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ABSTRACT

While numerous effective peak finders have been developed for eukaryotic systems, we have found that
the approaches used can be error prone when run on high coverage bacterial and archaeal ChIP-Seq
datasets. We have developed Pique, an easy to use ChIP-Seq peak finding application for bacterial
and archaeal ChIP-Seq experiments. The software is cross-platform and Open Source, and based on
only freely licensed dependencies. Output is provided in standardized file formats, and may be easily
imported by the Gaggle Genome Browser Bare et al. (2010) for manual curation and data exploration, or
into statistical and graphics software such as R R Core Team (2013) for further analysis. The software is
available under the BSD-3 license, and tutorial and test data are included with the documentation.
http://github.com/ryneches/pique
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INTRODUCTION
Next generation sequencing coupled with chromatin immunoprecipitation (ChIP-Seq) is a powerful
technique for studying protein-DNA interactions. The growing popularity of ChIP-Seq has spurred the
development of over thirty peak picking algorithms (an extensive survey of these packages was conducted
by Wilbanks et al. Wilbanks and Facciotti (2010)). The relative performance of representative peak
detection algorithms has been recently reviewed by several authors Pepke et al. (2009); Laajala et al.
(2009); Szalkowski and Schmid (2010); Feng et al. (2011); Rye et al. (2011).

While ChIP-Seq has been predominantly used to interrogate protein-DNA interactions in eukaryotic
systems, it is an especially powerful tool for studying microbes. The small genomes and rapid growth
rates, as well as the extensive repertoire of experimental genetic tools available for microbial systems
permit ChIP-Seq to provide a particularly clear picture of the state of a cell’s transcriptional regulatory
machinery.

However, only one ChIP-Seq analysis tool, CSDeconv Lun et al. (2009), has been explicitly developed
for microbial data. This MATLAB package successfully finds peaks in microbial ChIP-Seq data, but its
application is limited by its dependency on proprietary software, lack of support for manual curation,
and difficult operation (users must modify application source code to load their own data). Wilbanks and
Facciotti (2010) Herein we describe Pique, a conceptually simple, Python-based peak finding package
that enables easy and rapid peak finding in bacterial and archaeal ChIP-Seq datasets. Pique is distributed
under the BSD license, and all dependencies are freely licensed.

1 APPROACH
Because bacterial and archaeal genome sizes are typically two or three orders of magnitude smaller than
eukaryotic genomes, ChIP-Seq in bacteria and archaea may cost-effectively yield coverage several orders
of magnitude larger than in eukaryotic systems. This results in continuous coverage rather than the sparse
coverage typically present in eukaryotic ChIP-Seq data. This feature of microbial ChIP-Seq experiments
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permits simpler, faster algorithms to be used. In this manuscript, we present an approach based on classic
noise reduction techniques from signal processing.

Pique is designed for use in systems that have genomic complexities such as insertion sequence (IS)
elements, gene dosage polymorphisms and accessory genomes that cause coverage variations unrelated to
ChIP, or in cases where the organism under study is not identical to the reference genome. The enrichment
“pedestals” and “holes” that result from these effects may be be problematic for detecting peaks and
calculating enrichment levels. If the user provides a map of these features, the software will automatically
perform a segmented analysis to avoid these problems.

The wide variety of microbial systems, target proteins, protocols, and experimental conditions calls
for tailored statistical approaches to ChIP-Seq. Rather than attempting to anticipate each of these (and
their combinations) with a very large number of statistical and heuristic parameters, we have chosen to
focus on the aspects of the analysis that are common to all ChIP-Seq experiments; finding putative peaks,
estimating binding coordinates and binding affinities. The determination of statistical significance is
typically straightforward for any particular experiment, but is quite difficult to robustly generalize.

Pique allows users to create high-quality peak lists in two ways. First, for each peak reported we report
metrics that can be used to ascertain which peaks are statistically significant (usually, this involves little
more than sorting the table and choosing a cutoff). Second, we provide integrated support for curation
using the Gaggle Genome Browser. Bare et al. (2010) This permits interactive curation of the peak list
and analysis of the ChIP-Seq data in the context of other Gaggle-enabled resources. Bare et al. (2007);
Shannon et al. (2006) Interactive curation of a microbial ChIP-Seq data set can typically be completed in
a few minutes.

2 METHODS
Pique requires BAM files as inputLi et al. (2009). Therefore, prior to using Pique, reads should first be
filtered, trimmed, and aligned to a reference genome (ideally, all contigs of the reference genome should
be used as the mapping target).

By default, Pique treats each contig as a single analysis region, but the user may designate regions
within a contig for separate analysis. This may be useful when coverage levels are systematically
altered over large regions. Pique supports three features types: analysis regions, masking regions, and
normalization regions. Analysis regions are segments of sequence data that are to be processed together.
By default, the software treats each contig in the BAM file as a single analysis region, but the user may
choose to split these into smaller segments to compensate for large duplicated features. Masking regions
are simply removed from their respective analysis regions, and are useful for removing coverage variation
due to repetitive DNA. Normalization regions selected within an analysis region are used to compensate
for total coverage discrepancies between the background and ChIP alignments.

The user launches the analysis by providing alignment an file for the ChIP data, an alignment file for
the control data, and a coverage feature map. The primary analysis proceeds as follows :

• The alignment files are digested into numeric coverage tracks, and the analysis regions are initialized
in memory. Masking regions are applied.

• High-k noise is removed using a Wiener-Kolmogorov filter. Wiener (1942) The filter delay α is
chosen to approximate to the expected footprint size of the targeted protein. The choice of filter
implies the existence of two inputs; a “true” signal, and a noise source. Both are assumed to be
stationary stochastic processes combined additively.

• A Blackman window of a diameter equal to the read length is convolved with the filtered coverage
track to remove features smaller than one read. This reduces the effect of fragmentation position
bias, and may be especially useful when transposon-based library construction is used.

• The noise threshold in the ChIP coverage track is measured by comparing the coverage distribution
in the ChIP track to the control track within user-annotated non-peak regions. Features that exceed
the noise threshold are identified.

• Because read orientations are constrained by the fragment size, binding events cause an offset
enrichment between the forward and reverse strands. Pique exploits this by requiring that the stop
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Figure 1. Peaks found in the included sample dataset, derived from ChIP-seq of tfbD in Halobacterium
salinarum sp. NRC1. Blue and red shading indicate coverage of reads aligned from the ChIP-derived data
to the forward and reverse strands, respectively. Blue and red lines represent the filtered coverage levels
for the forward and reverse strands, respectively. The dashed line is the detected noise threshold for the
region. Detected peaks are indicated in orange boxes.

coordinate of the forward strand enrichment envelope must fall between the coordinates of the
reverse strand enrichment envelope, and that the start coordinate of the reverse strand enrichment
envelope fall between the coordinates of the forward strand enrichment envelope. (We call this the
overlap criterion.)

For each putative peak, Pique calculates the enrichment ratio of the ChIP alignment to the control
alignment, the binding coordinate, and the enrichment normalization factor for that analysis region.

3 RESULTS
Performance of Pique was benchmarked against CSDeconv using a ChIP-Seq experiment targeting TfbD
(transcription initiation factor IIB 4) DNA-binding events in late exponential phase of Halobacterium
salinarum sp. NRC1 described in Wilbanks et al. Wilbanks et al. (2012). Peak lists for both Pique and
CSdeconv were compared with experimentally verified transcription start sites collected by Koide et
al Koide et al. (2009) and scanned for the presence of putative binding motifs using MASTBailey and
Gribskov (1998). An ab initio search for putative binding motifs in each peak list was conducted, and the
recovered motifs compared using STAMP Mahony et al. (2007).

3.1 TfbD in Halobacterium salinarum sp. NRC1
The putative TfbD binding motif for this organism is analogous to Pyrococcus furiosus a similar archaeon’s
TFB protein in photocrosslinking study Renfrow et al. (2004), and is thought to consist of a TFB
recognition element (BRE), a TATA box, a proximal promoter element (PPE) and a transcription start
site (TSS). This putative promoter motif was scanned against each peak region using MAST Bailey and
Gribskov (1998) with an e-value cutoff of 100 and the default motif p-value cutoff of 10−4. Peaks found
by each software package were also evaluated for presence of experimentally determined transcript start
sites (TSS) Koide et al. (2009) (Table 1).

Enrichment ratios (the ratio of the integrated coverage to the background) for each peak were
calculated, and peaks from each software package for each category were then placed in rank order (Fig.
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Found by Peaks TSS Motif TSS & Motif
Pique or CSDeconv 610 332 197 69
Pique 417 225 128 50
CSDeconv 449 213 138 50
Pique & CSDeconv 257 106 69 31
Pique only 160 119 59 19
CSDeconv only 192 107 69 19

Table 1. Putative binding motifs and transcript start sites detected in peaks recovered by Pique and
CSDeconv.

Peak list Motif e-value
CSDeconv all 3.3×10−144

CSDeconv only 5.2×10−35

Pique & CSDeconv 6.9×10−77

Pique all 4.6×10−130

Pique only 4.9×10−82

Table 2. Statistical support for motifs computed from lists of peaks found by Pique and CSDeconv.

2). It was found that Pique recovered more peaks than CSDeconv, and more peaks with experimentally
verified transcript start sites. It was found that Pique and CSDeconv recovered peaks containing the full
putative binding motif (BRE-TATA-PPE-TSS) at the same rate.

In order to ascertain the quality of the predicted peak regions uniquely predicted by each software
package, an ab initio search for the putative binding motif was conducted for each list of peaks.

Sequence entries were created by extracting 100-bp stretches of sequence centered at each respective
called peak center. Each sequence data set was subjected to an iterative MC MAST/MEME MotifCatcher
search [3] with 100 seeds. This search was conducted for five groups of sequences corresponding to all
peak regions found by Pique, regions found exclusively by Pique, all peak regions found by CSDeconv,
regions found by CSDeconv exclusively, and peak regions found by both software packages. Motifs could
be discovered on the forward and reverse strand, and could be anywhere from 20 to 40 nucleotides in
length. A putative binding motif was discovered in all five sets of peaks.

The pairwise distances between motifs was computed by the average log likelihood ratio (ALLR),
and clustered using UPGMA (program defaults). All motifs that were significantly similar to the putative
canonical TFB motif were clustered, and for cases where more than two significant motif matches were
discovered in a given data set, motifs were clustered and familial profiles were computed. Membership
clustering thresholds were tried from 0 to 1.0 in increments of 0.10, and the familial profile motif with the
lowest e-value was taken from each dataset as its “representative” motif profile. For cases where two or
fewer significant motif matches were determined, the motif match with the lower e-value was taken as the
representative motif profile of its respective data set. Representative motifs were compared using STAMP
Mahony et al. (2007) with the ALLR motif comparison measure and UPGMA clustering (Fig. 3).

It was found that the motifs computed from the list of peak regions recovered by Pique and CSDeconv
clustered closely with the canonical binding motif, as did motifs computed from the list of peak regions in
common to both software packages. However, motifs computed from the list of peak regions recovered
exclusively by Pique clustered with the canonical motif, but the motifs computed from the list of peak
regions recovered exclusively by CSDeconv did not (Fig. 3). Furthermore, the e-value of the best motif
computed from the CSDeconv-unique peak regions is the highest among the five, suggesting that a higher
proportion of false positives may be among this list.

4 DISCUSSION
Pique does not attempt to filter peaks that are statistically insignificant. We have found that this part of the
analysis is usually specific to the data and to the experiment, and can be highly idiosyncratic. Pique is
designed to achieve a low false-negative rate. This allows Pique to work without modification on many
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Figure 2. Performance of Pique and CSDeconv on a ChIP-seq experiment (Halobacterium salinarum sp.
NRC1 transcription initiation factor TFB tfbD in late stationary phase) was studied by comparing lists of
peaks. Peak lists are shown here ranked by enrichment ratio. Pique recovers more peaks than CSDeconv,
and more of these peak regions contain an experimentally determined transcription start site (TSS). Both
software packages recovered the same number of peaks containing the predicted binding motif (PBM).
Both software packages recovered the same number of peaks in which a transcript start site was found
less than 50bp downstream from a binding motif. TSS coordinates were experimentally verified (Koide et
al.) Koide et al. (2009) and motifs were predicted using MotifCatcher. Seitzer et al. (2012)
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Figure 3. Motifs recovered by Pique and CSDeconv are qualitatively different.
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different kinds of experiments, but at the cost of some post-filtering. Pique provides the user with output
that can be used to support a variety of such statistical tests.

Some recommended filtering might include eliminating peaks that are significantly narrower than
the size range of the sequencing library, peaks with a normalized enrichment ratio below unity, or peaks
that have predicted binding sites that are very skewed from the center of the enriched region. Depending
on how many peaks are recovered, the user may wish to try one or all of these, perhaps with clustering.
However, if a “perfect” peak list is required, we have found that heuristic filtering is inadequate regardless
of the software used. To facilitate manual curation, Pique outputs a track file of the coverage, a quantitative
positional data of the estimated binding sites, and a bookmark file annotating the peaks. These files are
simple to process by a variety of tools, and can be loaded directly into the Gaggle Genome Browser. False
positives are easy to recognize visually, and can be easily deleted.

5 CONCLUSION
We conclude that Pique provides a rapid, open source platform for the sensitive detection of transcription
factor binding sites in bacterial and archaeal ChIP-seq experiments. We leverage standard signal processing
algorithms to rapidly identify binding sites. Downstream analysis is supported via integration with
statistical and graphics software such as R, and curation via integration with the user-friendly Gaggle
Genome Browser and the suite of Gaggle tools.

We note that Pique should also work well with eukaryotic datasets provided they are gathered with
greater coverage than has been previously reported.
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