using Disjoint Combinations Profiling: definition of Query and Target IF sequence sets, extraction of all 

available IF fragment sequences and comparison between corresponding sets of fragments for disjointness, leading to signature signals. 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.292v3 | CC-BY 4.0 Open Access | received: 20 Mar 2014, published: 20 Mar 2014

P
re
P
ri
n
ts



48 

 

 

Figure 3: Representation of the workflow for CDR conformation prediction by DCP 

signatures. New Fv sequences are referred to as “Query” sequences, as they become the 

profiled object, and therefore IF fragment sequences from the new Fv sequences become 

‘Query IF fragment sequences’ for the purposes of prediction. 
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