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Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.
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I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the
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ecosystem and quality aspects.
Before discussing an in-depth account of the empirical analy-
ses of these topics in the respective sections IV, V, and VI, a
brief introduction to containers and Docker is given.

II. CONTAINERS AND DOCKER

Containers are based on an OS-level virtualization technique
that provides virtual environments that enable process and
network isolation. LXC1 (Linux Containers) achieve this iso-
lation through chroot, cgroups, and namespaces. As opposed
to virtual machines (VMs), containers do not emulate another
host operating system, but rather share the underlying kernel
with the host. This significantly reduces the overhead imposed
through VMs. Docker is an extension of LXC’s capabilities
that provides higher level APIs and functionality as a portable
container engine. It aims to improve reproducibility of applica-
tions by enabling bundling of container contents into a single
object that can be deployed across machines.

The contents of a container are defined through declarative
instructions in a Dockerfile. Figure 1 illustrates a Dockerfile
with explanations (left in black) and typical quality issues as
defined by the Docker Linter [5] (red on the right). We provide
brief explanations of some of the available instructions to
provide a basic understanding of the format for the remainder
of the paper. A Docker container can inherit infrastructure
definitions from another container (FROM instruction). This
can either be an operating system container, such as Ubuntu,
but also any other existing container (e.g., with a pre-installed
JDK installation). For maintenance purposes, a Dockerfile
should provide the name and email of an active maintainer
(MAINTAINER instruction). Dockerfiles can also set environ-
ment variables (ENV instruction). Both the ADD and COPY
instruction allow to place files into the container. However,
ADD has more functionality, as it allows the source path
to be a URL, and if the source file is an archive (e.g.,
zip) it automatically unpacks the archive in the container.
RUN is a rather general and thus powerful instruction, as
it allows to execute any possible shell command within the
container. It is often used to retrieve dependencies, and install
and compile software. EXPOSE opens a specific port on the
container to enable network communication. By definition,
only one process can run within a container. This one process
is specified with the instruction CMD.

III. DATASET

To enable our research, we retrieved a list of repositories
that contain Dockerfiles from the public GitHub archive on
BigQuery2 in October 2016. The observation period for revi-
sions and changes that we mined to analyze evolution behavior
was from the first Dockerfile commit that appeared in the
repository until January 2017. Our initial list contained over
320000 Dockerfiles in 80054 GitHub projects. We decided to
remove repositories that were forks from other repositories to
avoid biasing our analysis with duplicate entries. This would

1LXC: https://linuxcontainers.org/
2https://cloud.google.com/bigquery/public-data/github

FROM	ubuntu

MAINTAINER	John	Doe	<joe@doe.org>

ENV	USE_HTTP	0

#	Add	proxy	settings

COPY		./setenv.sh	/tmp/

…

RUN	sudo	apt-get	update

RUN	sudo	apt-get	upgrade	-y

…

RUN	apt-get	install	-y	wget

RUN	sudo	-E	pip	install	scipy

RUN	cd	/usr/src/vertica-sqlalchemy;	

				sudo	python	./setup.py	install

EXPOSE	8888

#	CMD	ipython	notebook	--ip=*	…

ADD	runcmd.sh	/

RUN	chmod	u+x	/runcmd.sh

CMD	["/runcmd.sh"]

:12.04
Image	Version	Pinning	missing	(DL3006,DL3007)

:1.12

:0.18.1

Dependency	Version	Pinning	missing	(DL3008,DL3013)	

Base 
Image

Env.
Variable

`RUN` can execute any shell command

Installing dependencies

Comment

Installing software (compiling, linking, etc.)

Maintainer	or	maintainer	email	missing	(DL3012,D4000)

Open
Port

Using	ADD	instead	of	COPY	(DL3020)

Start
Process

Fig. 1. Example of a fictitious Dockerfile illustrating common instructions
and quality issues.

have been particularly problematic, as especially large, popular
projects such as Kubernetes or nginx are forked frequently.
The resulting study population for our analysis consisted of
70197 unique Dockerfiles originating from 38079 GitHub
projects. Further, we queried the GitHub API to get additional
metadata to our list, such as the owner type, owner name, used
programming languages, project size, number of forks, issues,
or the number of watchers.

To facilitate this mining process, we developed a Java-based
tool chain that checks out the projects from GitHub and parses
each Dockerfile and all its revisions into a relational data
model (see Figure 2 for a simplified view of the underlying
data model). Each project on GitHub stores one to many Dock-
erfile entities that contain metadata about the repository and
the file (70197 Dockerfiles distributed across 38079 projects).
A Dockerfile contains one to many Instruction entities (897186
instructions over all Dockerfiles), each of them having one to
many Parameter entities (4611272 parameters). Each Dock-
erfile entity stores one to many Revision entities (218259
revisions), which reflect every commit on this Dockerfile. The
initial commit that adds a Dockerfile to a GitHub project is
also modeled as a revision, hence every Dockerfile has at least
one revision. For two consecutive revisions (before and after
a change) of Dockerfiles, we compute structural differences,
and store the entity Diff with one to many Structured Change
entities for each instruction (1483763 changes). We catego-
rized different types of differences (Change Type): ADD,
MODIFY, DELETE, with subcategories for each instruction,
which enables more fine-grained evolution analysis.

One goal of our study is to compare Docker usage in the
general population of GitHub projects with how the tool is
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Fig. 2. Relational data model to support queries for data analysis.

used in popular projects. Hence, we introduce two additional
samplings in the database: Top-100 and Top-1000 repositories
containing Dockerfiles. To retrieve these two samples, we
order the repositories by the number of star gazers (a measure
for popularity) and select 100 and 1000 unique repositories
respectively.

In order to foster reproducibility and follow-up studies, we
provide a comprehensive reproducibility package, containing
tool chain, database, queries and analysis scripts. The tool
chain consists of two separate Java projects. dockerparser3 is
responsible for parsing and storing Dockerfiles in a relational
database (Postgres), and dockolution4 computes structural
changes between all revisions in a repository. We exported
our entire database (15 GB) and make it available together
with all of our analyses (SQL queries to the database, R and
Python scripts to produce plots) on GitHub5 for inspection and
reproduction.

IV. THE DOCKER ECOSYSTEM

To learn about the Docker ecosystem, we investigate what
types of projects use Docker, and what Docker is used for in
these projects.

To answer the first question, we analyze characteristics of
the projects containing Dockerfiles. Figure 3 shows histograms
of the size of projects in our data set, as reported by the GitHub
REST API.6 We consider, on the one hand, the overall data
set and on the other hand the Top-100 and Top-1000 projects
as described in Section III. Noticeably, projects in the Top-
1000 and even more so projects in the Top-100 are of larger
size. This effect, however, may be expected for more popular
projects in general, and must not necessarily be true only for
projects using Docker. Of all repositories, an unusual high
amount has a size between 130 and 150 KB. Upon manual
inspection, many of these repositories seem to consist of solely
a readme, a license file, and a Dockerfile – possibly being used
as a dedicated repository to separate packaging or deployment
concerns from an application.

3https://github.com/sealuzh/dockerparser
4https://github.com/sealuzh/dockolution
5https://github.com/sealuzh/docker-ecosystem-paper
6https://developer.github.com/v3/
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A. Programming Language Distribution

Figure 4 shows the distribution of primary programming
languages across the assessed projects, meaning the one lan-
guage per project that accounts for the majority of source
code (as measured in file sizes). We fetched the distribution
of programming languages per project using, again, GitHub’s
public REST API. In addition to our core data set, Figure 4
presents excerpts from the GitHub data available on Google’s
BigQuery service.7 This data set contains over 2.8 million
GitHub repositories, from which we queried the distribution of
primary programming languages. Figure 4 shows that Docker
projects are frequently dominated by shell scripts, while such
repositories in general are much less common on GitHub. In
addition, we see that specific languages like Go are relatively
strongly used in Docker projects, while others like PHP or
Java are relatively underrepresented.
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Java
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HTML

CSS

Makefile
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% of Projects with Primary Language
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Fig. 4. Distribution of top 15 languages in our dataset

7https://cloud.google.com/bigquery/public-data/github
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B. Base Images

A first indication of what it is that projects use Docker
for can be derived from the base images specified in the
Dockerfiles (cf. Section II). A base image specification is a
tuple of the form (namespace/)name(:version). In
every case, a name is used to identify an image, and often
to indicate the content of the image. For so-called “official”
images, for example ubuntu or node, the name is the sole
identifier of an image. Non-official images further depend on
a namespace, which is often the name of the organization
or user who maintains the image. In addition, a base image
specification can contain a version string, which can be a
specific version number (like 1.0.0) or a more flexible
version query (like latest). In sum, the Dockerfiles assessed
contained 9298 unique base image specifications. Figure 5
shows the 15 most commonly used base images in our dataset
overall, and how often they are used in the Top-1000 and
Top-100 projects. The figure shows a strong representation of
Linux distributions, including ubuntu, debian, centos,
alpine, and fedora. Notably, of the 15 most common base
images, 14 are official ones – among all 9298 images, only
130 (1.4%) are official.

ubuntu

debian

node

centos

python

dockerfile/nodejs

golang

alpine

java

nginx

ruby

scratch

php

fedora

busybox

0 5 10 15 20 25
% of Projects with Base Image Referenced in FROM Statements

All
Top−100
Top−1000

Fig. 5. Percentage of usage of 15 most commonly used base images

To further summarize the use of base images, we manually
classified the top 25 ones used in the overall data, the
Top-1000, and the Top-100 into 5 types. This approach allows
to cover significant parts of the overall data, as the 25 most
commonly used images account for 64% of usage across all
images. “OS” are base images that contain a blank operating
system, without further software being installed. “Language
runtime” images, in addition, contain a runtime needed
to execute applications written in a specific programming
language. “Application” base images come bundled with an
application, for example, a database or a Web server. We
marked base images specifications that contained placeholders
for parameters to be filled out at runtime as “variable”, e.g.,
{{namespace}}/{{image_prefix}}base:{{tag}}.

Finally, “other” denotes images that do no fit cleanly into any
of the above categories, for example scratch, an empty
image, or busybox, a collection of UNIX utilities. Operating
system and language runtime base images clearly dominate,
in all three data sets. The low number of application base
images may be, on first sight, surprising. However, the
here analyzed Dockerfiles likely define application images
themselves. The presented numbers do not necessarily reflect
actual usage amounts of base images, which could possibly
present a different picture all together. Among the top OS
images shown in Figure 5, image sizes differ: while alpine
is only about 4 MB small, debian and ubuntu are both
around 125 MB, and centos and fedora are around 195
MB big.
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Fig. 6. Percentage of base image types across top 25 images

C. Instructions

Indications of how projects build upon these images can be
obtained from the instructions used in the Dockerfiles. Table I
lists a percentage breakdown of the instructions used in the
assessed Dockerfiles, as well as the fraction of repositories
that use instructions at least once, across possibly multiple
Dockerfiles associated with the repository. We omitted results
for LABEL and ARG because their occurrence in all categories
constituted for less than 0.1%. RUN is the instruction used by
far the most in Dockerfiles. However, this is not surprising
considering the generic nature of the instruction that allows
to execute any viable (non-interactive) shell command within
the container. Taken together, RUN and COMMENT instructions
make up 56% of a typical Dockerfile. Notably, looking at the
usage of instructions within repositories, the mandatory FROM
command is omitted in some projects in all three views on
the data, indicating a Dockerfile that will fail to execute. The
remaining instructions (ADD, CMD, COPY, ...) are used in many
Dockerfiles, but only represent small fractions of Docker code.

Most instructions are used relatively evenly across the three
views on the data (entire population, Top-1000, Top-100). One
exception is the significantly lower use of the MAINTAINER
instruction in the top views, which is used to set the author of
a Dockerfile. The instruction has recently been deprecated and
it may be harder to clearly assign a single maintainer in larger
projects. Another exception is the WORKDIR instruction, used
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TABLE I
PERCENTAGES OF INSTRUCTIONS AND REPOSITORIES USING

INSTRUCTIONS AT LEAST ONCE

Instructions Repos using instructions
(at least once)

Instruction All T-1000 T-100 All T-1000 T-100
RUN 0.40 0.41 0.48 0.87 0.87 0.86
COMMENT 0.16 0.14 0.15 0.54 0.51 0.55
ENV 0.06 0.07 0.09 0.42 0.44 0.47
FROM 0.07 0.08 0.07 0.97 0.96 0.94
ADD 0.06 0.05 0.02 0.46 0.48 0.37
CMD 0.04 0.04 0.03 0.56 0.53 0.47
COPY 0.03 0.04 0.03 0.29 0.32 0.32
EXPOSE 0.04 0.04 0.03 0.45 0.43 0.42
MAINTAINER 0.04 0.04 0.03 0.55 0.42 0.45
WORKDIR 0.03 0.03 0.03 0.45 0.53 0.57
ENTRYPOINT 0.02 0.02 0.01 0.23 0.31 0.27
VOLUME 0.02 0.02 0.01 0.17 0.19 0.16
USER 0.01 0.01 0.01 0.10 0.10 0.08

to set the directory for RUN, CMD, ENTRYPOINT, COPY, and
ADD instructions to run in, which is more often used in the top
repositories. To this regard, top repositories follow prescribed
best practices to use WORKDIR over cd in RUN instructions.

Given that RUN instructions are used so prevalently to
implement Dockerfiles, we were interested in a narrower
breakdown as to what kind of commands are being issued
within containers. We categorized the commands executed in
RUN by first sorting them by usage and manually classifying
six categories from the top 100 results: dependencies (package
management or build commands, such as apt-get or pip),
filesystem (UNIX utilities used to interact with the file system,
such as mkdir or cd), permissions (UNIX utilities and
commands used for permission management, such as chmod),
build/execute (build tools such as make), environment (UNIX
commands that set up the correct environment, such as set
or source), and finally other (for any remaining commands).
We summarize our analysis of RUN instruction breakdown in
Table II. The majority of commands (>70%) can be classified
as belonging to either dependencies (⇠45%) or filesystem
(⇠30%). There are not too many large differences between
the overall population and the top projects on GitHub. Inter-
estingly, Top-100 projects use 13.5% build/execute commands,
compared to only 5.3% in all projects. A potential explanation
is that popular projects are often themselves used as depen-
dencies for other projects and thus need more commands to
build their own source.

TABLE II
BREAKDOWN OF RUN INSTRUCTIONS IN SIX CATEGORIES

Instructions
Category Examples All T1000 T100
Dependencies apt-get, yum, npm, pip, mvn 0.452 0.447 0.452
Filesystem mkdir, rm, cd, cp, touch, ln 0.304 0.293 0.294
Permissions chmod, chown, useradd 0.073 0.052 0.023
Build/Execute make, python, service, install 0.053 0.083 0.135
Environment set, export, source, virtualenv 0.006 0.01 0.002
Other 0.113 0.115 0.094

D. Takeaways

Our ecosystem analysis yielded some interesting results
around the characteristics of projects that use Docker on
GitHub. Based on these results, we derived takeaway mes-

sages concerning image size, base image recommendation, and
instruction abstractions.

Image Size. Our results show that most Dockerfiles use
an OS as its base image. However, not all OS images are
created equal. More established systems, such as Debian and
Ubuntu, come bundled with their entire operating filesystem
and can be around 125MB [6]. Other base images contain
light-weight operating systems, such as Alpine, that are as
small as 4MB [6]. Most projects use the larger OS as base
images. This is probably due to the convenience of working
with a known, established system and their widely used pack-
age managers to handle dependencies. However, that defeats
the initial purpose of using containers to lower the footprint
of virtualization. The container ecosystem would benefit from
tools that minimize image size and improve build time and
reduce space requirements as a consequence.

Base Image Recommendation. Following the insight from
our previous section, we envision a recommender system that
analyzes an existing Dockerfile and produces transformations
such that the same application can be run with a different base
image to reduce the overall size and preferably also build time.
Even small reductions in size can have tremendous effects
when applied at scale. The size of an image can have an effect
for continuous integration (CI) when an application consists
of multiple microservices [7] that are built with Docker. In
the same vein, when these services are deployed within an
orchestration system (e.g., Kubernetes), the size of a container
makes quite a difference for schedulers.

Instruction Abstraction. Our analysis shows the most com-
monly used instruction to be the generic RUN (apart from the
mandatory FROM). When breaking down the RUN statement,
we saw that around 45% are used to define dependencies.
Given these results, we argue that there might be a benefit by
introducing a new abstraction for defining dependencies in a
more explicit manner. This would also help with transitioning
to different base OS images, when the implementation under-
neath the dependency abstraction layer can take care of, for
instance, which package manager should be used.

V. QUALITY OF DOCKERFILES AND STANDARD
COMPLIANCE

A. Most Violated Rules

Similar to various programming languages or other IaC lan-
guages (e.g., Puppet, Chef), a set of best practices evolved [8]
for describing images in Docker’s declarative language. Best
practices are not only helpful to avoid common mistakes (e.g.,
using ADD instead of COPY), but also foster the traceability of
images (e.g., the maintainer’s contact information). In order
to identify how Docker repositories on GitHub comply to
those best practices we relied on a Dockerfile linter [5],
which is based on the aforementioned best practices and
contributions by the GitHub community. This linter parses
a given Dockerfile and checks adherence to a set of rules
representing the best practices on top of the resulting AST.
We executed the linter for every Dockerfile in our data set
and added the reported rule violations to our database.
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TABLE III
12 MOST VIOLATED RULES ACROSS ALL REPOSITORIES, TOP 100 AND TOP 1000 REPOSITORIES BASED ON THEIR STAR RATING, AND A RANDOM SAMPLE

OF 560 BUILT DOCKERFILES.
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All (n=33670) 8.8% 1.3% 2.0% 2.2% 3.4% 4.2% 4.3% 9.7% 10.0% 11.9% 12.8% 13.5% 15.9%
Top-100 9.5% 0.6% 4.8% 1.3% 3.2% 7.1% 4.8% 4.3% 11.1% 12.2% 5.0% 14.5% 21.7%
Top-1000 7.9% 0.9% 2.2% 1.6% 2.9% 5.5% 5.3% 7.7% 9.1% 11.1% 12.2% 13.8% 19.8%
Build Failure (n=203) 10.8% 0.4% 2.3% 1.7% 3.1% 4.7% 3.5% 14.9% 7.6% 10.8% 17.5% 11.4% 11.4%
Build Success (n=357) 6.6% 0.7% 1.9% 1.7% 4.1% 3.7% 6.4% 7.7% 10.0% 13.1% 13.6% 14.8% 15.6%

In addition to checking rule violations across the entire
population, we wanted to identify how many Dockerfiles build
successfully. Since building all Dockerfiles is not feasible,
we selected a random sample of 560 repositories (confidence
level 95%, confidence interval 4). To avoid transient effects
(e.g., connection speed, network time out) we repeated ”docker
build” three times for each Dockerfile and collected the final
build outcome (i.e., success or failure) and the build time in
seconds. To avoid caching effects due to Docker’s layering
approach, we removed all images and containers after every
single build. For six repositories we obtained both successful
and failed builds, and thus conducted another build of the
respective Dockerfile. For all six repositories this resulted in
either three successful or three failed builds and a single outlier
(likely due to transient effects). We replaced the outlier by the
additional run to ensure a stable set of failed and successful
builds.

Table III shows the 12 most violated rules reported by the
linter. The severity of the rule violations vary, hence missing
contact information of the maintainer is not as crucial as
rules regarding version pinning, as the usage of incompatible
versions might lead to failed builds. After providing a short
overview about the quantity of rule violations we focus on
specific rules and the differences we identified among the
considered segments of the population. Detailed information
and examples for each rule not covered in detail (e.g., DL3003)
can be found in the linter’s GitHub repository [5].

Overview. Across the entire population, Dockerfiles violate
3.1 rules on average, while Dockerfiles of the Top-100 most
prominent projects violate 3.2 rules and Dockerfiles of the
Top-1000 projects 3.5 on average. Focusing on the Top-100
and their Dockerfiles, 19 projects out of the Top-100 do not
violate a single rule. This is similar to the Top-1000, in which
201 projects (i.e., 20%) conform to all of the rules checked
by the linter. Across the entire population, this is the case for
16% of the repositories.

Version Pinning. The linter checks for four types of version
pinning: image version pinning (DL3006), apt-get version
pinning (DL3008), pip version pinning (DL3013), and usage
of ”:latest” (DL3007). All of them report the absence of a
concrete version, either for the base image (i.e., FROM), or
for a concrete package to be installed (i.e., RUN). In both

cases, the absence of a concrete version can lead to the
usage of a version which is not compatible with the other
components of the container, thus to failed builds, or failures
hitting surface only at container execution. Therefore, best
practices suggest to specify concrete versions. 9.7% of all
Dockerfiles across the entire population violate the rule of
image version pinning. Interestingly, when looking at the
Top-100 repositories, just 4.3% of the considered Dockerfiles
violated this rule. Therefore, more popular repositories might
be more aware of bad practices associated with build failures.
However, we also identified that in case of the installation
of specific packages (i.e., pip and apt-get version pinning),
the most popular repositories perform worse than the entire
population, even though on a smaller scale. We assume that
this is related to more sophisticated Dockerfiles, hence more
dependencies and therefore more RUN instructions to violate
those rules. This assumption is supported by our finding that
the Top-100 projects have on average more RUN instructions.
That the absence of concrete versions could be problematic
for the build success is supported by the finding that 14.9%
of our repositories with failed builds violate the rule of image
version pinning, compared to only 7.7% of repositories with
successful builds. Violations because of the ”:latest” tag for
the base image are uncommon, thus developers seem to be
widely aware of this problem.

Copy/Add. One of the most prominent bad practices is to
use the instruction ADD instead of COPY (DL3020). Basically,
both instructions provide similar functionality to add resources
to an image. However, the ADD instruction supports additional
functionality. It allows, for example, downloading resources
from a URL and automatically unpacks compressed local
files (e.g., tar, zip, etc). This additional ”magic” is considered
dangerous and can lead to accidental failures as long as
developers are not aware of it, e.g., when he/she wants to add
a zipped folder to the image and ADD automatically unpacks
it. Across all Dockerfiles, still, 12.8% violated the practice
to prefer COPY. Again, this is not the case for the Top-100
repositories with only 5%. While the sample of successful
builds (13.6%) is in the range of the entire population, 17.5%
of the repositories with failed builds violated this rule, making
it to the top violated rule of failed builds.

Missing Maintainer Information. Regarding maintainer
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information (DL4000) we detected diverging results across the
different segments of the population. 15.9% of all Dockerfiles
do not use the MAINTAINER instruction specifying both name
and email address of the developer responsible for the image.
Interestingly, for popular projects, this best practice is violated
more often with 21.7% for the Top-100 and 19.8% for the Top-
1000 repositories. We assume that especially for more popular
projects, more developers contribute, thus maintenance is not
assigned to an individual developer and consequently, the
MAINTAINER instruction is not used.

B. Build Analysis

We were able to successfully build 357 images from the
540 Dockerfiles in our sample. Compared to results reported
for building Ruby (72.7%) and Java-based (82.4%) projects on
GitHub using TravisCI [9] the success ratio of Docker builds
(66%) is lower. Table IV provides descriptive statistics for the
measured build time and Figure 7 shows the distribution of
the build time using a density plot.

TABLE IV
BUILD TIME STATISTICS OF FAILED AND SUCCESSFUL DOCKERFILE

BUILDS IN SECONDS.

Failed Successful
% 0.34 0.66
mean 90.5 145.9
median 24.7 76.7
min 0.0 0.7
max 1539.0 2742.0
sd 197.4 264.0

The average standard deviation between the three build runs
is 9.1 seconds, 13.9 seconds for failed builds and 6.3 for
successful builds. Due to the different nature of the various
projects, the overall standard deviation of build duration is
higher (see Table IV). Based on our sample, it can take up
to 1539 seconds and on average 90.5 seconds until a build
fails. In comparison, for Java projects built on TravisCI, the
average duration (i.e., build duration excluding latencies such
as VM scheduling) of failed builds is 9.7 seconds. We used
the TravisTorrent [10] data set to retrieve this value. This
difference regarding build duration means that while Java
developers have almost immediate feedback about a build’s
outcome, it takes substantially longer for Docker builds. Such
long build durations are especially problematic if the step to
build the image is part of a continuous deployment or delivery
pipeline [11]. The idea of fast, frequent releases [12] with
immediate customer feedback is impeded by long lasting build
processes. Docker’s strategy of splitting images into multiple
layers addresses this problem and speeds up the process by
only downloading those resources (e.g., packages) which are
not yet available locally. However, when utilizing CI services
such as TravisCI or CircleCI, it is not guaranteed that a new
build happens on the same instance (e.g., virtual machine)
as the previous build. Therefore, for each build, all resources
and thus layers have to be downloaded again, slowing down
the overall build process. An implication for service providers
such as TravisCI would be to provide means to cache those

layers. Only recently with version 1.13, Docker released a fea-
ture (i.e., ”--cache-from”) allowing CI service providers
to address this problem and thus confirms our finding of this
critical practical issue. However, at the time of the submission
of this paper, there was not yet any practical implementation
of it.
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C. Multi-Process Management

Traditionally, a Docker container runs a single process
following the UNIX philosophy ”do one thing and do it well”.
However, for decades developers were used to run multiple
processes in parallel (e.g., application’s main process, worker
processes for collecting and persisting logs, etc). The Docker
design practice is to isolate every single logical component
in a separate container. If new functionality is needed, a new
container is created for exactly this purpose. However, there
are cases where it is practical to run multiple processes inside
a container (e.g., the actual application and a ssh server for
being able to connect to the running container). Since doing
this manually is known to be error-prone, there are third party
tools addressing this issue (e.g., supervisord, runit, monit).

We investigated how prevalent the problem of multi-process
containers is, and what tools developers prefer. To that end,
we analyzed the parameters supplied to ENTRYPOINT and
CMD instructions. We identified that supervisord is by far
the most common tool for multi-process management. 1357
repositories called supervisord in the CMD instruction, and
152 in the ENTRYPOINT instruction. s6 (i.e., s6-svscan) is
on the second place and used by 29 repositories in the CMD
instruction, and 2 in the ENTRYPOINT instruction. Other tools
including monit, runit, system.d, and upstart are used by 10
and less repositories.

In total, 1581 projects (i.e., 4% of all Docker projects) make
use of such tools. We identified no usage within the Top-100
and 52 projects within the Top-1000. This is less than we
expected due to the prominent coverage of these approaches in
online resources (e.g., developer blogs). As we only analyzed
the execution of multi-process tools in ENTRYPOINT and
CMD instructions our results might be lower than the actual
population. Dockerfiles allow the execution of shell scripts in
both the ENTRYPOINT and CMD instructions, thus the calls to
such tools can be ”outsourced” to separate scripts. To check
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our results, we analyzed whether respective RUN instructions
install these tools using common package managers such as
apt-get, yum, or dpkg. However, our results for supervisord
were on the same level as before, but we counted a higher in-
stallation rate of system.d with 184, runit with 105, and monit
with 25 repositories. Those additional installations might be
either called in those separate shell scripts, or never used.
However, compared to the entire population of projects, those
tools our only used by a minority, and thus also confirmed our
initial results on CMD and ENTRYPOINT instructions.

D. Takeaways

Based on our analysis regarding the compliance to standards
and best practices, and our build time analysis we derived
takeaway messages concerning quality check integration, build
acceleration, and multi-process support.

Quality Check Integration. During our analyses we iden-
tified that the Docker linter provides valuable feedback con-
cerning the quality of Dockerfiles. We assume that especially
the rules tackling version pinning help developers to prevent
build failures. Dockerfiles that do build successfully right
now might not do so in future when dependencies break.
Specifying concrete versions for both the base image and all
other dependencies is the way to mitigate these problems.
Therefore, our implication for the Docker tool chain is that
it would be beneficial to directly include such checks into
the ”Docker build” process. Developers should receive at least
warnings when they try to build an image from a Dockerfile
which violates rules that might influence the build result (e.g.,
version pinning, COPY vs. ADD). This would foster awareness
and directly pinpoint developers to problematic instructions.

Build Acceleration. We have seen that, for example in
comparison to failed Java builds, failed Docker builds take
fundamentally longer. The larger the chosen base image and
the more dependencies are required, the longer it takes to
download all required resources. CI service providers still
need to find solutions to cache images (i.e., their layers),
and speed up these time consuming downloads [13]. With its
current version (1.13) Docker has provided a first step tackling
this issue. Besides technical solutions, service providers might
recommend developers to reconsider their overall build and
deployment process and to rely on already built images hosted
on platforms such as Docker Hub. However, this would require
strictly separating the process of building the image from the
CI part of the application (e.g., running tests) and container
deployment.

Multi-Process Support. Given our finding that tools such
as supervisord are only used by a minority of the Docker
repositories (4%), we do not see any indication to consider
multi-process support as first-class citizen for Docker. Further
analysis is required to determine why those 4% have to rely
on multi-process tools and why the common design practice
of isolating single functionality is not sufficient for them.

VI. MAINTENANCE AND EVOLUTION

We now turn towards analyzing the maintenance and evo-
lution of Dockerfiles. We consider revisions, where every
revision is formed by a commit that added, removed, or
modified at least one line in a Dockerfile. For every Dockerfile,
we use revisions per year as a metric to define how often it is
updated. We count the original commit as a revision, so every
Dockerfile has at least one revision.
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A. Rate of Change

Figure 8 visualizes yearly revisions for all studied Docker-
files. Evidently, Dockerfiles generally are not changed often.
The arithmetic average of the number of yearly revisions
over all files is 3.11. However, this mean is biased, as the
distribution appears to closely follow a power law, with
62.27% of Dockerfiles being revised 0 or 1 times per year
after the initial commit. Interestingly, Dockerfiles belonging
to the Top-100 and Top-1000 projects are in fact updated
substantially more often, with an arithmetic mean of 5.81 and
4.70 revisions per year respectively. Taken together with the
results discussed in Section IV, we can conclude that more
popular projects are not only larger, but also maintained more
actively. For the Top-100 and Top-100 samples, no power law
can be observed. Instead, in both cases, the most common
number of revisions per year is 2. Further, the slope of the
distribution is flatter than predicted by a power law, i.e., more
Dockerfiles are revised more frequently. Finally, for the Top-
100 projects, we observe that a surprisingly large percentage
of Dockerfiles is updated 12 times per year. We assume this
spike to be a statistical anomaly that is due to the relatively
low sample size in the Top-100 projects category (216 distinct
Dockerfiles).

1) Magnitude of Change: Another relevant dimension to
this question is how large, and of what kind, revisions to
Dockerfiles are when they happen. For this analysis, we filter
out all initial commits, so that we only consider revisions that
actually modify an already existing Dockerfile. Our data set
shows that such revisions are typically small, with on average
only 3.98 lines of code in Dockerfiles changed. 80.39% of
all revisions consist of 5 lines of Docker code changed or
less. Figure 9 depicts the number of total, added, removed, or
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modified lines of Docker code per revision. For this analysis,
we have not observed a significant difference for the Top-
100 and Top-1000 projects as compared to the entire data set.
Hence, we have chosen to only plot the entire data set in
Figure 9. Most changes to Dockerfiles consist of instruction
additions (47.44%), followed by the removal (33.17%) and
modification (19.40%) of instructions.

B. Nature of Change

Table V drills deeper into the nature of changes to Dock-
erfiles. This table lists all currently supported instruction
types as discussed in Section II, and specifies how many
changes refer to an instruction of the respective type. We
omitted results for LABEL, USER, VOLUME, and ARG because
their changes in all categories constituted for less than 0.1%.
53% of all changes relate to RUN instructions. Given that
RUN instructions only make up 40% of all instructions (cf.
Table I), this type of instruction appears to be changed more
frequently than others. Drilling down into the types of changed
RUN instructions (e.g., dependency management, file system)
reveals a similar distribution as for Dockerfiles in general (cf.
Table II). Interestingly, RUN instructions are often added or
removed (59% and 61% respectively), but much more rarely
modified (29%). Conversely, FROM instructions are frequently
modified (29%), but almost never added or removed. This can
be explained by the special nature of this instruction – it is used
to specify a base image and is required for a Dockerfile that
can be executed. Consequently, Dockerfiles typically contain
exactly one FROM instruction. An update to this instruction
may indicate a switch to a different base image, or a version
change. Table V also presents the same data for the Top-1000
and Top-100 projects. Largely, no significant differences can
be observed for these projects. However, the Top-100 projects
appear to be modifying the FROM instruction less frequently
than other projects (26% for the Top-100 versus 29% in the
entire population), which may be explained by projects with
a large user base being more conscious of significant changes
such as updating the base image.

C. Takeaways

Given our results regarding maintenance and evolution, we
can reinforce the implications from the previous two sections.

Dependency Evolution. Dependencies are over-
proportionally represented in the change behavior of
Dockerfiles. We see a high rate of change regarding
dependencies as an opportunity to echo our findings from
before. First, introducing an explicit abstraction (i.e.,
instruction) to define dependencies can support the specific
scenarios of change. Second, pointing developers to issues
concerning dependencies (e.g., version pinning) early in the
process may avoid breaking the build and reduce the need for
change.

Structured Diffs. Most changes manifest as unstructured
(or semi-structured at best) text. When developers observe
and deal with change in Dockerfiles, they often deal with
it on a line-by-line basis through a built-in history analysis
tool such as diff. Developers could benefit from tooling
that allow for structural differencing between two consecutive
versions of infrastructure. Similar approaches have already
been established for program source code [14], [15].

VII. THREATS TO VALIDITY

We now discuss the main threats to the validity of our study.
Construct Validity. An essential threat to construct valid-

ity is that the relational model we designed might not be
an adequate representation of the different data sources we
intended to study. This involves capturing the version history
of Dockerfiles broken down to a statement-level including the
addition, removal, and modification of concrete instructions,
and the representation of the violated rules reported by the
Docker linter. Moreover, the used parser has to correctly
interpret Dockerfiles and write the extracted data into the
chosen relational model. Our tooling is based on the assump-
tion that Dockerfiles follow the standard naming convention
Dockerfile without supplied file type. We have mitigated
this threat by manually inspecting and validating a small
fraction of parsed projects during construction of the parser
as well as in the analysis phase.

Internal Validity. Threats to internal validity include poten-
tially missed confounding factors during result interpretation.
For example, we assume that missing image version pinning
might be an explanation for a higher build failure rate in
our build experiment. However, there could be other factors
such as failed test cases when building the actual application
that lead to the image build failure. Another threat to internal
validity is our segmentation of the population of Docker repos-
itories. We mitigated the effect of a selection bias towards the
100 and 1000 most popular Docker repositories by including
the entire Docker population in all our analyses.

External Validity. To extend the generalizability of our
study we considered the entire population of Docker reposito-
ries on GitHub. Excluding forked repositories might limit the
generalizability to a certain degree. However, forked reposito-
ries without any changes compared to their source repository
could have led to result misinterpretation. We only considered
Docker repositories on GitHub. Consequently, it is not assured
that our outcomes generalize to projects hosted on other
services, such as Bitbucket. Moreover, we solely analyzed
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TABLE V
RELATIVE CHANGES OF ALL DOCKER INSTRUCTION TYPES.

All Top-1000 Top-100
All Add Mod Rem All Add Mod Rem All Add Mod Rem

RUN 0.53 0.59 0.29 0.61 0.55 0.64 0.25 0.64 0.58 0.66 0.31 0.62
Dependencies 0.48 0.5 0.34 0.49 0.49 0.51 0.35 0.5 0.51 0.52 0.44 0.51

Filesystem 0.26 0.24 0.42 0.25 0.24 0.23 0.41 0.22 0.24 0.24 0.37 0.2
Permissions 0.06 0.06 0.07 0.06 0.05 0.06 0.04 0.05 0.03 0.03 0.0 0.04

Build/Execute 0.04 0.04 0.03 0.05 0.06 0.05 0.05 0.07 0.1 0.09 0.06 0.14
Environment 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.0 0.01 0.01 0.01 0.0

COMMENT 0.12 0.12 0.11 0.12 0.09 0.09 0.10 0.09 0.10 0.10 0.10 0.09
ENV 0.07 0.06 0.13 0.05 0.07 0.05 0.16 0.05 0.10 0.06 0.16 0.12

FROM 0.06 0.00 0.29 0.00 0.07 0.00 0.31 0.00 0.00 0.04 0.26 0.00
ADD 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.07 0.02 0.02 0.01 0.03
CMD 0.05 0.04 0.06 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.02

COPY 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.05 0.03 0.04
EXPOSE 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.01

MAINTAINER 0.01 0.01 0.02 0.00 0.01 0.00 0.04 0.00 0.01 0.00 0.02 0.01
WORKDIR 0.01 0.02 0.00 0.02 0.01 0.01 0.00 0.01 0.01 0.02 0.00 0.02

ENTRYPOINT 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.03 0.01 0.04 0.03

open source software. Docker usage (e.g., languages, tools)
and the compliance to best practices regarding the quality of
Dockerfiles might be different in closed source environments.
Our analyses are only based on Docker and do not include
other container technologies such as Linux containers (LXC).
Finally, our results regarding the build quality and duration
are limited and not entirely generalizable as we conducted
our analysis only on a randomly selected subset (n=560) of
the population.

VIII. RELATED WORK

With the increase in relevance of modern Web engineering
concepts, such as continuous deployment [16] and cloud
computing [17], empirical research on how to quickly build
and deploy code on virtualized infrastructure has received
more attention. Seminal early work on build systems has been
conducted by McIntosh et al., who studied both, Java-based
build systems [18] and building software more generally [19].
In cloud-based systems, Infrastructure-as-Code (IaC) has been
identified as the foundation that enables elasticity and large-
scale deployments [20].

So far, there is little research on how to develop and main-
tain IaC code, even though infrastructure code has been shown
to often contain “code smells” [21] or to otherwise behave
unexpectedly. For instance, following Hummer et al. [2], about
a third of popular recipes for the often-used IaC language Chef
are not idempotent, as required by Chef. Jiang and Adams have
analyzed the co-evolution of IaC code with production and test
code, and compare them with build files [3]. They conclude
that IaC code is tightly coupled with test code, and is adapted
about as often.

Existing empirical studies related specifically to Docker
typically focus on performance aspects, often comparing con-
tainer performance and overhead with traditional virtualization
techniques [22], [23], [24]. However, despite this shortage
of empirical work, the importance of Docker for academia
and industry is rarely doubted in literature. For instance,
Boettiger and Cito et al. have concurrently proposed that con-
tainerization technology may be an important game changer
in making systems and software engineering research more

reproducible [4], [25]. In industry, Docker is increasingly
being used to build next generation Platform-as-a-Service
clouds [26].

Despite this importance, to the best of our knowledge, no
existing research has investigated the quality of Docker IaC
code, the evolution of Dockerfiles, nor empirically studied the
open source ecosystem of Docker. With this paper, we attempt
to address this research gap, and provide insights into the
practical usage of Docker in the open source community.

IX. CONCLUSION

We conduct the first large-scale empirical study to analyze
the ecosystem, quality aspects and evolution behavior of
Docker containers on Github. Our study is based on 70197
Dockerfiles from 38079 projects, which is the entire population
of non-forked projects as of October 2016. We find that most
containers inherit infrastructure from heavy-weight operating
systems, most probably out of convenience, which defeats the
purpose of container virtualization of reducing its footprint.
We also find that 28.6% of quality issues (as indicated by the
Docker Linter) arise from missing version pinning. Further,
we were not able to successfully build 34% of Dockerfiles
from a representative sample of 560 projects. Integrating
quality checks, e.g., to issue version pinning warnings, into
the container build process could result into more reproducible
and stable builds in the future. Finally, we have observed that
Dockerfiles are not changed often, with a mean of 3.11 to
5.81 revisions per year. Most of these deal with dependencies,
which are currently not explicitly managed and dealt with in
Docker. We argue that introducing an abstraction that could
deal with the intricacies of different package managers and
could improve migration to more light-weight images in the
future. This would help Docker live up to its claim as a light-
weight alternative to standard virtualization.
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