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High sensitivity methods such as next generation sequencing and polymerase chain

reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current

methods for detecting contaminants in microbial materials (genomic DNA and cultures) are

not sensitive enough and require either a known or culturable contaminant. Therefore,

high sensitivity methods not requiring a priori assumptions about the contaminant are

needed. We demonstrate the use of whole genome sequencing (WGS) and a metagenomic

taxonomic classification algorithm for assessing the organismal purity of a microbial

material. Using this proposed method we characterized the types of false positive

contaminants reported and the dependence of detectable contaminant concentration on

material and contaminant genome using simulated WGS data. Using the proposed method

to characterize microbial material purity will help to ensure that the materials used to

validate pathogen detection assays, generate genome assemblies for database

submission, and benchmark sequencing methods are free of contaminants adversely

impacting measurement results.
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ABSTRACT6

High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are

adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants

in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known

or culturable contaminant. Therefore, high sensitivity methods not requiring a priori assumptions about

the contaminant are needed. We demonstrate the use of whole genome sequencing (WGS) and a

metagenomic taxonomic classification algorithm for assessing the organismal purity of a microbial ma-

terial. Using this proposed method we characterized the types of false positive contaminants reported

and the dependence of detectable contaminant concentration on material and contaminant genome

using simulated WGS data. Using the proposed method to characterize microbial material purity will

help to ensure that the materials used to validate pathogen detection assays, generate genome assem-

blies for database submission, and benchmark sequencing methods are free of contaminants adversely

impacting measurement results.

7

8

9

10

11

12

13

14

15

16

17

18

Keywords: Genomic Purity, Whole Genome Sequencing, Bioinformatics, Biodetection, Microbial

Material, Reference Material

19

20

INTRODUCTION21

Microbial materials such as cells and extracted genomic DNA from a presumably pure culture should22

ideally be free of organismal contaminants. However, high sensitivity detection methods including poly-23

merase chain reaction (PCR) and next generation sequencing (NGS) can detect organismal contaminants24

previously undetectable by traditional microbiology methods such as culturing, biochemical tests, and25

microscopy. Characterizing and reducing the level of these contaminants is critical to ensuring high26

quality microbial materials are used to populate sequence databases (Parks et al., 2015), for mock com-27

munities used to validate metagenomic methods (Bokulich et al., 2016), to validate biodetection assays28

(Ieven et al., 2013; Coates et al., 2011), and for basic research using model systems (Shrestha et al., 2013).29

General contaminant assessment is also needed for the characterization of microbial reference materials30

(Olson et al., 2016), where contaminant profiles allow users to properly determine whether the mate-31

rial is suitable for their application. In addition to organismal contaminants in the material itself, PCR32

and NGS can also detect reagent impurities, highlighting the need to differentiate material and reagent33

contaminants. Issues related to reagent contaminants are well documented and addressed with negative34

controls (Jervis-Bardy et al., 2015), improved methods for removing contaminants (Woyke et al., 2011;35

Motley et al., 2014), and post-processing of sequence data (Mukherjee et al., 2015). However, contami-36

nants in microbial materials, as found in non-axenic cellular materials or genomic materials with foreign37

DNA, has only been addressed when processing the sequencing data and not material characterization38

(Shrestha et al., 2013; Tennessen et al., 2015).39

Current approaches for detecting contaminants in microbial materials typically rely on methods such40

as culture, microscopy, or PCR. Culture and microscopy-based methods lack the required sensitivity for41

microbial materials being used in NGS and PCR applications, are not appropriate for genomic DNA42

materials, and assume the contaminants are phenotypically distinct from the material they contaminate.43

While PCR-based methods can detect contaminants in genomic DNA, the methods are limited as they can44

only detect specifically targeted contaminants and are not amenable to highly multiplexed applications45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2913v1 | CC BY 4.0 Open Access | rec: 4 Apr 2017, publ: 4 Apr 2017



(Heck et al., 2016; Marron et al., 2013). In contrast to these methods, shotgun metagenomic methods can46

be used to detect contaminants in both cell cultures and genomic DNA materials while only requiring47

the contaminant has sequencing reads differentiating it from the material strain.48

Shotgun metagenomic sequencing is used to characterize environmental samples, detect pathogens49

in clinical samples, and is suitable for detecting contaminants in microbial materials. Shotgun metage-50

nomics consists of two main steps, whole genome sequencing of all DNA in a sample, and analysis of51

the resulting sequencing data, most commonly using a taxonomic assignment algorithm (Thomas et al.,52

2012). For genomic DNA materials, the material itself is sequenced, whereas for cells the genomic DNA53

must first be extracted from cell cultures prior to sequencing. After sequencing, a taxonomic assignment54

algorithm is used to characterize the sequencing data. There are a variety of classification algorithms55

with varying accuracy and computational performance (Bazinet and Cummings, 2012; Menzel et al.,56

2016). All methods require a reference database. In order to detect contaminants in a microbial material,57

the contaminating organism (or an organism more closely related to the contaminant than the material)58

must be in the database. As taxonomic classification algorithms are constantly improving, reference59

databases are expanding, and the cost of sequencing is decreasing, shotgun metagenomic sequencing60

provides an alternative to current methods for detecting contaminants in microbial materials.61

In this work, we present results from an in-silico study demonstrating the use of whole genome62

sequence data combined with a taxonomic assignment algorithm for detecting contaminant DNA in mi-63

crobial materials. A baseline assessment of the method using simulated sequencing data from single64

microorganisms was performed to characterize the types of false positive contaminants the method may65

report. Then, the contaminant detection method was evaluated for its ability to detect organismal con-66

taminants in microbial material strains using sequencing data simulated to replicate microbial materials67

contaminated with different organismal contaminants at a range of concentrations.68

METHODS69

Simulated whole genome sequence data and metagenomic taxonomic classification methods were used70

to detect and identify foreign DNA in microbial materials (genomic DNA and cultures). Simulated data71

from individual prokaryotic genomes were used to characterize how well the method correctly classifies72

reads at the species level. To evaluate contaminant detection we used datasets comprised of pairwise73

combinations of simulated reads from individual genomes.74

Simulation of Sequencing Data75

To approximate real sequencing data, reads were simulated using an empirical error model and insert76

size distribution. whole genome sequence data were simulated using the ART sequencing read simulator77

(Huang et al., 2012). Reads were simulated with the Illumina MiSeq error model for 2 × 230 base pair78

(bp) paired-end reads with an insert size of 690 ± 10 bp (average ± standard deviation) and 20 X mean79

coverage. The insert size parameters were defined based on the observed average and standard deviation80

insert size of the NIST RM8375-MG002 MiSeq sequencing data (Olson et al., 2016) (NCBI Biosample81

accession SAMN02854573).82

Assessment of Taxonomic Composition83

The taxonomic composition of simulated datasets was determined using the PathoScope sequence tax-84

onomic classifier (Francis et al., 2013). PathoScope was selected for two reasons: (1) it uses a large85

reference database reducing potential biases due to contaminants not represented in the database, and86

(2) it leverages efficient whole genome read mapping algorithms. This method uses an expectation87

maximization algorithm where the sequence data are first mapped to a database comprised of all se-88

quence data in the Genbank nt database. Then, through an iterative process, it re-assigns ambigu-89

ously mapped reads based on the proportion of reads mapped unambiguously to individual taxa in90

the database. The PathoScope 2.0 taxonomic read classification pipeline has three steps; (1) PathoQC91

- read quality filtering and trimming using the PRINSEQ algorithm (Schmieder and Edwards, 2011),92

(2) PathoMap - mapping reads to a reference database using the bowtie2 algorithm (Langmead and93

Salzberg, 2012), and (3) PathoID - expectation-maximization classification algorithm. The annotated94

Genbank nt database provided by the PathoScope developers was used as the reference database (ftp:95

//pathoscope.bumc.bu.edu/data/nt_ti.fa.gz).96
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Figure 1. Diagram of simulated contaminant dataset workflow for two individual genomes.

Contaminant proportions (p) of 0.2 and 0.4 are used for demonstration purposes. The reads were

initially simulated from individual genomes. The blue genome is twice the size of the orange genome,

and twice as many reads are simulated for the blue genome compared to the orange in order to obtain

the same coverage. The simulated reads were aligned to the reference database using PathoMap. The

resulting alignment file, in SAM file format, was randomly subset based on the desired proportions.

Complementary subsets of SAM files (e.g. 0.8 material and 0.2 contaminant) from the two genomes

were merged to create individual simulated contaminant datasets. Due to the different sized genomes,

the simulated contaminant datasets have different numbers of reads. Taxonomic assignment summary

tables were generated from simulated contaminant datasets using PathoID.

Baseline Assessment Using Individual Genomes97

Simulated sequencing data from individual genomes was used to characterize the false positive contam-98

inants reported by PathoScope. Sequence data was simulated for 406 strains, from 9 genera (Table 1,99

Supplemental Table 1). These genera were selected based on relevance to public health and biothreat100

detection. We will refer to the genome used to generate the reads as the material genome. The genomes101

included in the simulation study were limited to the number of closed genomes in the Genbank database102

(http://www.ncbi.nlm.nih.gov/genbank/, accessed 10/18/2013) belonging to the genera of103

interest (Table 1). Due to the large number of Bacillus, Escherichia, and Salmonella genomes, genomes104

from these genera were limited to the species Bacillus cereus, Escherichia coli, and Salmonella enterica105

respectively. The taxonomic hierarchy for the material genome and simulated read assignment match106

levels were determined using the R package, Taxize (Scott Chamberlain and Eduard Szocs, 2013; Cham-107

berlain et al., 2016).108

Contaminant Detection Assessment109

Simulated contaminated datasets were used to evaluate how contaminant detection varied by material110

and contaminant genome over a range of contaminant concentrations. Representative genomes for 8 of111

the 10 genera were used to generate the simulated contaminant datasets (Table 2, Supplemental Table 2).112

An Escherichia coli strain was selected as a representative of both Escherichia and Shigella, as the genus113

Shigella and species Escherichia coli are not phylogenetically resolved (Lan and Reeves, 2002). No114
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representative genome for Listeria was included in this part of the study. For each pairwise combination115

of representative genomes, the simulated contaminant dataset was comprised of a randomly selected116

subset of reads from the material and contaminant (Fig. 1). The simulated datasets were randomly117

subsampled at defined proportions, with p representing the proportion of reads from the contaminant,118

and 1− p the proportion of reads from the material dataset. A range of contaminant proportions at 10-119

fold increments was simulated with p ranging from 10−1 to 10−8, resulting in 512 simulated contaminant120

datasets. This approach simulates the proportion of cells in a contaminated material and not the amount121

of DNA, assuming unbiased DNA extraction. Organisms with larger genomes therefore have more122

simulated reads.123

To generate the simulated contaminant datasets, single organism simulated datasets were first gener-124

ated for the 8 representative genomes using the same methods as baseline assessment (Fig. 1). The125

resulting simulated sequencing data was first processed using the PathoQC and PathoMap steps in126

the PathoScope pipeline. The output from the PathoMap step (SAM file, sequence alignment file127

https://samtools.github.io/hts-specs/SAMv1.pdf) for the material and contaminant128

datasets were subsampled as described above then combined. The resulting SAM file was processed by129

PathoID, the third step in the PathoScope pipeline. Subsampling the SAM files instead of the simulated130

sequence files greatly reduces the computational cost of the analysis, as the simulated reads were only131

processed once by the first two steps in the PathoScope pipeline rather than for every simulated contam-132

inant dataset. For simulated datasets with contaminant proportions greater than 10−5, the quantitative133

accuracy of the contaminant detection method was assessed by comparing the defined contaminant pro-134

portion (true proportion) to the PathoScope contaminant proportion (estimated proportion). Pearson’s135

correlation coefficient was used to evaluate agreement between the true and estimated proportions. The136

error rate, (estimated − true)/true, was compared across material and contaminant combinations.137

Bioinformatics Pipeline138

To facilitate repeatability and transparency, a Docker (www.docker.com) container is available with139

pre-installed pipeline dependencies (www.registry.hub.docker.com/u/natedolson/docker-pathoscope/140

The scripts used to run the simulations are available at https://github.com/nate-d-olson/141

genomic_purity. Additionally, seed numbers for the random number generator were randomly142

assigned and recorded for each dataset so the simulated datasets used in the study could be regener-143

ated. PathoScope results were processed and analyzed using the statistical programming language R (R144

Core Team, 2016), and intermediate analysis and data summaries were organized using ProjectTemplate145

(White, 2014) and archived in a GitHub repository (https://github.com/nate-d-olson/genomic_146

purity_analysis) along with the source files for this manuscript.147

RESULTS148

Baseline Assessment Using Individual Genomes149

First, we assessed the baseline performance of the proposed contaminant detection method. We applied150

our method to simulated sequencing data from individual genomes. All reads assigned to a different taxa151

than the genome the reads were simulated from were defined as false positive contaminants. (This as-152

sumes the genome sequence is contaminant free.) Our analysis included taxonomic classification results153

for simulated sequencing data from 406 genomes, representing 10 different genera (Table 1, Supplemen-154

tal Table 1). The method was evaluated using the estimated proportion of species level matches. The155

estimated match proportion is the sum of the Final Guess values, proportions reported by PathoScope156

for a taxa, for all correct species level matches. For 301 of the 406 genomes, PathoScope estimated157

that greater than 99% of the material was the expected species (Fig. 2). Of the remaining 105 genomes,158

the estimated proportion identified as the correct species varied by material genus. All of the Shigella159

genomes and only 44 of the 49 Staphylococcus genomes had estimated proportions for the correct species160

less than than 0.9. 87 of those 105 genomes come from Shigella, Staphylococcus, or Escherichia. Ex-161

cluding Shigella, Escherichia, and Staphylococcus, the median estimated proportion matching at the162

species level or higher is 0.9996. We characterized false positive contaminants detected in genomes163

from the genera Shigella, Escherichia, and Staphylococcus, as well as genomes of other species with164

match proportions less than 0.9. Two types of false positive contaminants were identified: (1) contam-165

inants that were genomically indistinguishable from the material and (2) contaminants due to errors in166

the reference database.167
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Figure 2. Species level or higher estimated match proportion varies by material genus. The estimated

match proportion is the total proportion of the material with correct taxonomic assignments to the

genome species, subspecies, strain, or isolate level. The Estimated Match Proportions shown are the

Final Guess values in the PathoScope results table. Each point is calculated for a genome from a

different isolate within the genus. The vertical dashed line indicates the 0.99 estimated match

proportion. Orange points are genomes with species level estimated match proportions less than 0.90

and blue points greater than or equal to 0.90.
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Genus N Genome Size (Mb)

Bacillus 76 5.05 (3.07-7.59)

Clostridium 32 4.02 (2.55-6.67)

Escherichia 62 5.11 (3.98-5.86)

Francisella 18 1.89 (1.85-2.05)

Listeria 39 2.97 (2.78-3.11)

Pseudomonas 57 6.18 (4.17-7.01)

Salmonella 44 4.88 (4.46-5.27)

Shigella 10 4.74 (4.48-5.22)

Staphylococcus 49 2.82 (2.69-3.08)

Yersinia 19 4.73 (4.62-4.94)

Table 1. Breakdown of the number of genomes by genus used to generate single genome simulated

datasets. N indicates the number of genomes (406 total), and Genome Size is presented as the median

and range (minimum to maximum).

Two genomes can be genomically indistinguishable if the majority of the two genome sequences are168

highly similar. Phylogenetically closely related organisms are expected to have large genomic regions169

with high levels of similarity. Phylogenetic similarity is at least partially responsible for the low species170

level estimated match proportion for Shigella and Escherichia, as Shigella is not phylogenetically dis-171

tinct from E. coli (Lan and Reeves, 2002). When including matches to E. coli as species level matches,172

the median estimated match proportions for Shigella genomes increases from 0.66 to 0.92. Another ex-173

ample of false positives at the species level due to phylogenetic similarity was low match percentage for174

Clostridium autoethanogenum strain DSM10061, where Clostridium ljungdahlii strain DSM13528 was175

assigned the top proportion of reads (0.998) instead of C. autoenthanogenum. False positive contami-176

nants due to phylogenetic similarity are not limited to a closely related species or genus. Escherichia177

coli strain UMNK88 low match proportions were due to two bacteria in the same family as E. coli178

(Enterobacteriaceae): Providencia stuartii and Salmonella enterica subsp. enterica serovar Heidelberg,179

which had estimated proportions of 0.11 and 0.03, respectively. False positives were also due to shared180

genetic material between bacteria and their phage. Phage were identified as false positive contaminants181

at varying proportions for genomes from all genera investigated, excluding Francisella (Fig. 3). The low182

proportions of species level matches for E. coli and Staphylococcus are partly due to relatively higher183

proportions of matches to phage, compared to the other genera investigated. Based on phage names, all184

of the false positive phage contaminants were specific to the taxonomy of the material genome.185

False positive contaminants were also due to potential errors in the database such as unclassified186

or misclassified sequences and the presence of genome assemblies in the database containing sequence187

data from organismal or reagent contaminants. Low estimated match proportions can also be due to188

the database containing unclassified sequence data for organisms with genomic regions that are highly189

similar to regions of the material genome. For example, the low estimated match proportion for Pseu-190

domonas strain FGI182 was due to matches to unclassified bacteria, bacterium 142412, and unclassi-191

fied Pseudomonas species, Pseudomonas sp. HF-1. The low estimated match proportion proportion of192

species level matches for Pseudomonas strain TKP was also due to potentially misclassified sequences193

(Thioalkalivibrio sulfidophilus strain HL-EbGr7, estimated match proportion 0.0648). Bacillus subtilis194

BEST7613 genome had low species level estimated match proportion due to Synechocystis sp. PCC 6803195

substr. PCC-P being estimated as comprising 47% of the material. Synechocystis is in a different phylum196

compared to Bacillus (cyanobacteria versus firmicutes) and is a false positive due to a misclassification.197

The Bacillus subtilis BEST7613 genome in the database is a synthetic chimeric genome constructed198

from Bacillus subtilis BEST7613 and Synechocystis sp. PCC 6803 substr. PCC-P not Bacillus sub-199

tilis BEST7613 (Watanabe et al., 2012). The Bacillus subtilis BEST7613 genome assembly (GenBank200

Accession GCA 000328745.1) was flagged by the databases curators as an anomalous assembly and201

removed from the RefSeq database. The genome sequences used to populate the reference database can202

contain contaminants themselves (Parks et al., 2015). These database contaminants are responsible for203

additional false positive contaminants. The species level estimated match proportion for Pseudomonas204

strain TKP was partially due to contaminated genome sequences in the database (wheat - Triticum aes-205

tivum estimated match proportion 0.087). The eukaryotic false positive contaminants are likely due to206
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Figure 3. Estimated proportion of phage in the simulated single genome datasets by genera. Final

Guess values reported by PathoScope used to calculate estimated proportions. No phage were reported

by PathoScope for any Francisella genomes.
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contaminants in the eukaryotic DNA extract or reagents used to generate the sequencing data for the207

assembly (Parks et al., 2015).208

Contaminant Detection Assessment209

Representative Strain Match Proportion Aligned Reads Mb

Bacillus anthracis str. Ames 1.00 227270 5.23

Clostridium botulinum A str. Hall 1.00 163500 3.76

Escherichia coli O157:H7 str. EC4115 0.98 247990 5.70

Francisella tularensis subsp. tularensis SCHU S4 1.00 82290 1.89

Pseudomonas aeruginosa PAO1 1.00 272360 6.26

Salmonella enterica subsp. enterica serovar Typhimurium str. D23580 1.00 212140 4.88

Staphylococcus aureus subsp. aureus ED133 0.98 123150 2.83

Yersinia pestis CO92 1.00 209970 4.83

Table 2. Representative strains used in simulated contaminant datasets, based on available type strains.

Match proportion indicates the estimated proportion of the material assigned to the correct species by

PathoScope. Aligned Reads is the number of simulated reads aligned to the database by PathoMap.

DNA size is the total size of the genome, chromosome and plasmids in Mb.

Finally, contaminant detection was assessed by combining subsets of simulated data from two organ-210

isms at defined proportions, with the larger proportion representing the microbial material and smaller211

proportion the contaminant (Fig. 1). We simulated contaminant datasets as pairwise combinations of212

representative genomes from 8 of the genera used in the baseline assessment section of the study (Table213

2). All of the genomes selected have a species level estimated match proportion greater than 0.98 (Table214

2).215

The minimum contaminant proportion detected was 10−3 and 10−4 for most pairwise comparisons216

with a few exceptions (Fig. 4). When Y. pestis was the simulated contaminant, the minimum detected217

proportion was 0.1 for all material strains. For all simulated datasets where F. tularensis was the con-218

taminant, the contaminant was not detected. It is unclear why Y. pestis was only detected at a higher219

proportion relative to the other datasets, 10−1 versus 10−3, and F. tularensis was not detected at all.220

One possible reason for the lower contaminant detection for these two organisms is that there are fewer221

genomes in the database for these two genera. Additionally, the F. tularensis dataset is much smaller rela-222

tive to the other genera, less than 90,000 reads. Therefore, with fewer reads in the dataset and genomes in223

the database, the probability that the randomly selected subset of reads spiked into the simulated material224

dataset contains reads allowing for contaminant detection is lower. A few contaminants were detected225

at proportions as low as 10−8, such as when Yersinia contaminated with E. coli or S. enterica. How-226

ever, contaminants detected at lower proportions were due to reads simulated from the material genome227

incorrectly assigned to the contaminant. The simulated contaminant-free Y. pestis material dataset had228

false positive reads assigned to two of the contaminants resulting in artificially low contaminant detec-229

tion proportions for Salmonella enterica subsp. enterica serovar Typhi str. CT18 and Escherichia coli230

O104:H4 str. 2011C-3493 with estimated proportions of 1.76×10−5and 3.77×10−8, respectively. The231

simulated dataset coverage accounts for the observed minimum dectected contaminant proportion. As232

the individual datasets were simulated at 20X coverage, <300,000 reads were simulated for each dataset,233

and on average <3 reads were spiked into the material datasets for simulated contaminant proportions ≤234

10−5 (Fig. 4).235

In addition to the minimum detected contaminant proportion, we also evaluated the quantitative ac-236

curacy of the contaminant detection method. Pearson’s correlation coefficient was used to determine237

the correlation between the estimated contaminant and true contaminant proportions for simulated con-238

taminant proportions greater than 10−6. The estimated and true proportions were strongly correlated239

for all pairwise comparisons, with an overall median and 95% confidence interval of 0.99945 (0.96945240

- 1) (Fig. 4). Eight of the pairwise comparisons have correlation coefficients below 0.99, all of which241

have S. aureus as either the contaminant or the material. Two coefficients were below 0.98: S. aureus242

contaminated with P. aeruginosa and S. enterica, 0.952 and 0.969 respectively. The total error rate was243

used to assess the accuracy of the PathoScope contaminant proportion estimates (Fig. 5). The material244

genome strongly influenced the total error rate with E. coli and S. aureus having consistently higher total245

error rates compared to the other genomes, indicating a reduced accuracy for the two species.246
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Figure 4. The relationship between the proportion of reads matching the contaminant species and the

proportion of simulated contaminant reads. Plots are split by the material species with line and point

color indicating contaminant species. Dashed line indicates the expected 1:1 correlation between the

proportion of reads matching the expected contaminant and the proportion of reads simulated from the

contaminant. The contaminant proportion was underestimated for points below the dashed line and

overestimated for points above the dashed line.
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Figure 5. Error rate, (estimated − true)/true, for pairwise combinations of material and contaminant.

Points and error bars represent the median and range (minimum - maximum) error rate for each

material and contaminant combination.
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DISCUSSION247

The potential for using whole genome sequence data and taxonomic sequence classification algorithms248

to detect contaminant DNA in microbial materials was evaluated. The method requires no a priori249

information about the contaminant and can identify common as well as unexpected contaminants. Ad-250

ditionally, as whole genome sequencing can be performed on genomic DNA and cell cultures (after251

DNA extraction), the method is appropriate for both types of microbial materials. A baseline assess-252

ment of the contaminant detection method using simulated sequencing data from individual genomes253

was performed to identify common types of classification errors that would result in false positive con-254

taminants. The false positive contaminants were split into two categories (1) those due to an inability255

of the method to differentiate the material genome from the contaminant genome, and (2) errors in the256

reference database. Contaminant detection performance was characterized for different material, con-257

taminants, and contamination level. Overall the method was able to identify contaminant proportions at258

10−3 for most contaminant-material combinations. This level of detection is dependent on not just the259

classification method but also the simulated coverage. Therefore a lower detection proportion is expected260

for increased coverage. A contaminant proportion of 10−3 is equivalent to 1 contaminant cell per 1,000261

cells in a microbial material, or 1,000 contaminant cells in 1 mL of a 106 cells/mL culture. The esti-262

mated contaminant proportion accuracy for the simulated contaminated material varied by contaminant263

and material strain.264

There are three basic steps to using this method to detect contaminants in a microbial material. Base-265

line assessment is the first step. For a baseline assessment, reads are simulated from the reference genome266

of the organism of interest and processed using a taxonomic classification algorithm. Performing a base-267

line assessment allows one to identify the false positive contaminants you can expect to observe due to268

limitations in the method. Simulating data with realistic error profiles, read length, and fragment distri-269

bution is likely to yield results more representative of what one would expect from real sequencing data.270

Next, sequencing data generated from the microbial material is processed using the same taxonomic271

classification algorithm as used in the baseline assessment. The last step is a critical evaluation of results272

for potential false positives. For all settings including research, clinical, regulatory, and attribution, the273

contaminant detection method should be validated for the intended application. Appropriate validation274

approaches may include experiments with simulated contaminants like those performed as part of this275

study and sequencing genomic DNA or cells spiked with varying contaminant concentrations.276

It is important to evaluate the results in the context of the intended application. Quantitative accu-277

racy in contaminant proportions is important for applications where acceptable contaminant proportion278

thresholds are established. For example, a microbial material with a contaminant proportion of 10−5
279

may be acceptable for use in an assay where the contaminant adversely impacts an assay when present280

in proportions greater than 10−4. Quantitative accuracy is also relevant when performing a general char-281

acterization of the microbial material. General contaminant characterization is appropriate for reference282

materials with more than one use case such as the NIST microbial genomic reference materials (NIST283

RM8375) (Olson et al., 2016). Similar to the false positive contaminant baseline assessment, simulated284

data can be used to evaluate the minimal detectable contaminant proportion for specific organisms using285

different taxonomic assignment algorithms and databases.286

A primary limitation of the proposed method is the observed false positive contaminants identified287

in the baseline assessment. The reference database and taxonomic assignment algorithm are likely to im-288

pact the number and types of false positives. There are three primary types of taxonomic read classifica-289

tion algorithms: sequence similarity search, sequence composition methods, and phylogenetic methods290

(Bazinet and Cummings, 2012). The algorithm used in this study, PathoScope, is a type of sequence sim-291

ilarity search algorithm. Evaluating different types of algorithms using simulated data for the material292

genome of interest, similar to what was done in the baseline assessment part of this study, would help293

determine the optimal classification algorithm for a specific microbial material. Furthermore, recent ad-294

vances in taxonomic classification algorithms have led to the development of faster methods, including295

Kaiju, a sequence composition type method, and Centrifuge, a sequence similarity search type method296

(Menzel et al., 2016; Kim et al., 2016). Application of these new methods would lower the computational297

cost of the baseline assessment.298

A number of the observed false positives were due to errors in the database and inability of the taxo-299

nomic classification algorithm to correctly identify the source of the sequence when it matches multiple300

organisms in the database. Removing sequences from the database for irrelevant contaminants, such as301
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phage, plasmids, vectors, and multicellular eukaryotes, would reduce the proportion of false positives.302

By excluding irrelevant contaminants from the database, sequencing reads aligning to these irrelevant303

sequences would no longer result in false positive contaminants. Methods for excluding sequence data304

from a reference database are dependent on the classification algorithm used. For example, user-specified305

sequence data could be removed from the reference database by PathoScope using the PathoDB func-306

tion. Caution should be used when removing sequences from a reference database. For example, vector307

sequences from contaminants in sequencing reagents, if excluded from the database may be incorrectly308

classified as an organismal contaminant. Similarly, using a curated database free of misclassified and un-309

classified sequence data would further reduce the proportion of false positive contaminants (Tennessen310

et al., 2015). For example, the Bacillus subtilis-Synechocystis chimeric genome appeared to have a high311

false positive contaminant rate in the baseline assessment part of this study due to the genome being312

incorrectly classified as Bacillus subtilis and not a chimeric genome.313

CONCLUSIONS314

Identification and characterization of low abundance contaminants in a non-targeted manner is critical315

for a material used in high sensitivity assays such as PCR. With the continual decline in the cost of316

sequencing and advances in sequence analysis methods, whole genome sequencing combined with tax-317

onomic assignment algorithms provides a viable alternative to commonly used organismal contaminant318

detection methods such as culturing, microscopy, and PCR. The method presented here is suitable for319

detecting organismal contaminants in both genomic DNA and whole cell microbial materials, with the320

only a priori assumption that the contaminant is in the reference database. The false positive contaminant321

detection is a primary limitation of the proposed method. As false positive contaminants are database322

and taxonomic assignment algorithm dependent, additional work is needed to improve database curation323

and data authentication efforts as well as characterize taxonomic assignment algorithm performance.324
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