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Abstract 

 

The widespread use of 'statistical significance' as a license for making a claim of a 

scientific finding leads to considerable distortion of the scientific process (American 

Statistical Association, Wasserstein & Lazar 2016). We review why degrading p-values 

into 'significant' and 'nonsignificant' contributes to making studies irreproducible, or to 

making them seem irreproducible. A major problem is that we tend to take small p-

values at face value, but mistrust results with larger p-values. In either case, p-values can 

tell little about reliability of research, because they are hardly replicable even if an 

alternative hypothesis is true. Also significance (pf0.05) is hardly replicable: at a 

realistic statistical power of 40%, given that there is a true effect, only one in six studies 

will significantly replicate the significant result of another study. Even at a good power 

of 80%, results from two studies will be conflicting, in terms of significance, in one third 

of the cases if there is a true effect. This means that a replication cannot be interpreted as 

having failed only because it is nonsignificant. Many apparent replication failures may 

thus reflect faulty judgement based on significance thresholds rather than a crisis of 

unreplicable research. Reliable conclusions on replicability and practical importance of a 

finding can only be drawn using cumulative evidence from multiple independent studies. 

However, applying significance thresholds makes cumulative knowledge unreliable. One 

reason is that with anything but ideal statistical power, significant effect sizes will be 

biased upwards. Interpreting inflated significant results while ignoring nonsignificant 

results will thus lead to wrong conclusions. But current incentives to hunt for 

significance lead to publication bias against nonsignificant findings. Data dredging, p-

hacking, and publication bias should be addressed by removing fixed significance 

thresholds. Consistent with the recommendations of the late Ronald Fisher, p-values 

should be interpreted as graded measures of the strength of evidence against the null 

hypothesis. Also larger p-values offer some evidence against the null hypothesis, and 

they cannot be interpreted as supporting the null hypothesis, falsely concluding that 

'there is no effect'. Information on possible true effect sizes that are compatible with the 

data must be obtained from the observed effect size, e.g., from a sample average, and 

from a measure of uncertainty, such as a confidence interval. We review how confusion 

about interpretation of larger p-values can be traced back to historical disputes among 

the founders of modern statistics. We further discuss potential arguments against 

removing significance thresholds, such as 'we need more stringent decision rules', 

'sample sizes will decrease' or 'we need to get rid of p-values'. 
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Introduction 

 

"It seems to me that statistics is often sold as a sort of alchemy that transmutes randomness into 

certainty, an 'uncertainty laundering' that begins with data and concludes with success as 

measured by statistical significance. (...) The solution is not to reform p-values or to replace them 

with some other statistical summary or threshold, but rather to move toward a greater acceptance 

of uncertainty and embracing of variation." 

Andrew Gelman (2016) 

 

Scientific results can be irreproducible for at least six major reasons (Bishop et al. 2015). There 

may be (1) technical problems that are specific to the particular study. There may be more 

general problems like (2) weak experimental design or (3) methods that are not precisely 

described so that results cannot be reproduced. And there may be statistical issues affecting 

replicability that are largely the same in many fields of research. Such issues are (4) low 

statistical power, (5) 'data dredging' or 'p-hacking' by trying alternative analyses until a 

significant result is found, which is often followed by (6) omitting nonsignificant results, leading 

to selective reporting and publication bias. 

Is a major part of an apparent crisis of unreplicable research caused by the way we use 

statistics for analysing, interpreting and communicating our data? Significance testing has been 

severely criticized for about a century (Boring 1919; Berkson 1938; Rozeboom 1960; Oakes 

1986; Cohen 1994; Ziliak & McCloskey 2009; Kline 2013), but the prevalence of p-values in the 

biomedical literature is still increasing (Chavalarias et al. 2016). For this paper, we assume that a 

revolution in applied statistics with the aim of banning p-values is not to be expected nor 

necessarily useful, and that the main problem is not p-values but how they are used (Gelman 

2013b; Gelman 2016). We argue that one of the smallest incremental steps to address statistical 

issues of replicability, and at the same time a most urgent step, is to remove thresholds of 

statistical significance like p=0.05 (see Box 1). This may still sound fairly radical to some, but for 

the following reasons it is actually not. 

First, p-values can be traditionally employed and interpreted as evidence against null 

hypotheses also without using a significance threshold. However, what needs to change for 

reducing data dredging and publication bias is our overconfidence in what significant p-values 

can tell, and, as the other side of the coin, our bad attitude towards p-values that do not pass a 

threshold of significance. As long as we treat our larger p-values as unwanted children, they will 

continue disappearing in our file drawers, causing publication bias, which has been identified as 

the possibly most prevalent threat to reliability and replicability of research already a long time 

ago (Sterling 1959; Wolf 1961; Rosenthal 1979). Still today, in a recent online survey of 1576 

researchers, selective reporting was considered the most important factor contributing to 

irreproducible research (Baker 2016). 

Second, the claim to remove significance thresholds is widely shared among statisticians. In 

2016, the American Statistical Association (ASA) published a statement on p-values, produced 

by a group of more than two dozen experts (Wasserstein & Lazar 2016). While there were 

controversial discussions about many topics, the consensus report of the ASA features the 

following statement: "The widespread use of 'statistical significance' (generally interpreted as 

'pf0.05') as a license for making a claim of a scientific finding (or implied truth) leads to 

considerable distortion of the scientific process" (Wasserstein & Lazar 2016). And a subgroup of 

seven ASA statisticians published an extensive review of 25 misinterpretations of p-values, 

confidence intervals, and power, closing with the words: "We join others in singling out the 
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degradation of p-values into 'significant' and 'nonsignificant' as an especially pernicious statistical 

practice" (Greenland et al. 2016). 

The idea of using p-values not as part of a binary decision rule but as a continuous measure of 

evidence against the null hypothesis has had many advocates, among them the late Ronald Fisher 

(Fisher 1956; Fisher 1958; Eysenck 1960; Skipper, Guenther & Nass 1967; Labovitz 1968; 

Edgington 1970; Oakes 1986; Rosnow & Rosenthal 1989; Stoehr 1999; Sterne & Smith 2001; 

Gelman 2013a; Greenland & Poole 2013; Higgs 2013; Savitz 2013; Madden, Shah & Esker 

2015; Drummond 2016; Lemoine et al. 2016; van Helden 2016). Removing significance 

thresholds was also suggested by authors sincerely defending p-values against their critics 

(Weinberg 2001; Hurlbert & Lombardi 2009; Murtaugh 2014). 

In the following, we start with reviewing what p-values and significance can tell about 

replicability and reliability of results. That this will not be very encouraging should not be taken 

as another advice to stop using p-values. Rather, we want to stress that reliable information about 

reliability of results cannot be obtained from p-values nor from any other statistic calculated in 

individual studies. Instead, we should design, execute, and interpret our research as a 'prospective 

meta-analysis' (Ioannidis 2010), to allow combining knowledge from multiple independent 

studies, each producing results that are as unbiased as possible. Our aim is to show that not p-

values, but significance thresholds are a serious obstacle in this regard. We think that little would 

need to change, but much could be gained by respectfully discharging significance, and by 

carefully interpreting p-values as continuous measures of evidence. 

 

 

Box 1: Significance thresholds and two sorts of reproducibility 

 

Inferential reproducibility might be the most important dimension of reproducibility and "refers 

to the drawing of qualitatively similar conclusions" from an independent replication of a study 

(Goodman, Fanelli & Ioannidis 2016). Some people erroneously conclude that a nonsignificant 

replication automatically contradicts a significant original study. Others will look at the observed 

effect, which might hint into the same direction as in the original study, and therefore come to the 

opposite conclusion. Since judgement based on significance is faulty, judgement based on effect 

sizes will increase inferential reproducibility. Further, it is current practice to interpret p-values 

>0.05 as evidence either against the null hypothesis, or (falsely) in favour of a null effect, or as 

no evidence at all. Researchers will increase inferential reproducibility if they refrain from 

turning their conclusion upside down once a significance threshold is crossed, but instead take 

the p-value as providing graded evidence against the null hypothesis. 

 

Results reproducibility, or replicability, "refers to obtaining the same results from the conduct 

of an independent study" (Goodman, Fanelli & Ioannidis 2016). How results should look like to 

be considered 'the same', however, remains operationally elusive. What matters, according to 

(Goodman, Fanelli & Ioannidis 2016), "is not replication defined by the presence or absence of 

statistical significance, but the evaluation of the cumulative evidence and assessment of whether 

it is susceptible to major biases." Unfortunately, adhering to significance thresholds brings 

considerable bias to the published record of cumulative evidence. If results are selected for 

publication and interpretation because they are significant, conclusions will be invalid. One 

reason is that the lens of statistical significance usually sees only inflated effects and results that 

are "too good to be true" (Gelman 2015). Researchers will increase replicability if they report and 

interpret all results, irrespectively of the sizes of their p-values. 
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P-values are hardly replicable 

 

In most cases, null hypothesis significance testing is used to examine how compatible some data 

are with the null hypothesis that the true effect size is zero. The statistical test result is a p-value 

informing on the probability of the observed data, or data more extreme, given that the null 

hypothesis is true (and given that all other assumptions about the model are correct; Greenland et 

al. 2016). If pf0.05, we have learned in our statistics courses to call this significant, to reject the 

null hypothesis, and to accept an alternative hypothesis about some non-zero effect in the larger 

population. 

However, we do not know nor can we infer whether the null hypothesis or an alternative 

hypothesis is true. On the basis of one single study, it is logically impossible to draw a firm 

conclusion (Oakes 1986, p. 128), for example because a small p-value either means the null 

hypothesis is not true, or else it is true but we happened to find relatively unlikely data. It is for 

those "possible effects of chance coincidence" that Ronald Fisher wrote: "No isolated 

experiment, however significant in itself, can suffice for the experimental demonstration of any 

natural phenomenon" (Fisher 1937, p. 16). 

Unlike a widespread belief, the p-value itself does not measure how replicable our results are 

(Miller 2009; Greenland et al. 2016). We hope that a small p-value means our results are reliable 

and a replication study would have a good chance to find a small p-value again. Indeed, an 

extensive research project replicating 100 psychological studies reported that the chance to find a 

significant result in a replication was higher if the p-value in the original study was smaller; but 

of 63 original studies with p<0.02, only 26 (41%) had p<0.05 in the replication (Open Science 

Collaboration 2015). 

Apparently, p-values are hardly replicable. This is most evident if the null hypothesis is true, 

because then p-values are uniformly distributed and thus all values are equally likely to occur 

(Hung et al. 1997; Boos & Stefanski 2011; Colquhoun 2014). However, a null hypothesis of an 

effect of exactly zero is often unlikely to be true (Loftus 1993; Cohen 1994; Stahel 2016). After 

all, in most cases we did our study because we had some a priori reason to believe that the true 

effect is not zero. 

Unfortunately, p-values are highly variable and thus are hardly replicable also if an alternative 

hypothesis is true or is assumed to be true in simulation studies (Goodman 1992; Senn 2002; 

Halsey et al. 2015). Cumming (2008) showed that even for a true population effect size of ·=0.81 

and for a "dreamworld power of 0.9", there is a 25% chance of not obtaining p<0.01 in a single 

study. He then calculated that if a first study returns p=0.05, a replication study will find a p-

value between 0.00008 and 0.44 with 80% probability (given by the 80% 'p interval'), and of 

>0.44 with 10% probability. For p=0.5 in a first study, Lazzeroni, Lu & Belitskaya-Levy (2014) 

estimated a 95% 'prediction interval' from 0.003 to 0.997 for p-values in a replication. 

This enormous variability from sample to sample was called the 'dance of the p-values' 

(Cumming 2011). Because the p-value is based upon analysis of random variables, it is a random 

variable itself, and it behaves as such (Hung et al. 1997; Sackrowitz & Samuel-Cahn 1999; 

Murdoch, Tsai & Adcock 2008). For some reason, however, the stochastic aspect of p-values is 

usually neglected (Sackrowitz & Samuel-Cahn 1999; Cumming 2011; Barber & Ogle 2014), and 

we do not present our p-values with prediction intervals or p intervals (we cannot use standard 

errors or confidence intervals because they would estimate population parameters, and there is no 

population parameter corresponding to p; Cumming 2011, p. 133). 

If we would make uncertainty visible using such intervals, it would become immediately 

apparent that the information content of p=0.04 and of p=0.06 is essentially the same (Dixon 

2003; Halsey et al. 2015; Giner-Sorolla 2016), and that "the difference between 'significant' and 
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'not significant' is not itself statistically significant" (Gelman & Stern 2006). Ignoring variability 

in p-values is as misleading as ignoring the standard error of a mean (Boos & Stefanski 2011). It 

is a good habit to publish exact p-values rather than uninformative statements like 'p>0.05'; but 

additional decimal places and an equal sign should not mislead us to give p-values an aura of 

exactitude (Boos & Stefanski 2011; Cumming 2011; Halsey et al. 2015). 

Thus, p-values are only as reliable as the samples from which they are obtained (Halsey et al. 

2015). They inherit their uncertainty from the uncertainty of point estimates like the sample 

average from which they are calculated. P-values may be taken as describing the amount of doubt 

that our point estimate, or point estimates more extreme, would shed on the null hypothesis. But 

they clearly give less information on reliability of results than is evident from the standard error 

or confidence interval around a sample average (Cumming 2011). A small p-value can arise 

because a point estimate is far off the null value or because the sample size is large; but data may 

still show considerable variation around the point estimate that therefore would not be very 

reliable (compare Fig. 1A and E, page 11). 

Although p-values are much more variable than most people think (Lai, Fidler & Cumming 

2012), this does not necessarily argue against using them for describing the observed evidence 

against a null hypothesis (Lazzeroni, Lu & Belitskaya-Levy 2016). But we must learn to treat p-

values like any other statistic and refrain from taking them at face value when we want to draw 

inference beyond our particular sample data (Miller 2009). Using observed p-values to make a 

binary decision whether or not to reject a hypothesis is as risky as placing our bets on a sample 

average without considering that there might be error attached to it. If p-values are hardly 

replicable, so too are decisions based on them (Kline 2013, p. 13). 

It seems that the only way to know how replicable our results are is to actually replicate our 

results. Science will proceed by combining cumulative knowledge from several studies on a 

particular topic, summarised for example in meta-analyses (Schmidt 1992; Schmidt 1996; 

Goodman, Fanelli & Ioannidis 2016). One reason why replication studies are rarely done (Kelly 

2006) may be that between 37% and 60% of academic professionals seem to think the p-value 

informs on the probability of replication (Gigerenzer, Krauss & Vitouch 2004). After all, why 

actually replicate a study when the p-value gives us virtual replications (Ziliak & McCloskey 

2008, p. 127)? 

If we do a true replication study, however, our observed p-value will be a realisation of a 

random variable again and will be as unreliable as in the first study. A single replication thus can 

neither validate nor invalidate the original study (Maxwell, Lau & Howard 2015; Leek & Jager 

2016). It simply adds a second data point to the larger picture. 

 

Significance is hardly replicable 

 

There is currently no consensus how replicability or results reproducibility should be measured 

(see Box 1; Open Science Collaboration 2015; Baker 2016; Goodman, Fanelli & Ioannidis 2016). 

Whether 'the same results' were obtained may be judged by comparing effect sizes and measures 

of uncertainty or by relying on subjective assessment by the scientists performing the replication 

(Open Science Collaboration 2015). What counts in the end will be the cumulative evidential 

weight from multiple independent studies; and those studies will probably show considerable 

variation in effect sizes (Goodman, Fanelli & Ioannidis 2016; Patil, Peng & Leek 2016). 

Traditionally, the success versus failure of a replication has been defined in terms of whether 

an effect in the same direction as in the original study has reached statistical significance again 

(Miller 2009; Open Science Collaboration 2015; Fabrigar & Wegener 2016). However, if the p-

value itself is hardly replicable, we would be surprised if pf0.05 were replicable. 
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So how likely will two studies both turn out to be significant? It is sometimes suggested that 

replicability of significance is given by the statistical power of the test used in the replication 

study (e.g., Braver, Thoemmes & Rosenthal 2014). Power is defined as the probability that a test 

will be significant given that the alternative hypothesis is true. However, because in real life we 

do not know whether the alternative hypothesis is true, also power does not help in judging 

replicability of empirical results. But if we theoretically assume that the alternative hypothesis is 

true, we can use power to make simple calculations about the probability that p-values cross a 

significance threshold such as p=0.05. 

If two studies on a true alternative hypothesis have a reasonable sample size and thus the 

recommended statistical power of 80%, the probability that both studies are significant is 80% * 

80% = 64%. As exemplified by Greenland et al. (2016), this means that under the luckiest 

circumstances, e.g. when the alternative hypothesis is true, when there are no technical problems 

such as measurement error, when there is no publication bias, and when statistical power is good, 

then two studies will both be significant in only 64% of cases. The probability that one study is 

significant and the other is not is (80% * 20%)+(20% * 80%) = 32% (Greenland et al. 2016; 20% 

is the beta error of accepting the null hypothesis although it is false, which equals 1 - power). In 

one third of fairly ideal replications, results will traditionally be interpreted as conflicting, and 

replication as having failed. 

However, the above replicabilities of significance are probably overestimated for two reasons. 

First, replication studies often find smaller effect sizes than the original studies due to publication 

bias (see below). Second, most studies end up with a power much smaller than 80%. For 

example, average power to detect medium sized effects was about 40-47% in 10 journals on 

animal behaviour (Jennions & Møller 2003), and median power in neuroscience was reported to 

be about 21% (Button et al. 2013b). In the Journal of Abnormal Psychology, in which Jacob 

Cohen (1962) found a median power of 46% for a medium size effect in 1960, power dropped to 

37% in 1984 (Sedlmeier & Gigerenzer 1989). As summarized from 44 reviews on statistical 

power in the social, behavioural and biological sciences, average power to detect small effects 

was 24% (Smaldino & McElreath 2016). 

If we repeat the exercise by Greenland et al. (2016) with a more realistic power of 40%, we 

obtain a probability that both studies are significant of 40% * 40% = 16%, and a probability that 

there are conflicting results of (40% * 60%)+(60% * 40%) = 48%. This means that even if we did 

everything right, except for having only about average power, and if there is a true effect in the 

larger population, about half of our replications will fail by traditional significance standards (i.e., 

one study is significant and the other is not). And only about one in six studies will significantly 

replicate the significant result of another study. 

This is of course not the fault of the p-value. It is the fault of us defining replication success as 

the event of crossing a significance threshold. As Greenland et al. (2016) put it, "one could 

anticipate a 'replication crisis' even if there were no publication or reporting bias, simply because 

current design and testing conventions treat individual study results as dichotomous outputs of 

significant/nonsignificant or reject/accept". Even in ideal replication studies, significance as 

defined by classical thresholds is not to be expected, and nonsignificance cannot be used as a 

criterion to undermine the credibility of a preceding study (Goodman, Fanelli & Ioannidis 2016). 

 

Significance thresholds reduce replicability 

 

In fact, if replication success in terms of statistical significance were larger than just described, 

this would be highly dubious. It would indicate that researchers suppress nonsignificant 

replications and selectively report significant outcomes, leading to publication bias (Francis 
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2013). However, when nonsignificant results on a particular hypothesis remain unpublished, any 

significant support for the same hypothesis is rendered essentially uninterpretable (ASA 

statement; Wasserstein & Lazar 2016). If white swans remain unpublished, reports of black 

swans cannot be used to infer on general swan colour. In the worst case, publication bias means 

according to Rosenthal (1979) that the 95% of studies that correctly yield nonsignificant results 

may be vanishing in file drawers, while journals may be filled with the 5% of studies committing 

the alpha error by claiming to have found a significant effect when in reality the null hypothesis 

is true. 

However, selective reporting was encouraged since the early days of significance testing. As 

Ronald Fisher (1937, p. 15) wrote, "it is usual and convenient for experimenters to take 5 per cent 

as a standard level of significance, in the sense that they are prepared to ignore all results which 

fail to reach this standard", an advice he gave at least since 1926 (Fisher 1926). As can be read in 

guidelines on writing papers and theses, students should "expect that you will produce many 

more figures and perform many more statistical tests than will be included in the final written 

product" (Lertzman 1995). Based on a survey of over 2000 psychologists, John, Loewenstein & 

Prelec (2012) estimated that among researchers, the prevalence of having engaged in selective 

reporting of studies that 'worked' or of only a subset of measured variables is 100%. 

No wonder that a bias towards publishing significant results was observed for a long time and 

in many research areas (Sterling 1959; Csada, James & Espie 1996; Gerber & Malhotra 2008; 

Song et al. 2010; Dwan et al. 2013). Today, so-called negative results may disappear from many 

disciplines and countries (Fanelli 2012; but see de Winter & Dodou 2015), threatening the 

reliability of our scientific conclusions and contributing to the crisis of unreplicable research 

(Gelman 2015). No outright fraud, no technical fault or bad experimental design are necessary to 

render a study irreproducible; it is sufficient that we report results preferentially if they cross a 

threshold of significance. 

The problem with selective reporting becomes even worse because significant results are not a 

random sample from all possible results – significant results are biased results. If a number of 

studies is done on a population with a fixed effect size, studies that due to sampling variation find 

a larger effect are more likely to be significant than those that happen to find smaller effects 

(Schmidt 1992). Using statistical significance as a guideline thus typically selects for large effects 

that are "too good to be true" (Gelman 2015). The consequence is that "most discovered true 

associations are inflated" (Ioannidis 2008). This effect was called 'truth inflation' (Reinhart 2015), 

or 'winner's curse' (Zöllner & Pritchard 2007; Young, Ioannidis & Al-Ubaydi 2008; Button et al. 

2013b) after how the term is used in economics: in high-risk situations with competitive bidding, 

the winner tends to be the bidder who most strongly overestimates the value of an object being 

auctioned (Capen, Clapp & Campbell 1971; Foreman & Murnighan 1996). 

The inflation of effect sizes in significant results declines as statistical power increases (for 

example because sample sizes are large), and inflation becomes negligible as power approaches 

100% (Colquhoun 2014; Gelman & Carlin 2014; Lemoine et al. 2016). One way to see how this 

works is to imagine that with a power of 100%, every test becomes significant given that the 

alternative hypothesis is true; thus, decisions for reporting based on significance would no longer 

select for large effects, because every effect size from every random sample would be significant. 

However, with a more realistic power of, e.g., 40%, only inflated effects that on average are 

about 1.5 times larger than the true effect size may cross the significance threshold (Colquhoun 

2014, Fig. 7). 

In the ecological and neurological studies summarized in Lemoine et al. (2016) and Button et 

al. (2013b), sample sizes required to minimize inflation of effect sizes were around n=100. 
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However, as Lemoine et al. (2016) note, increased sample sizes can only partially offset the 

problem of inflated effect sizes, because a power near 100% can usually not be obtained. 

In most studies, reported effects will thus be biased upwards if selection for reporting is based 

on significant results rather than on all results. Selective reporting of such inflated effects while 

ignoring smaller and nonsignificant effects will lead to wrong conclusions in meta-analyses 

averaging effect sizes from a larger number of studies (Ferguson & Heene 2012; van Assen et al. 

2014). This is one of the reasons why reliance on significance testing has been accused of 

systematically retarding the development of cumulative knowledge (Schmidt 1996; Branch 

2014). 

Of course, selective reporting leads to inflated effects not only in meta-analyses but in every 

single study. Even in ideal cases in which authors report every conducted test regardless of p-

values, but then select what to interpret and to discuss based on significant results, the effects 

from which the authors draw their conclusions will be biased upwards. 

The problem arises not only by consciously discarding nonsignificant findings. Also largely 

automated selection procedures will produce inflated effects, for example if genome-wide 

association studies select findings based on significance thresholds (Göring, Terwilliger & 

Blangero 2001; Garner 2007). In statistical model simplification, significant predictors will have 

inflated point estimates (Whittingham et al. 2006; Ioannidis 2008; Forstmeier & Schielzeth 

2011), and defining the importance of a predictor variable based on statistical significance will 

thus lead to distorted results. 

 

Truth inflation 

 

P-values can be seen as a measure of surprise (Greenwald et al. 1996): the smaller the p-value, 

the more surprising the results are if the null hypothesis is true (Reinhart 2015, p. 9). If one wants 

to determine which patterns are unusual enough to warrant further investigation, p-values are thus 

perfectly suitable as an explorative tool for selecting the largest effects. Whoever is interested in 

describing the average state of a system, however, should not "choose what to present based on 

statistical results", because "valid interpretation of those results is severely compromised" unless 

all tests that were done are disclosed (ASA statement, Wasserstein & Lazar 2016). And, we 

might add, unless all results are used for interpretation and for drawing conclusions, 

irrespectively of their p-values. 

Of course, current incentives lead to 'significance chasing' (Ioannidis 2010) rather than to 

publishing nonsignificant results. To put it more bluntly, "research is perverted to a hunt for 

statistically significant results" (Stahel 2016). The road to success is nicely summarized in the 

online author guidelines of the journal 'Nature' (accessed 2017): "The criteria for a paper to be 

sent for peer-review are that the results seem novel, arresting (illuminating, unexpected or 

surprising)." And p-values, as a measure of surprise, seem to be a great selection tool for that 

purpose. However, the urge for large effect sizes in novel fields with little prior research is a 

"perfect combination for chronic truth inflation" (Reinhart 2015, p. 25). As wrote Ioannidis 

(2008), "at the time of first postulated discovery, we usually cannot tell whether an association 

exists at all, let alone judge its effect size." 

Indeed, the strength of evidence for a particular hypothesis usually declines over time, with 

replication studies presenting smaller effects than original studies (Jennions & Møller 2002; 

Brembs, Button & Munafo 2013; Open Science Collaboration 2015). The reproducibility project 

on 100 psychological studies showed that larger original effect sizes were associated with greater 

effect size difference between original and replication, and that "surprising effects were less 

reproducible" (Open Science Collaboration 2015). 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2921v1 | CC BY 4.0 Open Access | rec: 12 Apr 2017, publ: 12 Apr 2017



	 9	

Pioneer studies presenting inflated effects with relatively small sample sizes often appear in 

higher-impact journals, while studies in lower-impact journals apparently tend to report more 

accurate estimates of effect sizes (Ioannidis 2005; Munafo, Stothart & Flint 2009; Munafo & 

Flint 2010; Siontis, Evangelou & Ioannidis 2011; Brembs, Button & Munafo 2013). The problem 

is likely publication bias towards significant and inflated effects particularly in the early stages of 

a potential discovery. At a later time, authors of replication studies might then want to report 

results also if they found only negligible or contradictory effects, because such results find a 

receptive audience in a critical scientific discussion (Jennions & Møller 2002). Replications 

therefore tend to suffer less from publication bias than original studies (Open Science 

Collaboration 2015). 

So far, academic reward mechanisms often focus on statistical significance and 

newsworthiness of results rather than on reproducibility (Ioannidis et al. 2014). Also journalists 

and media consumers and, therefore, all of us ask for the novel, unexpected and surprising. Thus 

the average truth often does not make it to the paper and the public, and much of our attention is 

attracted by exaggerated results. 

 

The earth is flat (p>0.05) 

 

The average truth might be nonsignificant and non-surprising. But this does not mean the truth 

equals zero. In the last decades, many authors have compiled lists with misinterpretations 

regarding the meaning of the p-value (e.g., Greenland et al. 2016), and surveys showed that such 

false beliefs are widely shared among researchers (Oakes 1986; Lecoutre, Poitevineau & 

Lecoutre 2003; Gigerenzer, Krauss & Vitouch 2004; Badenes-Ribera et al. 2016). The "most 

devastating" of all false beliefs is probably that "if a difference or relation is not statistically 

significant, then it is zero, or at least so small that it can safely be considered to be zero" 

(Schmidt 1996). 

Jacob Cohen (1994) published his classic critique of the use of significance tests under the title 

"The earth is round (p < .05)". What if this test happens to be nonsignificant? In 38% to 63% of 

articles sampled from five journals of psychology, neuropsychology and conservation biology, 

nonsignificant results were interpreted as 'there is no effect', which means that the null hypothesis 

was accepted or 'proven' (Finch, Cumming & Thomason 2001; Schatz et al. 2005; Fidler et al. 

2006; Hoekstra et al. 2006). In Cohen's example, 'no effect' would probably mean 'the earth is flat 

(p>0.05).' And this is not far from reality. Similar cases abound in the published literature, such 

as "lamb kill was not correlated to trapper hours (r12 = 0.50, P = 0.095)" (cited in Johnson 1999). 

It may be completely obvious that the null hypothesis of 'no effect' cannot be true, as judging 

from a large but nonsignificant correlation coefficient, from clear but nonsignificant differences 

between averages in a figure, or from common sense; but still we do not hesitate to apply our 

"binary thinking, in which effects and comparisons are either treated as zero or are treated as 

real" (Gelman 2013b). How is this possible, since "of course, everyone knows that one can't 

actually prove null hypotheses" (Cohen 1990)? 

We probably tend to misinterpret p-values because significance testing "does not tell us what 

we want to know, and we so much want to know what we want to know that, out of desperation, 

we nevertheless believe that it does" (Cohen 1994). Null hypothesis significance testing is not 

about estimating the probability that the null hypothesis or the alternative hypothesis is true –

 such a claim would be reserved to Bayesian testers, and even they would not be able to 'prove' 

any hypothesis. Null hypothesis testing is about the probability of our data given that the null 

hypothesis is true. 
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The problem is "the researcher's 'Bayesian' desire for probabilities of hypotheses" (Gigerenzer 

1993). It may be hopeless to temper this desire, since also Fisher himself held a "quasi-Bayesian 

view that the exact level of significance somehow measures the confidence we should have that 

the null hypothesis is false" (Gigerenzer 1993). Yet, Fisher seemed to be clear about proving the 

null: a hypothesis cannot be "proved to be true, merely because it is not contradicted by the 

available facts" (Fisher 1935). And, therefore, "it is a fallacy, so well known as to be a standard 

example, to conclude from a test of significance that the null hypothesis is thereby established; at 

most it may be said to be confirmed or strengthened" (Fisher 1955). 

The last sentence, however, shows that also Fisher vacillated (Gigerenzer et al. 1989, p. 97). In 

fact, the null hypothesis cannot be confirmed nor strengthened, because very likely there are 

many better hypotheses: "Any p-value less than 1 implies that the test [null] hypothesis is not the 

hypothesis most compatible with the data, because any other hypothesis with a larger p-value 

would be even more compatible with the data" (Greenland et al. 2016). This can be seen when 

looking at a 'nonsignificant' 95% confidence interval that encompasses not only zero but also any 

other null hypothesis that would be compatible with the data, or, in other words, that would not 

be rejected using a 5% threshold (Fig. 1C; Tryon 2001; Hoekstra, Johnson & Kiers 2012). Within 

the confidence interval, zero is usually not the value that is closest to the observed point estimate. 

And even if the point estimate is exactly zero and thus "p=1, there will be many other hypotheses 

that are highly consistent with the data, so that a definitive conclusion of 'no association' cannot 

be deduced from a p-value, no matter how large" (Greenland et al. 2016). 
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Figure 1. Averages and 95% confidence intervals from five studies, each with n=30 (adapted 

from Korner-Nievergelt & Hüppop 2016). P-values are from one sample t-tests. Results A and E 

are relatively incompatible with the null hypothesis that the true effect size is zero. Note that the 

p-value in A is smaller than in E although variation is larger, because the point estimate in A is 

farther off the null value. If we define effect sizes between 1 and 2 as scientifically or practically 

important, result A is strong evidence that the effect is important, and result E is clear evidence 

that the effect is not important, because the small effect size was estimated with high precision. 

Result B is relatively clear evidence that the effect is not strongly negative and could be 

important. Result C is only very weak evidence against the null hypothesis and shows why a 

large p-value cannot be used to support the null hypothesis: first, the point estimate is larger than 

zero, thus the null hypothesis of a zero effect is not the hypothesis most compatible with the data. 

Second, the confidence interval visualizes hypothesized parameter values that would be 

compatible with the data and that could be strongly negative and unimportant or positive and 

practically important. Because of this large uncertainty, result C does not allow inference on 

whether the effect size is practically important. Result D is only weak evidence against the null 

hypothesis, but precision is sufficient to infer that possible parameter values are not far off the 

null and that the effect is practically not important. In conclusion, result C is a case in which the 

large p-value and the wide confidence interval roughly say the same, which is that inference is 

difficult. Results B and D can be meaningfully interpreted even though the p-value is relatively 

large. 
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"Limbo of suspended disbelief" 

 

It is easy to imagine research in which falsely claiming a true null effect causes great harm. To 

give a drastic example, Ziliak & McCloskey (2008, p. 28) cite a clinical trial on the painkiller 

Vioxx, reporting data on heart attacks and other adverse events (Lisse et al. 2003). Lisse and 

colleagues found several 'p>0.2', among them that "the rofecoxib ['Vioxx'] and naproxen [generic 

drug] groups did not differ significantly in the number of thrombotic cardiovascular events (...) 

(10 vs. 7; P>0.2)". The conclusion was that "the results demonstrated no difference between 

rofecoxib and naproxen." Later, the unjustified proof of the null caused more suffering, and the 

manufacturer Merck took Vioxx off the market and faced more than 4200 lawsuits by August 20, 

2005 (Ziliak & McCloskey 2008). 

Unfortunately, if we finally accept that we cannot accept a null hypothesis, obtaining a 

nonsignificant result becomes downright annoying. If the null hypothesis cannot be rejected 

because p>0.05, it is often recommended to 'suspend judgment' (Tryon 2001; Hurlbert & 

Lombardi 2009), which leaves the null hypothesis "in a kind of limbo of suspended disbelief" 

(Edwards, Lindman & Savage 1963). As Cohen (1990) put it, "all you could conclude is that you 

couldn't conclude that the null was false. In other words, you could hardly conclude anything." 

This unfortunate state becomes even worse because usually the researchers are blamed for not 

having collected more data. Indeed, in correlational research, most null hypotheses of an effect of 

exactly zero are likely wrong to a small degree (Edwards, Lindman & Savage 1963; Meehl 1967; 

Delong & Lang 1992; Lecoutre & Poitevineau 2014; but see Hagen 1997; Hagen 1998; 

Thompson 1998; Krueger 2001 for a critical discussion). Therefore, most tests would probably 

produce significant results if only one had large enough sample sizes (Oakes 1986; Cohen 1990; 

Cohen 1994; Gill 1999; Stahel 2016). In other words, a significance test often does not make a 

clear statement about an effect, but instead it "examines if the sample size is large enough to 

detect the effect" (Stahel 2016). And because "you can pretty much always get statistical 

significance if you look hard enough" (Gelman 2015), you were probably "not trying hard 

enough to find significant results" (Ferguson & Heene 2012). Nonsignificance therefore seems to 

be regarded as "the sign of a badly conducted experiment" (Gigerenzer et al. 1989, p. 107). 

As an outgoing editor of a major psychological journal wrote, "the [false] decision not to 

reject the null hypothesis can be a function of lack of power, lack of validity for the measures, 

unreliable measurement, lack of experiment control, and so on" (Campbell 1982). Surely all of 

those influences could also lead to falsely claiming a significant outcome, but the editor 

concludes: "it is true that there is an evaluation asymmetry between significant and nonsignificant 

results." 

Naturally, we develop an aversion to 'null results' and fail to publish them (Ferguson & Heene 

2012). Instead, we engage in significance chasing that may promote harmful practices like 

excluding variables or data with unwanted effects on p-values, stopping to collect data after 

looking at preliminary tests, rounding down p-values that are slightly larger than 0.05, or even 

falsifying data (non-exhaustive list after the survey by John, Loewenstein & Prelec 2012). 

Although it is now widely discussed that significant results may be much less reliable than we 

used to believe, mistrust in nonsignificant results still seems larger than mistrust in significant 

results, leading to publication bias, which in turn causes significant results to be less reliable. 

What could be done? 
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Accepting history 

 

First, we should briefly review the rise of modern statistics that started in the 1920s and 1930s. 

We think that problems like the unclear status of nonsignificant p-values have their roots in 

history, and that understanding those roots will help finding a future role for p-values (for more 

details, see Gigerenzer et al. 1989; Gill 1999; Lenhard 2006; Hurlbert & Lombardi 2009; 

Lehmann 2011). 

The three most influential founding fathers, Ronald A. Fisher, Jerzy Neyman and Egon S. 

Pearson, disagreed on many things, but they agreed that scientific inference should not be made 

mechanically (Gigerenzer & Marewski 2015). In their 'hypothesis tests', Neyman and Pearson 

confronted a point null hypothesis with a point alternative hypothesis. Based on this scenario they 

discovered alpha and beta errors as well as statistical power. Neyman and Pearson did not request 

to report p-values but to make decisions based on predefined alpha and beta errors. They never 

recommended a fixed significance threshold (Lehmann 2011, p. 55), but rather held that defining 

error rates "must be left to the investigator" (Neyman & Pearson 1933a, p. 296). 

Some years earlier, Fisher had introduced 'significance tests' using p-values on single null 

hypotheses, and he generally opposed the consideration of alternative hypotheses and of power 

(Lehmann 2011, p. 51). Fisher did not invent the p-value, which he called 'level of significance', 

but he was the first to outline formally the logic of its use (Goodman 1993). In 1925, he defined a 

threshold of p=0.05, based on a rounded value of the proportion of the area under a normal 

distribution that falls outside of two standard deviations from the mean (about 0.0456): "The 

value for which P =·.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit 

in judging whether a deviation is to be considered significant or not. Deviations exceeding twice 

the standard deviation are thus formally regarded as significant" (Fisher 1925). The choice of 

0.05 was also influenced by earlier definitions of significance by William Gosset, Karl Pearson 

(the father of Egon) and others (discussed in Cowles & Davis 1982b; Sauley & Bedeian 1989; 

Hurlbert & Lombardi 2009). A main reason why 0.05 was selected and still persists today may be 

that it fits our subjective feeling that events that happen at least as rarely as 10% or 1% of the 

time are suspiciously unlikely (Cowles & Davis 1982a; Weiss 2011). 

Throughout his life, Fisher used the p-value mainly to determine whether a result was 

statistically significant (Lehmann 2011, p. 53). In his last new book, however, Fisher famously 

wrote that "no scientific worker has a fixed level of significance at which from year to year, and 

in all circumstances, he rejects hypotheses; he rather gives his mind to each particular case in the 

light of his evidence and his ideas" (Fisher 1956, p. 42). In the thirteenth edition of "Statistical 

methods for research workers" (Fisher 1958), he then stated that "the actual value of P (...) 

indicates the strength of the evidence against the hypothesis" (p. 80) and that "tests of 

significance are used as an aid to judgment, and should not be confused with automatic 

acceptance tests, or 'decision functions' " (p. 128). 

A main point of controversy was 'inductive inference' that was central to Fisher's thinking 

(Lehmann 2011, p. 90). Fisher believed that significance tests allow drawing inference from 

observations to hypotheses, or from the sample to the population (although deducing the 

probability of data given that a null hypothesis is true may actually look more like deductive 

inference, from the population to the sample; Thompson 1999). 

In contrast, Neyman and Pearson thought that inductive inference is not possible in statistical 

analyses on single studies: "As far as a particular hypothesis is concerned, no test based upon a 

theory of probability can by itself provide any valuable evidence of the truth or falsehood of that 

hypothesis" (Neyman & Pearson 1933a, p. 291). Their hypothesis test was therefore not meant to 

give a measure of evidence (Goodman 1993), but to provide "rules to govern our behavior" with 
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regard to our hypotheses, to insure that "in the long run of experience, we shall not be too often 

wrong" (Neyman & Pearson 1933a, p. 291). The Neyman-Pearson decision procedure was 

particularly suitable for industrial quality control or "sampling tests laid down in commercial 

specifications" (Neyman & Pearson 1933b). Here, the quality of production may be tested very 

often over long periods of time, so that a frequentist 'long run of experience' is indeed possible, 

and manufacturers may indeed require thresholds to decide when to stop the production and to 

look for the cause of a quality problem (Gigerenzer et al. 1989, p. 100). 

Applying Neyman-Pearson decision rules means accepting the null hypothesis while rejecting 

the alternative hypothesis, or vice versa. And Neyman and Pearson did indeed use the word 

'accept' (e.g., Neyman & Pearson 1933b). Today, we may still speak about accepting a null 

hypothesis when it is false as committing a beta error, or error of the second kind. But was it not 

said that null hypotheses cannot be accepted? Fisher wanted 'inductive inference', and for 

drawing scientific conclusions, a nonsignificant result can never mean to accept a null 

hypothesis: "errors of the second kind are committed only by those who misunderstand the nature 

and application of tests of significance" (Fisher 1935). But Neyman and Pearson invented 

'inductive behaviour' explicitly for avoiding inductive inference. And for a behavioural decision, 

it is of course possible to accept any kind of premises: "As Nyman emphasized, to accept a 

hypothesis is not to regard it as true, or to believe it. At most it means to act as if it were true" 

(Gigerenzer et al. 1989, p. 101). 

Thus accepting null hypotheses was encouraged by half of the founding schools of modern 

statistics. No wonder that "in approximately half of all cases, authors interpret their 

nonsignificant results as evidence that the null hypothesis is true" (McCarthy 2007, p. 43). 

Our current null hypothesis significance tests are anonymous hybrids mixing elements both 

from the Fisherian and the Neyman-Pearson concepts. But mixing two essentially incompatible 

approaches, one for measuring inference and the other for making behavioural decisions, of 

course creates all sorts of problems (Gigerenzer 1993; Goodman 1993; Gill 1999; Hubbard & 

Bayarri 2003; Schneider 2015). We often use Neyman-Pearson to refer to statistical power and to 

the two kinds of error. But then in practice we follow Fisher by refusing to specify a concrete 

point alternative hypothesis, and by interpreting exact p-values as graded measures of the 

strength of evidence against the null hypothesis (Cumming 2011, p. 25; Mundry 2011). However, 

we only consistently interpret p-values as strength of evidence as long as they are smaller than 

0.05. For p-values between 0.05 and 0.1, some authors are willing to acknowledge a statistical 

'trend', while others are not. For even larger p-values, we often switch back to a kind of Neyman-

Pearson decision making, which offers no positive inference but seems to allow at least accepting 

the null hypothesis. 

It looks like our mistrust in nonsignificant results that leads to publication bias is caused by 

confusion about interpretation of larger p-values that goes back to historical disputes among the 

founders of modern statistics. 

 

Removing significance thresholds 

 

What could be done? We could again define what a p-value means: the probability of the 

observed data, or data more extreme, given that the null hypothesis is true. According to the 

interpretation by the ASA (Wasserstein & Lazar 2016), smaller p-values cast more, and larger p-

values cast less doubt on the null hypothesis. If we apply those definitions, it falls naturally to 

take p-values as graded evidence. We should try to forget our black-and-white thresholds and 

instead consider the p-value as a continuous measure of the compatibility between the data and 
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the null hypothesis, "ranging from 0 for complete incompatibility to 1 for perfect compatibility" 

(Greenland et al. 2016). 

We need to move away from Fisher's early recommendation to ignore nonsignificant results 

because following this rule leads to publication bias and to inflated effect sizes. We need to move 

away from the Neyman-Pearson decision procedure because it leads to proofs of the null like 'not 

correlated (p=0.095)'. Instead, we should listen to the ASA-statisticians who say that if the "p-

value is less than 1, some association must be present in the data, and one must look at the point 

estimate to determine the effect size most compatible with the data under the assumed model" 

(Greenland et al. 2016). 

We are thus encouraged to report our point estimate, together with a measure of uncertainty, 

as the best guess we can make. If necessary, we should then focus on p-values as continuous 

measures of compatibility (Greenland et al. 2016) and interpret larger p-values as perhaps less 

convincing but generally 'positive' evidence against the null hypothesis, instead of evidence that 

is either 'negative' or uninterpretable or that only shows we did not collect enough data. In short, 

we should develop a critical but positive attitude towards larger p-values. This alone could lead to 

less significance chasing, less data dredging, less p-hacking, and ultimately to less publication 

bias, less inflated effect sizes and more reliable research. 

And removing significance thresholds is one of the smallest steps that we could imagine to 

address issues of replicability. Using p-values as graded evidence would not require a change in 

statistical methods. It would require a slight change in interpretation of results. Most importantly, 

we would no longer switch to accepting the null hypothesis as soon as the p-value is larger than 

0.05 or 0.1. Instead, depending on the size of the p-value, we would interpret our results as more 

or less convincing evidence against the null hypothesis. This procedure is consistent with the 

recommendations by the late Ronald Fisher and thus with a neoFisherian paradigm described by 

Hurlbert & Lombardi (2009). A difference to Hurlbert & Lombardi (2009) is that for larger p-

values we do not propose 'suspending judgement', which we believe contributes to publication 

bias because we usually do not want to publically justify why we ran an incomplete or 

underpowered experiment in the first place (Krueger 2001). Instead, we recommend "suspending 

firm decisions (i.e., interpreting results with extra caution)" (Greenland & Poole 2013). 

 

For our next scientific enterprise using frequentist statistics, we suggest that we 

a) do our study and our analysis as planned 

b) report our point estimate, describe our effect size 

c) report uncertainty, e.g. by using a confidence interval 

d) report the exact p-value 

e) do not use the word 'significant' and do not deny our observed effect if the p-value is relatively 

large 

f) discuss how strong we judge the evidence, and how practically important the effect is. 
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Figure 2. In communicating the results of a single study, p-values in the grey area may be 

reported as providing evidence against the null hypothesis (adapted from Sterne & Smith 2001). 

Note that there is no threshold at which black switches to grey, and the grey colour extends until 

about p=0.99. Note also that there is no pure black colour, because "no isolated experiment, 

however significant in itself, can suffice for the experimental demonstration of any natural 

phenomenon" (Fisher 1937). 

 

 

Do we need a scale for interpreting the strength of evidence against the null hypothesis? 

Graded evidence means there are no thresholds to switch from 'strong' to 'moderate' to 'weak' 

(Fig. 2). It means that "similar data should provide similar evidence" (Dixon 2003), because 

"surely, God loves the .06 nearly as much as the .05" (Rosnow & Rosenthal 1989). So far, as 

significance testing is traditionally practiced, "p-values of 0.08 and 0.80 are treated as if they are 

in greater agreement (both 'nonsignificant') than p-values of 0.08 and 0.05" (Stoehr 1999). 

There are no 'few-sizes-fit-all' grades of evidence. Instead of following the same decision 

rules, no matter how large the sample size or how serious we judge measurement error, we 

should "move toward a greater acceptance of uncertainty and embracing of variation" (Gelman 

2016). If we have obtained a small p-value, we must be aware of the large uncertainty attached to 

it and keep in mind that our evidence against the null hypothesis might not be as strong as it 

seems. If we have obtained a large p-value, we must be even more aware that many other 

hypotheses are compatible with our data, including the null hypothesis. Looking at the 

confidence interval will help identifying those competing hypotheses. Very likely there are 

hypotheses compatible with the data that would cause even greater concern than a zero effect, 

e.g. if the effect would be in the opposite direction (Fig. 1C) or be much smaller or larger than 

what we observed in our point estimate. Note that the true effect can also be much smaller or 

larger than our point estimate if the p-value is small. 

When discussing our results, we should "bring many contextual factors into play to derive 

scientific inferences, including the design of a study, the quality of the measurements, the 

external evidence for the phenomenon under study, and the validity of assumptions that underlie 

the data analysis" (ASA statement; Wasserstein & Lazar 2016). Those factors should probably 

influence our judgement at least as strongly as the evidence we deduce from the size of the p-

value. For example, results from exploratory studies are usually less reliable than from 
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confirmatory (replication) studies also if their p-values were the same, because exploratory 

research offers more degrees of freedom in data collection and analysis (Gelman & Loken 2014; 

Higginson & Munafo 2016; Lew 2016). Already half a century ago, Labovitz (1968) compiled a 

list of criteria for evaluating evidence from p-values that includes the practical consequences 

(costs) of a conclusion, the plausibility of alternative hypotheses, or the robustness of the test. 

And we must keep in mind that support for our hypothesis will require not just one, but many 

more independent replications. If those replications do not find the same results, this is not 

necessarily a crisis but a natural process by which science proceeds. As Goodman, Fanelli & 

Ioannidis (2016) put it, the logic of results reproducibility was derived from systems that are 

deterministic. In most research disciplines in which results are subject to a substantial random 

error, "the paradigm of accumulating evidence might be more appropriate than any binary criteria 

for successful or unsuccessful replication" (Goodman, Fanelli & Ioannidis 2016). Thus "the 

replication crisis perhaps exists only for those who do not view research through the lens of meta-

analysis" (Stanley & Spence 2014). 

We therefore need to publish as many of our results as possible, as long as we judge them 

sufficiently reliable to be reported to the scientific community. And we should publish our results 

also if we find them neither novel nor arresting, illuminating, unexpected or surprising. Those 

results that we find trustworthy are the best approximates of reality, especially if they look 

familiar and expected and replicate what we already think we know. 

 

Increasing inferential reproducibility 

 

Of course, people and journals who want to publish only small p-values will probably continue 

publishing only small p-values. Perhaps, "forced to focus their conclusions on continuous 

measures of evidence, scientists would selectively report continuous measures of evidence" 

(Simonsohn 2014). We hope, however, that bidding farewell to significance thresholds will free 

at least some of our negative results by allowing them to be positive. And we think the chances 

this will happen are good: because it is already happening. 

People are prepared to interpret p-values as graded evidence. When asked about the degree of 

confidence that an experimental treatment really has an effect, the average researcher's 

confidence was found to drop quite sharply as p-values rose to about 0.1, but then confidence 

levelled off until 0.9, essentially showing a graded response (Poitevineau & Lecoutre 2001). 

Nuzzo (2015) cites Matthew Hankins, who has collected "more than 500 creative phrases that 

researchers use to convince readers that their nonsignificant results are worthy of attention (see 

go.nature.com/pwctoq). These include 'flirting with conventional levels of significance (p>0.1)', 

'on the very fringes of significance (p=0.099)' and 'not absolutely significant but very probably so 

(p>0.05)'." 

As Hurlbert & Lombardi (2009) note, even Jerzy Neyman (1977, p. 112) labelled p-values of 

0.09, 0.03, and <0.01 reported in an earlier paper (Lovasich et al. 1971, table 1, right column) as 

'approximately significant', 'significant', and 'highly significant', respectively. And creativity is 

increasing. Pritschet, Powell & Horne (2016) searched over 1500 papers in three top-tier journals 

of psychology for terms like 'marginally significant' or 'approaching significance' that were used 

for p-values between 0.05 to 0.1 and up to 0.18. They found that "the odds of an article 

describing a p-value as marginally significant in 2010 were 3.6 times those of an article published 

in 1970." In 2000 and 2010, the proportion of articles describing at least one p-value as 

marginally significant were 59% and 54%. 

The rules how to label results if p>0.05 are usually unwritten (Pritschet, Powell & Horne 

2016), so it is current practice to interpret p-values between 0.05 and 0.1, or even larger p-values, 
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as evidence either against the null hypothesis, or (falsely) in favour of a null effect, or as no 

evidence at all. This anarchical state of affairs undermines 'inferential reproducibility', which 

might be the most important dimension of reproducibility and "refers to the drawing of 

qualitatively similar conclusions from either an independent replication of a study or a reanalysis 

of the original study" (Goodman, Fanelli & Ioannidis 2016; italics supplied). Interpreting larger 

p-values as graded evidence, but as evidence that generally speaks against the null hypothesis 

(perhaps unless p=1), would clearly help increasing inferential reproducibility by reducing the 

choices for qualitative interpretation. For example, a large p-value would not be taken to support 

the null hypothesis, and only rarely a result would be interpreted as providing no evidence at all. 

As listed in the beginning of this paper, many authors have argued for removing fixed 

thresholds. In 2016, Lemoine et al. (2016) wrote: "we join others in calling for a shift in the 

statistical paradigm away from thresholds for statistical significance", and similar words were 

used in the closing remarks of Greenland et al. (2016). So far, however, we see few researchers 

performing this shift. Perhaps this is because of serious issues with interpreting p-values as 

graded evidence? In the following, we discuss potential problems. 

 

Arguments against removing thresholds 

  

'We need more stringent decision rules' 

 

Evidently, removing significance thresholds "may lead to an increased prevalence of findings that 

provide weak evidence, at best, against the null hypothesis" (Pritschet, Powell & Horne 2016). 

This will not cause any problem as long as the authors of a study acknowledge they found only 

weak evidence. Quite the contrary, publishing weak evidence is necessary to reduce publication 

bias and truth inflation. However, p-values just below 0.05 are currently interpreted as generally 

allowing a clear decision to reject the null hypothesis, which is one of the reasons why false 

discovery rates are surprisingly high (Oakes 1986; Sterne & Smith 2001; Johnson 2013; 

Colquhoun 2014). One alternative proposition to enhance reliability and replicability of research 

was therefore not to remove thresholds, but rather to apply more stringent thresholds (Johnson 

2013; Bishop et al. 2015). For example, it may be said that you should "not regard anything 

greater than p<0.001 as a demonstration that you have discovered something" (Colquhoun 2014). 

We agree that interpreting p-values as graded evidence should mean to mistrust p-values 

around 0.05, or smaller, depending on the circumstances and the scientific discipline. To 

announce a discovery in particle physics, a p-value as small as 0.0000003 may be needed 

(Johnson 2014). Also in other disciplines, we should often judge our evidence as strong only if 

the p-value is much smaller then 0.05: if we want to demonstrate a surprising, counterintuitive 

effect, if we know that our null hypothesis has a high prior probability (Bayarri et al. 2016), if our 

sample size is large (Anderson, Burnham & Thompson 2000; Pericchi, Pereira & Perez 2014), or 

if postulating an effect that in reality is negligible would have serious practical consequences. 

However, even a p-value of 0.1 or larger may be interpreted as sufficiently strong evidence: if 

we collected our data truly randomized and by minimizing bias and measurement error, if we 

stuck to our pre-planned protocol for data analysis without trying multiple alternative analyses, if 

our effect size or our sample size is small, or if claiming only weak evidence for an effect that in 

reality is practically important would have serious consequences (Gaudart et al. 2014). 

A large effect with a large p-value could potentially have much more impact in the real world 

than a small effect with a small p-value (Lemoine et al. 2016), although in the first case, the 

evidence against the null hypothesis is weaker (Fig. 1B, E). And in exploratory studies screening 

data for possible effects, results may be considered interesting even if their p-values are large 
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(Madden, Shah & Esker 2015). Since p-values from exploratory research should be taken as 

descriptive with little inferential content (Berry 2016), such studies are perhaps the clearest cases 

in which there is no need for significance thresholds (Lew 2016). When exploring "what the data 

say" (Lew 2016), it simply makes no sense to listen to them only if p<0.05. We should, however, 

clearly state that the research was exploratory (Simmons, Nelson & Simonsohn 2011; Berry 

2016). And we should keep in mind that if we recommend effects for further investigation 

because their p-values were small, our effect sizes were likely inflated and will probably be 

smaller in a follow-up study. 

Another argument against stringent thresholds like p=0.001 is that sample sizes in fields like 

biomedicine or animal behaviour are often bound to be small for practical and ethical reasons 

(Nakagawa 2004; Gaudart et al. 2014; Bishop et al. 2015). With small or moderate sample sizes, 

the chances that small but important effects will not become significant is very high, and this 

applies both to more stringent thresholds and to a possible scenario in which the conventional 

threshold of 0.05 were reinforced. 

Because smaller p-values usually come with larger sample sizes, the question whether we 

should aim for smaller p-values boils down to whether we should conduct fewer but larger or 

more but smaller studies. Confidence and precision clearly increase with sample size (Button et 

al. 2013a). Based on simulations, however, IntHout, Ioannidis & Borm (2016) recommend doing 

rather several studies with a moderate power of 30% to 50% than one larger study that would 

need a sample size four times to twice as large to obtain 80% power. The reason is that every 

study will suffer from some sort of bias in the way it is conducted or reported, and that "in a 

series of studies, it is less likely that all studies will suffer from the same type of bias; 

consequently, their composite picture may be more informative than the result of a single large 

trial" (IntHout, Ioannidis & Borm 2016). 

And of course, to be of any use, all of those studies should be published. Very possibly, more 

stringent thresholds would lead to even more results being left unpublished, enhancing 

publication bias (Gaudart et al. 2014; Gelman & Robert 2014). What we call winner's curse, truth 

inflation or inflated effect sizes will become even more severe with more stringent thresholds 

(Button et al. 2013b). And one reason why 'false-positives' are vastly more likely than we think, 

or as we might prefer to say by avoiding words like 'positive' or 'negative', why the evidence is 

often vastly overestimated, is that we often flexibly try different approaches to analysis 

(Simmons, Nelson & Simonsohn 2011; Gelman & Loken 2014). Exploiting those 'researcher 

degrees of freedom', and related phenomena termed 'multiplicity', 'data dredging' or 'p-hacking', 

would probably become more severe if obtaining significant results were harder due to more 

stringent thresholds. 

We think that while aiming at making our published claims more reliable, requesting more 

stringent fixed thresholds would achieve quite the opposite. 

 

'Sample sizes will decrease' 

 

Ideally, significance thresholds should force researchers to think about the sizes of their samples 

– this is perhaps the only advantage thresholds could potentially offer. If significance is no longer 

required, it could happen that researchers more often content themselves with smaller sample 

sizes. 

However, the argument could as well be reversed: fixed significance thresholds may lead to 

unreasonably small sample sizes. We have had significance thresholds for decades, and average 

power of studies was constantly low (Sedlmeier & Gigerenzer 1989; Button et al. 2013b). 

Researchers seem often to rely on rules of thumb by selecting sample sizes they think will yield 
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p-values just below 0.05, although it is clear that p-values in this order of magnitude are hardly 

replicable (Vankov, Bowers & Munafo 2014). Oakes (1986, p. 85-86) argues that the major 

reason for the abundance of low-power studies is the belief that "experimental findings suddenly 

assume the mantle of reality at the arbitrary 0.05 level of significance" – if a result becomes true 

once a threshold is crossed, there is simply no need to strive for larger sample sizes. 

In their summary of 44 reviews on statistical power, Smaldino & McElreath (2016) found not 

only that average power to detect small effects was 24%, but that there was no sign of increase 

over six decades. The authors blame an academic environment that only rewards significant 

findings, because in such a system, "an efficient way to succeed is to conduct low power studies. 

Why? Such studies are cheap and can be farmed for significant results" (Smaldino & McElreath 

2016). Similarly, Higginson & Munafo (2016) suggest that "researchers acting to maximise their 

fitness should spend most of their effort seeking novel results and conduct small studies that have 

only 10%–40% statistical power." 

Quite often, significance testing appears like a sort of gambling. Even a study with minimized 

investment into sample sizes will yield significant results, if only enough variables are measured 

and the right buttons in the statistical software are pushed. Small sample sizes further have it that 

significant effects will probably be inflated, so novel and surprising results are almost 

guaranteed. And we may have become somewhat addicted to this game – it is satisfying to feed 

data into the machine and find out whether the right variables have turned significant. 

We should discourage significance farming by insisting that a p-value of 0.02 is not 

automatically convincing, and that there is no need to throw away a study with p=0.2. We hope 

that removing significance thresholds will allow researchers to take the risk and put more effort 

into larger studies, without the fear that all the effort could be wasted if there were 

nonsignificance in the end. 

 

'We need objective decisions' 

 

Graded evidence means no strict criterion to decide whether there is evidence or not – no 

algorithm that makes the decision for us. Can graded evidence be objectively interpreted? Fisher's 

honourable aim was to develop a "rigorous and objective test" (Fisher 1922, p. 314), and Neyman 

and Pearson made the test even more rigorous by introducing automatic decisions between two 

competing hypotheses. 

Unfortunately, it seems like "the original Neyman-Pearson framework has no utility outside 

quality control type applications" (Hurlbert & Lombardi 2009). In most studies, we do not 

formally specify alternative hypotheses, and we tend to use small sample sizes, so that beta errors 

are usually both high and unknown (Fidler et al. 2004). This is one reason why our Fisher-

Neyman-Pearson hybrid tests offer only an "illusion of objectivity" (Berger & Berry 1988; 

Gigerenzer 1993). Another reason is that prior to calculating p-values, we make all kinds of 

subjective decisions: in formulating our research question, in selecting the variables to be 

measured, in determining the data sampling scheme, the statistical model, the test statistic, how to 

verify whether model assumptions are met, how to handle outliers, how to transform the data, 

which software to use. We do all of that and are used to justifying our personal choices; but 

interestingly, when it comes to interpreting test results, "one can feel widespread anxiety 

surrounding the exercise of informed personal judgment" (Gigerenzer 1993). 

For statistical tests, our a priori assumptions about the true model may be, for example, that 

residuals are independent and homogeneously distributed. Since "it is impossible logically to 

distinguish between model assumptions and the prior distribution of the parameter", using prior 

belief is not a feature peculiar to Bayesian inference, but a necessity for all scientific inference 
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(Box 1980). As explained by Oakes (1986, p. 114), the statistical schools differ in the manner in 

which they employ this prior information. 

Pearson (1962) wrote about his work with Neyman: "We were certainly aware that inferences 

must make use of prior information", thus "we left in our mathematical model a gap for the 

exercise of a more intuitive process of personal judgment in such matters – to use our 

terminology – as the choice of the most likely class of admissible hypotheses, the appropriate 

significance level, the magnitude of worthwhile effects and the balance of utilities." But these 

judgements had to be made before data collection, and "every detail of the design, including 

responses to all possible surprises in the incoming data, must be planned in advance" (Berger & 

Berry 1988). To change the plan after data collection is to violate the model (Oakes 1986). 

We agree this is the way to go in confirmatory studies that replicate procedures from earlier 

research. Sticking to the rules is one reason why results from replication studies are usually more 

reliable than from exploratory studies (Gelman & Loken 2014; Higginson & Munafo 2016); 

another reason is that confirmatory studies may suffer less from publication bias than exploratory 

studies (Open Science Collaboration 2015). We remind, however, that even in ideal confirmatory 

studies, significance is not to be expected (see above), thus significance thresholds should not be 

applied to judge replication success. And in exploratory studies, we see even less utility for the 

original Neyman-Pearson framework and their predefined significance thresholds. Such studies 

have all the rights to interrogate the data repeatedly and intensively (Lew 2016), as long as they 

are acknowledged to be exploratory (Gelman & Loken 2014; Berry 2016), and, of course, as long 

as they report all results irrespectively of their p-values. 

We thus side with Ronald Fisher that the decision how to deal with the null hypothesis should 

reside with the investigator rather than being taken for him in the Neyman-Pearson manner 

(Oakes 1986, p. 114). It should be remembered, however, that the decision whether there is an 

important effect cannot be answered in a single study, and that it is often more interesting to 

discuss the size of the effect than to speculate on its mere existence (e.g., Gelman 2013a; 

Cumming 2011). In many cases, "research requires no firm decision: it contributes incrementally 

to an existing body of knowledge" (Sterne & Smith 2001). Or in the words of Rozeboom (1960): 

"The primary aim of a scientific experiment is not to precipitate decisions, but to make an 

appropriate adjustment in the degree to which one accepts, or believes, the hypothesis or 

hypotheses being tested." 

 

'Null hypotheses should be acceptable' 

 

As stated earlier, most null hypotheses of an effect of exactly zero are likely wrong at least to a 

small degree. This claim seems to be widely accepted for correlational research (Edwards, 

Lindman & Savage 1963; Meehl 1967; Cohen 1990; Cohen 1994; Lecoutre & Poitevineau 2014; 

Stahel 2016), although its general applicability and philosophical background are debated (Hagen 

1997; Hagen 1998; Thompson 1998; Krueger 2001). However, the claim does not apply to pure 

experimental studies (Meehl 1990). A null hypothesis of an effect of exactly zero may be valid 

"for true experiments involving randomization (e.g., controlled clinical trials) or when any 

departure from pure chance is meaningful (as in laboratory experiments on clairvoyance)" 

(Cohen 1994). 

Under such circumstances, we would like to be able to show that the null hypothesis is true. 

But how should this be done, if any p-value that we calculate can only speak against the null 

hypothesis (Delong & Lang 1992)? Interpreting p-values as graded evidence will mean that we 

can never support the null hypothesis, and that alternative hypotheses may be "virtually 

unkillable", buried at "a vast graveyard of undead theories" (Ferguson & Heene 2012, although 
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the authors coined those words decrying publication bias against 'null' results and not the use of 

graded evidence). 

So "how to accept the null hypothesis gracefully" (Greenwald 1975)? The hard truth is that p-

values from classical null hypothesis tests are not made for this task – whether or not we use 

them as graded evidence. As we discussed at length, also nonsignificant results would not support 

the null hypothesis, and high power would be of no help (Greenland 2012). There is only one 

way to attach a number to the probability of a null hypothesis: "use a range, rather than a point, 

null hypothesis", and "compute the posterior probability of the null (range) hypothesis" 

(Greenwald 1975) or use similar Bayesian methods (Gallistel 2009; Morey & Rouder 2011; 

Dienes 2014). Alternative procedures in a frequentist framework include equivalence tests 

(Levine et al. 2008) or the careful interpretation of effect sizes and confidence intervals, to 

determine whether an effect is so precisely small as to be practically unimportant (Fig. 1D, E). 

 

'We need to get rid of p-values' 

 

So p-values are not reliable, using them for selecting results leads to inflated effect sizes, and 

they cannot support the null hypothesis. Further, null hypothesis significance testing has been 

called a "parody of falsificationism in which straw-man null hypothesis A is rejected and this is 

taken as evidence in favor of preferred alternative B" (Gelman 2016). Why do we not join others 

and discourage using null hypothesis tests (e.g., Carver 1978; Schmidt 1996; Ziliak & 

McCloskey 2008; Orlitzky 2012; Cumming 2014; Trafimow & Marks 2015; Gorard 2016)? 

Instead, we propose to replace 'null hypothesis significance testing' (NHST) with 'null 

hypothesis testing' (NHT), and to describe gradual evidence against the null hypothesis rather 

than to 'reject' it. A first step would be to stop using the word 'significant' (Higgs 2013; 

Colquhoun 2014). Indeed, often null hypotheses about zero effects are automatically chosen only 

to be rejected (Gelman 2013b), and null hypotheses on effect sizes other than zero, or on ranges 

of effect sizes, would be more appropriate (Cohen 1994; Greenland et al. 2016). The way to 

become aware of our zero effect automatism is to "replace the word significant with a concise 

and defensible description of what we actually mean to evoke by using it" (Higgs 2013). 

These are small changes that may look insufficient to some. But the beauty in such simple 

measures to help address the crisis of unreplicable research is that they do not hurt. We do not 

need to publicly register our study protocol before we collect data, we do not need to learn new 

statistics, we do not even need to use confidence intervals if we prefer to use standard errors. Of 

course all of those measures could be helpful (e.g., Cumming 2011; Bishop et al. 2015), but they 

usually require an active change of research practices. And many researchers seem to hesitate 

changing statistical procedures that have been standard for nearly a century (Thompson 1999; 

Sharpe 2013). 

There are hundreds of papers arguing against null hypothesis significance testing, but they 

have only led to even more p-values (Chavalarias et al. 2016) and to the need for the ASA to tell 

us how to use them properly (Goodman 2016; Wasserstein & Lazar 2016). Apparently, bashing 

or banning p-values does not work. We need a smaller incremental step that at the same time is 

highly efficient. There are not many easy ways to improve scientific inference, but together with 

Higgs (2013) and others, we believe that removing significance thresholds is one of them. 

Also, we do not deny that some thresholds are necessary when interpreting statistics. If we 

want to draw error bars around a mean, the lines of the bars must end at some point that is 

defined by a threshold. By convention, we use 95% confidence intervals cutting off hypothesized 

parameter values that would be rejected at the p=0.05 threshold; of course we could also use 

90%, 80% or 75% confidence intervals with 0.10, 0.20 or 0.25 thresholds (Hurlbert & Lombardi 
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2009). Unfortunately, many researchers seem to use confidence intervals mostly to decide 

whether zero is excluded, so that the results can be called significant (Hoekstra, Johnson & Kiers 

2012; McCormack, Vandermeer & Allan 2013; Savalei & Dunn 2015; van Helden 2016). 

Potentially, using confidence intervals could encourage estimation thinking and meta-analytic 

thinking, but for full benefit, researchers would need to interpret confidence intervals without 

recourse to significance (Coulson et al. 2010; Cumming 2011). 

Further, we recommend choosing not only from the available null hypothesis tests but also 

from the toolbox provided by Bayesian statistics (Korner-Nievergelt et al. 2015). But we agree 

that we should not "look for a magic alternative to NHST, some other objective mechanical ritual 

to replace it. It doesn't exist" (Cohen 1994). 

Biased effect sizes will be a problem with most criteria that are used to select results for 

interpretation or publication. If effect sizes are reported because they are large, this will of course 

create an upwards bias, similarly to selecting p-values because they are small. If effect sizes are 

reported because they are small, or p-values because they are large, for example if people are 

interested to show that some treatment may not have an (adverse) effect, this will create a 

downwards bias (Greenland et al. 2016). If results are reported because Bayesian posterior 

probabilities are at least three times larger for an alternative than for a null hypothesis, this is 

equivalent to selective reporting based on p-value thresholds (Simonsohn 2014). Claiming a 

discovery based on Bayes factors or on difference in the Akaike information criterion (AIC) as 

selection filters will lead to inflated effect sizes (Button et al. 2013b; Lemoine et al. 2016). 

Whenever we use effect sizes, confidence intervals, AIC, posteriors or Bayes factors in decision 

heuristics for interpreting or reporting selected results rather than all results, we create biases and 

invalidate the answers we give to our questions (Simonsohn 2014; Yu et al. 2014; Parker et al. 

2016). 

However, the greatest source of bias probably comes from selectively reporting small p-

values, simply because of the dominant role of null hypothesis significance testing. If we learn to 

judge the strength of evidence based not on the event of passing a threshold but on graded 

summaries of data like the p-value, we will become more aware of uncertainty. And statistical 

methods are not simply applied to a discipline but change the discipline itself (Gigerenzer & 

Marewski 2015). A greater acceptance of uncertainty and embracing of variation (Gelman 2016) 

could shift our focus back to core values like discussing practical importance of effect sizes, 

minimizing measurement error, performing replication studies, and using informed personal 

judgment (Gigerenzer & Marewski 2015; Lemoine et al. 2016). We give the last word to Edwin 

G. Boring (1919), who one century ago wrote in his paper "Mathematical vs. scientific 

significance": "Conclusions must ultimately be left to the scientific intuition of the experimenter 

and his public." 
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