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Background. DNA sequences are pivotal for a wide array of research in biology. Large

sequence databases, like GenBank, provide an amazing resource to utilize DNA sequences

for large scale analyses. However, many sequences on GenBank contain more than one

gene or are portions of genomes, and inconsistencies in the way genes are annotated and

the numerous synonyms a single gene may be listed under provide major challenges for

extracting large numbers of subsequences for comparative analysis across taxa. At

present, there is no easy way to extract portions from multiple GenBank accessions based

on annotations where gene names may vary extensively. Results. The R package

AnnotationBustR allows users to extract sequences based on GenBank annotations

through the ACNUC retrieval system given search terms of gene synonyms and accession

numbers. AnnotationBustR extracts portions of interest and then writes them to a FASTA

file for users to employ in their research endeavors. Conclusion. FASTA files of extracted

subsequences and accession tables generated by AnnotationBustR allow users to quickly

find and extract subsequences from GenBank accessions. These sequences can then be

incorporated in various analyses, like the construction of phylogenies to test a wide range

of ecological and evolutionary hypotheses.
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10 Abstract

11 Background. DNA sequences are pivotal for a wide array of research in biology. Large 

12 sequence databases, like GenBank, provide an amazing resource to utilize DNA sequences for 

13 large scale analyses. However, many sequences on GenBank contain more than one gene or are 

14 portions of genomes, and inconsistencies in the way genes are annotated and the numerous 

15 synonyms a single gene may be listed under provide major challenges for extracting large 

16 numbers of subsequences for comparative analysis across taxa. At present, there is no easy way 

17 to extract portions from multiple GenBank accessions based on annotations where gene names 

18 may vary extensively.

19 Results. The R package AnnotationBustR allows users to extract sequences based on GenBank 

20 annotations through the ACNUC retrieval system given search terms of gene synonyms and 

21 accession numbers. AnnotationBustR extracts portions of interest and then writes them to a 

22 FASTA file for users to employ in their research endeavors.

23 Conclusion. FASTA files of extracted subsequences and accession tables generated by 

24 AnnotationBustR allow users to quickly find and extract subsequences from GenBank 

25 accessions. These sequences can then be incorporated in various analyses, like the construction 

26 of phylogenies to test a wide range of ecological and evolutionary hypotheses.

27 Introduction

28 The use of DNA sequence data is vital for a wide variety of research in evolutionary 

29 biology and ecology. Molecular phylogenies, which rely on DNA sequences for their 

30 construction, are extremely prevalent in biological research. Whether being used to correct for 

31 shared ancestry among organisms (Felsenstein, 1985), or to test hypotheses related 

32 phylogeography (Avise et al., 1987), diversification (Hey, 1992; Maddison, 2006), and trait 

33 evolution (Bollback, 2006; O'Meara et al., 2006), phylogenies are required. Additionally, the use 

34 of phylogenies is important in community ecology to place systems into an evolutionary 

35 framework (Webb et al., 2002; Cavender0Bares et al., 2009). The construction of molecular 

36 phylogenies for systematic purposes is also a popular tool for taxonomists to identify new taxa 

37 and classify organisms (De Queiroz & Gauthier, 1994; Tautz et al., 2003). Some DNA 

38 sequences, like the mitochondrial gene cytochrome oxidase subunit I (COI), are also gaining 

39 utility as a method to identify and catalog species using DNA barcoding (Hebert et al., 2003; 

40 Ratnasingham & Hebert, 2007; Ratnasingham & Hebert, 2013). 

41 Sequence databases like GenBank provide an extremely valuable resource for using DNA 

42 sequence data to test evolutionary and ecological hypotheses. With the reduction in cost of DNA 

43 sequencing and the advancement of methods to analyze sequence data, the amount of sequence 

44 data available for use is growing at a rapid pace. Given that GenBank has over one-trillion 

45 sequences from over 370,000 species (Benson et al., 2017) and recent advances in methods to 

46 create massive phylogenies using either super-matrix (Driskell et al., 2004; Ciccarelli et al., 

47 2006) or mega-phylogeny approaches (Smith et al., 2009; Izquierdo-Carrasco et al., 2014), many 

48 generate large DNA sequence data sets for comparative analyses (Leslie et al., 2012; Rabosky et 

49 al., 2013; Spriggs et al., 2014; Zanne et al., 2014; Shi & Rabosky, 2015). Additionally, sequence 

50 retrieval within common scripting environments for biological analyses, like R (R Development 

51 Core Team, 2017), are made possible with packages like ape (Paradis et al., 2004), rentrez 

52 (Winter, 2016), reutils (Schofl, 2015), and seqinr (Charif & Lobry, 2007).
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53 While GenBank provides a wealth of sequence data for researchers to use, some of it is 

54 rather difficult to manipulate into a useful form. For example, some sequences may be 

55 concatenated together, or the only gene sequence available for a species for the locus of interest 

56 may be within a mitochondrial or chloroplast genome. Although GenBank9s annotation system 

57 provides a means to see where a locus of interest is in a genome or concatenated sequence and 

58 provides the ability to download it manually, this is extremely time consuming when many 

59 accessions are involved and not a feasible way to extract mass amounts of sequence data for use 

60 in research. 

61 Alternative methods to increase the speed of which one could extract out loci in a 

62 concatenated sequence could involve aligning it to a known sequence of the locus of interest 

63 using an alignment program like BLAST (Altschul et al., 1990). However, BLAST and similar 

64 programs only align sequences that are similar, and the gene region aligned may not be entirely 

65 homologous to the gene of interest. Given that alignment programs use homologous sequences 

66 for their input, this can cause alignments that are not useful and provide the wrong phylogenetic 

67 inference, affecting downstream analyses (Lassmann & Sonnhammer, 2005).

68 Another major challenge to obtaining large amounts of sequence data is the highly 

69 variable nomenclature of gene names. Most genes have several alternative names and symbols 

70 that are present in sequence databases. Among distant taxa, it is common for homologous genes 

71 to vary considerably in nomenclature (Tuason et al., 2003). Even within a group of closely 

72 related taxa or within a single taxa itself, how genes are annotated may differ substantially from 

73 record to record and a wide variety of alternative gene names may be found for a single gene 

74 (Morgan et al., 2004; Fundel & Zimmer, 2006). This poses serious problems when searching 

75 through databases for data extraction like molecular sequence data (Mitchell et al., 2003; 

76 Tamames & Valencia, 2006).

77 Here we present the R package AnnotationBustR to solve the issues discussed above. 

78 AnnotationBustR reads GenBank annotations in R and pulls out the gene(s) of interest given a set 

79 of search terms and a vector of taxon accession numbers supplied by the user. It then writes the 

80 sequence for the gene(s) of interest to FASTA formatted files for each locus that users can then 

81 use in further analyses. For a more in depth introduction to using AnnotationBustR users should 

82 consult the vignette in R through vignette(<AnnotationBustR-vignette=), which 

83 provides instructions on how to use the different functions and their respective options. Other 

84 details about the package can be accessed through the documentation via 

85 help(<AnnotationBustR=).

86 Description

87 AnnotationBustR is written in R (R Development Core Team, 2017), a popular language for 

88 analyzing biological data. It uses the existing R packages ape (Paradis et al., 2004) and seqinr 

89 (Charif & Lobry, 2007). AnnotationBustR uses seqinr9s interface to the online ACNUC database 

90 to extract gene regions of interest from concatenated gene sequences or genomes (Gouy et al., 

91 1985; Gouy & Delmotte, 2008). ACNUC9s storage of subsequence strings allows easy access 

92 and manipulation of complex sequences, such as trans-spliced genes that may be on opposite 

93 strands of DNA. A list of the currently implemented commands is given in Table 1 and a flow 

94 chart of function usage is shown in Figure 1.

95
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96 Table 1: Functions and data included in the package AnnotationBustR.

Function/Data Name Description

AnnotationBust Writes found subsequences for loci of interest to a FASTA file 

for a vector of GenBank accessions and writes a corresponding 

accession table.

data(cpDNAterms) Loads a data frame of search terms for chloroplast genes.

data(mtDNAterms) Loads a data frame of search terms for mitochondrial genes.

data(rDNAterms) Loads a data frame of search terms for ribosomal DNA genes and 

spacers.

FindLongestSeq Finds the longest sequence for each species in a set of GenBank 

accession numbers.

MergeSearchTerms Merges two or more data frames containing search terms of 

features to extract into a single data frame.

97 The main function of AnnotationBustR, AnnotationBust, takes a vector of accession 

98 numbers and a data frame of synonym search terms to extract loci of interest and write them to a 

99 FASTA formatted file. This function also returns a pre-made accession table of all the loci of 

100 interest and the corresponding accession numbers the loci were extracted from for each species 

101 that can then be written to a csv file by the user. Users can specify duplicate genes be extracted 

102 as well, although we caution the use of doing this as they can be misleading to use in 

103 comparative analyses due to issues of paralogy (Goodman et al., 1979; Maddison, 1997). If 

104 extracting coding sequences, users can also specify if they would like to translate the sequence 

105 into the corresponding peptides by specifying the GenBank numerical translation code for the 

106 taxa of interest.

107

108 Figure 1: Flow chart of functions for a complete usage of AnnotationBustR. Blue boxes 

109 indicate a step using the package AnnotationBustR while orange boxes represent steps that need 

110 to be completed outside of AnnotationBustR. Boxes in green represent optional steps in the 

111 AnnotationBustR pipeline.

112 We have included pre-made data frames with search terms in AnnotationBustR for 

113 mitochondrial genomes, chloroplast genomes, and rDNA. These can be used to easily extract 

114 DNA barcodes, like cytochrome oxidase subunit I (COI) for animals in mitochondrial genomes 
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115 (Hebert et al., 2003), the internal transcribed spacers (ITS) in rDNA for fungi and plants (Kress 

116 et al., 2005; Schoch et al., 2012), and maturase K (matK) and ribulose-bisphosphate carboxylase 

117 (rbcL) genes in the chloroplast genome of plants (Hollingsworth et al., 2009). These pre-made 

118 data frames consist of three columns with the column Locus containing the output file name, 

119 Type containing the type of sequence it is (i.e. CDS, tRNA, rRNA, misc_RNA, D-loop), and the 

120 third column, Name, containing a possible synonym of the loci to search for. For example, for 

121 cytochrome oxidase subunit I, GenBank includes gene names of COI, CO1, COX1, cox1, COXI, 

122 cytochrome c oxidase subunit I, and COX-I. These search terms can be loaded into the 

123 workspace using the data() function. Annotations files for each accession are read in through 

124 seqinr and regular expressions matching of the synonyms provided by the user to the feature 

125 annotations are performed to identify the subsequence to extract. As certain loci may have 

126 numerous synonymous listings in GenBank feature tables that may not be included in the pre-

127 made data frames of search terms, AnnotationBustR has the function MergeSearchTerms 

128 which allows users to easily add additional search terms to a pre-existing data frame of search 

129 terms if users follow the basic three column formatting stated above. An additional feature of 

130 AnnotationBustR is the function FindLongestSeq which finds the longest sequence for each 

131 species in a set of GenBank accessions.

132

133 Figure 2: Timings of subsequence extraction using AnnotationBust for thirteen 

134 mitochondrial coding sequences (black), thirteen chloroplast subsequences (green), and five 

135 rDNA subsequence (purple). Points represent the mean time in seconds with bars representing 

136 +/- one standard deviation. 
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137 To demonstrate the performance of AnnotationBustR, we timed how long it took to 

138 extract thirteen popular coding sequences from 100 chloroplast genomes, the thirteen coding 

139 sequences from 100 metazoan mitochondrial genomes, and the three ribosomal RNA genes and 

140 internal transcribed spacers 1 and 2 from 100 metazoan rDNA sequences (Figure 2, see code in 

141 Supplemental Data S1). Timing trials were performed on a Windows desktop with a 3.8 GHz 

142 Intel Core i7 processor and 64 GB of RAM. For each accession, we timed the how long it took to 

143 extract one through the full number of subsequences sought. Our timings indicate that 

144 AnnotationBustR can efficiently extract these loci into FASTA files and that performance scales 

145 well as the number of loci to extract increases.

146 AnnotationBustR is available through CRAN (https://cran.r-

147 project.org/package=AnnotationBustR) and is developed on GitHub 

148 (https://github.com/sborstein/AnnotationBustR). New extensions in development and fixes can be 

149 seen under the issues section on the packages GitHub page. 

150 Conclusions

151 AnnotationBustR provides a quick and effortless way for users to extract subsequences 

152 from concatenated sequences or plastid and mitochondrial genomes where gene names for 

153 subsequences may vary substantially. The major limitation to the functionality of 

154 AnnotationBustR is that it is only as good as the annotations in the features table it is using for 

155 extraction. For instance, some concatenated sequences do not have the individual gene positions 

156 annotated for the record and just state that it contains the genes, therefore making it impossible to 

157 extract a gene from it (ex. GenBank KM260685.1, GenBank KT216295.1). Additionally, some 

158 loci may be present in the sequence yet missing from the features table completely (ex. 

159 mitochondrial D-loop missing in GenBank KU308536.1). Another limitation is that some 

160 popular loci are intergenic spacers and are not annotated in the features table, making them 

161 impossible to extract. A good example of this is the trnH-psbA intergenic spacer, a proposed 

162 locus for plant DNA barcodes (Kress et al., 2005). 

163 Citation

164 Researchers publishing a paper that has used AnnotationBustR should cite this article and 

165 indicate the version of the package they are using. Package citation information can be obtained 

166 using citation("AnnotationBustR"). 
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