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The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla

within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in

various environments due to its unique biotechnological potential. Such studies have

focused mostly on soil communities, but more recently marine and extreme environments

have also been explored, finding rare taxa and demonstrating dispersal limitation and

biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria

populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro

Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the

diversity and uniqueness of Actinobacteria in the Churince System with a culture-

dependent approach over a period of three years, using nine selective media. The 16S

rDNA of putative Actinobacteria were sequenced using both bacteria universal and

phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze

OTUs clustering and taxonomic identification of the isolates in an evolutionary context,

using validated type species of Streptomyces from previously phylogenies as a reference.

Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed

to estimate species´ richness in the intermediate lagoon (IL) in the oligotrophic Churince

system. A total of 350 morphologically and nutritionally diverse isolates were successfully

cultured and characterized as members of the Phylum Actinobacteria. 105 from the total

isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA

sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of

Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the

media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates

and another 667 reference strains of the family Streptomycetaceae shows that our

isolation effort produced 38 unique OTUs in six new monophyletic clades. This high
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biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment,

which has previously been reported for its diversity and endemicity, is a suggestive sign of

microbial biogeography of Actinobacteria and it also represents an invaluable source of

biological material for future ecological and bioprospecting studies.
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24 Abstract. (332 words)

25 The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within 

26 the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various 

27 environments due to its unique biotechnological potential. Such studies have focused mostly on 

28 soil communities, but more recently marine and extreme environments have also been explored, 

29 finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for 

30 Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose 

31 the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in 

32 the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince 

33 System with a culture-dependent approach over a period of three years, using nine selective 

34 media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal 

35 and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze 

36 OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using 

37 validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction 

38 analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate 

39 species´ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 

40 350 morphologically and nutritionally diverse isolates were successfully cultured and 

41 characterized as members of the Phylum Actinobacteria. 105 from the total isolates were 

42 successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains 

43 belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus 

44 Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-

45 year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of 

46 the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six 
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47 new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme 

48 oligotrophic environment, which has previously been reported for its diversity and endemicity, is 

49 a suggestive sign of microbial biogeography of Actinobacteria and it also represents an 

50 invaluable source of biological material for future ecological and bioprospecting studies.

51
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53 Introduction 

54 The phylum Actinobacteria are gram-positive bacteria with a high G+C content, and it 

55 constitutes one of the largest phyla within the Bacteria domain (Parte, Whitman, Goodfellow 

56 2012).  Actinobacteria diversity and community structure have been thoroughly researched in 

57 various environments.  However, such studies had focused mostly in soil communities (Coombs 

58 & Franco 2003; Gremion, Chatzinotas & Harms 2003; Mohammadipanah & Wink 2015; Zhao, 

59 Guo, Li 2016); but more recently, marine environments have also been explored (Ward & Bora 

60 2006; Maldonado, Fragoso-Yanez, Perez-Garcia 2009; Claverias, Undabarrena, Gonzalez 2015; 

61 Duran, Bielen, Paradzik 2015; Chen, Zhang, Guo 2016; Mahmoud & Kalendar 2016; 

62 Undabarrena, Beltrametti, Claverias 2016).

63 As an indicator of their ecological importance, Actinomycetes, filamentous members of the 

64 phylum Actinobacteria account for about 10% of bacteria colonizing marine aggregates 

65 (Grossart, Schlingloff, Bernhard 2004). Initially, marine Actinomycetes were poorly 

66 characterized (Goodfellow & Williams 1983), but more recently, culture independent studies 

67 have shown that marine Actinomycetes are diverse and abundant (Ward & Bora 2006). Rare 

68 marine Actinomycetes taxa have been isolated from a range of depths, sediments and other 

69 microbial communities such as stromatolites (Allen, Goh, Burns 2009). Actinomycetes also 

70 comprise about 10% of the microbiome of extreme habitats, showing extensive taxonomic 

71 diversity (Kuhn, Ichimura, Peng 2014; Mohammadipanah & Wink 2015; Liu, Salam, Jiao 2016; 

72 Qin, Li, Dastager 2016). However, careful population studies must still be done to determine if 

73 Actinomycetes are cosmopolitan, or if they do have local ecotypes, i.e., some degree of 

74 biogeography. Endemism would be the clearest demonstration of microbial biogeography, as it is 

75 for other organisms such as Salinisporaÿ(Jensen, Dwight & Fenical 1991; Johnson 2005; Jensen & 

76 Mafnas 2006; Winsborough, Theriot & Czarnecki 2009; Coghill, Hulsey, Chaves-Campos 2013; Prieto-
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77 Davo, Villarreal-Gomez, Forschner-Dancause 2013). Nevertheless, to unambiguously accept the idea 

78 of unlimited dispersal of microorganisms, we need data from studies employing good sampling. 

79 Such is the case, for example, of Escherichia coli, human-related strains of which travel with 

80 their host all around the world, or the case of Bacillus subtilis that can form endospores and 

81 travel with the air �(Souza, Eguiarte, Travisano 2012). Even in such cosmopolitan bacteria, there 

82 are local ecotypes that are unrelated to any other known strains �(Gonzalez-Gonzalez, Sanchez-

83 Reyes, Delgado Sapien 2013; Avitia, Escalante, Rebollar 2014; Valdivia-Anistro, Eguiarte-

84 Fruns, Delgado-Sapien 2015). Streptomyces, a filament and spore producer, and the most 

85 extensively studied genera of Actinomycetes, has been studied and it had shown environmental 

86 gradients and regional endemism in some localities �(Davelos, Xiao, Samac 2004; Antony-Babu, 

87 Stach & Goodfellow 2008; Kinkel, Schlatter, Xiao 2014; Andam, Doroghazi, Campbell 2016).

88 Actinobacterial diversity and community structure have been thoroughly investigated, not 

89 only for their ecological importance, but also by virtue of their unique biotechnological potential 

90 due to their robust secondary metabolism and incomparable ability to produce a plethora of 

91 bioactive molecules with extensive medical, industrial and agricultural applications. 

92 Actinomycetes, are the source of most clinically relevant antibiotics in use today (Barka, Vatsa, 

93 Sanchez 2016). Nevertheless, the growing emergence of antibiotic multirresistant pathogenic 

94 strains, challenges the scientific community to overcome the problem of rediscovery of known 

95 compounds. Recent studies have concluded that discovery of unkown bioactive molecules will 

96 be facilitated by focusing heavily on <gifted= (secondary-metabolites-rich), readily culturable 

97 microbes that have been isolated from untapped environments, such as marine ecosystems, 

98 which enhance the isolation of large-genome (>8 Mb), thus, rare culturable bacteria (Tiwari & 

99 Gupta 2012; Zotchev 2012; Subramani & Aalbersberg 2013; Tiwari & Gupta 2013; Baltz 2016; 
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100 Katz & Baltz 2016; Smanski, Schlatter & Kinkel 2016). 

101 Correspondingly, efforts towards describing the extent of the diversity of culturable 

102 actinomycetes on different conditions and extreme environments have been done, as evidenced 

103 by recent reports of bioprospecting and diversity studies of actinobacteria on deserts, marine 

104 sediments and vents, coral reefs, glaciers, as well as in symbiotic relationships (Maldonado et al., 

105 2009; Rateb, Houssen, Harrison 2011; Lee, Zainal, Azman 2014; Duncan, Haltli, Gill 2015; 

106 Duran et al., 2015; Jami, Ghanbari, Kneifel 2015; Kuang, Li, Zhang 2015; Mohammadipanah & 

107 Wink 2015; Trujillo, Riesco, Benito 2015; Yang, Li, Huang 2015; Andam et al., 2016; Chen et 

108 al., 2016; Liu et al., 2016; Mahmoud & Kalendar 2016; Undabarrena et al., 2016). 

109 To assess the extent of morphological and metabolic diversity and the distribution of 

110 culturable actinobacteria populations on a local scale, we chose the extremely oligotrophic and 

111 biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert (Souza, 

112 Siefert, Escalante 2012). This is a site where endemic Bacillus (Alcaraz, Olmedo, Bonilla 2008; 

113 Cerritos, Eguiarte, Avitia 2011), Pseudomonas (Escalante, Caballero-Mellado, Martinez-Aguilar 

114 2009) and Exiguobacterium (Rebollar, Avitia, Eguiarte 2012) have been described. Particularly, 

115 within the CCB, the Churince System has been studied with more intensity by a large team of 

116 scientists since it is the most endangered hydrological system due to its relatively high altitude 

117 within the valley (730 m above sea level, compared to, ca. 700 m above sea level which is the 

118 average of most of the CCB), and because the San Marcos Sierra near this site of the basin is too 

119 step to efficiently recharge the aquifer locally. Hence, the system depends mostly on deep 

120 ancient water with a magmatic influence (Wolaver, Crossey, Karlstrom 2012). This, together 

121 with the calcium sulfate soil matrix, and extreme oligotrophy in terms of phosphorus-limitation 

122 (Elser, Schampel, Garcia-Pichel 2005), makes Churince the most unusual site within the CCB 
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123 (Minckley & Cole 1968). This analysis is relevant not only for understanding the extensive 

124 biodiversity of this bacteria in such a peculiar environment, but also, for allowing us the 

125 biological material for the elucidation of biochemical strategies for survival in conditions of 

126 scarcity, future experimentation of bioactive molecules, as well as studies of ecological 

127 interactions, including cooperation and competition analyses to understand the processes that are 

128 relevant to structure these complex bacterial communities. In contrast to what is commonly 

129 expected in an extremely oligotrophic site, we found high morphological and unique taxonomic 

130 diversity of culturable Actinobacteria, and we were able to isolate enriched abundance of the 

131 genus Streptomyces. When compared to available databases, we observed six novel 

132 monophyletic clades and seven single-member clusters, containing a total of 31 OTUs of the 

133 genus Streptomyces that are presumably different from other species previously described, and 

134 thus, good candidates for consideration as endemic to the CCB. These unique groups of 

135 Streptomyces strains represent key clades in evolutionary history of an anciently divergent 

136 Phylum of the Bacteria domain. 

137

138 MATERIALS AND METHODS

139 Study Site and Sampling 

140 The Churince hydrological system (Figure 1) is located in the western part of the CCB, at 740 m 

141 above sea level, surrounded by large and mostly pure gypsum dunes. This system consists of 

142 three main zones connected by small water causeways: a spring, an Intermediate Lagoon (IL), 

143 and a desiccation lagoon (Lopez-Lozano, Heidelberg, Nelson 2013). The Intermediate Lagoon 

144 (IL), where sampling took place, has low seasonal variations such as: salinity ranging ~1.53

145 7.1)ppt, pH 7.6 to 8, and water temperature fluctuation from 14-20)°C in winter and 20 to 30 °C 

146 in summer (data of this study). 
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147 Sampling took place during 2013-2016 at the following times: February 2013, March 

148 2013, October 2013, October 2014, January 2015, February 2015, July 2015, April 2016. 

149 Samples were obtained from water and upper layer sediment from six locations along the shore 

150 in the Intermediate Lagoon in the Churince system (Figure 1) in Cuatro Cienegas, Coahuila with 

151 the permission of Federal authorities to collect in the Natural Protected Area (SEMARNAT 

152 scientific sampling permit No. SGPA/DGVS/03121/15): Location A: 26°50253.793N, 

153 102°08230.293W; location B: 26°50253.533N, 102°08231.813W; location C: 26°50254.373N, 

154 102°08232.963W; location D: 26°50255.303N, 102°08233.633W; location E: 26°50255.633N, 

155 102°08235.283W; location F: 26°50256.573N, 102°08236.033W. At each site, water and surface 

156 sediments (0.2-1 cm) were transferred to sterile conical tubes (50 mL). Samples were transported 

157 to a nearby laboratory in the town of Cuatro Cienegas at room temperature (f 1.5 h) and were 

158 used for streaking out primary plates immediately.

159

160 Selective isolation of culturable Actinobacteria

161 Nine selective Actinobacterial Isolation Media (AIM) were designed for this work to enhance the 

162 isolation of actinobacteria of aquatic and sediment environment. AIM1 ([per liter]: 21g yeast 

163 extract agar, 10g Malt extract, 4g Dextrose, 25g Reef salt mix); AIM2 ([per liter]: 20g mannitol, 

164 20g soy flour, 20g Agar, 25g Reef salt mix); AIM3 ([per liter]: 50g chitin, 16g agar, 25g Reef 

165 salt mix); AIM4 ([per liter]: 10g starch, 1g Casein, 15g agar, 25g Reef salt mix); AIM5 ([per 

166 liter]: 20g Oat meal, 0.001g Fe2(SO4)3, 0.001g MgCl2, 0.001g ZnSO4, 18g agar, 25g Reef salt 

167 mix ); AIM6 [per liter]: 10g starch, 1g K2HPO4, 1g H14MgO11S, 2g H8N2O4S, 1g NaCl, 2g 

168 CaCO3, 0.001g FeH14O11S, 0.001g MgCl2, 0.001g ZnSO4, 20g agar, 25g Reef salt mix); AIM7 

169 ([per liter]: 40g Soy Tripticasein  agar, 25g Reef salt mix ); AIM8 ([per liter]: 10g Bactopeptone, 
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170 5g Yeast extract, 16g agar, 25g Reef salt mix ); AIM9 ([per liter]: 100µl humic acid, 0.02 g 

171 CaCO3, 0.5 g Na2HPO4, 0.5 g MgSO4, 1.7 g KCl, 0.01 g FeSO4, 0.5 mg Vitamin B12, 18g 

172 agar, 25g Reef salt mix).

173 All isolation media were autoclave-sterilized and supplemented with 0.20 µm pore size 

174 filtered Nystatin (100 µg/ml) to inhibit fungal growth, nalidixic acid (50µg/ml) to inhibit gram-

175 negative bacteria growth and to favor the growth of slow-growing Actinobacteria. 

176 Prepared media were used for primary selective isolation of Actinobacteria by plating 150 

177 µl directly from fresh samples, and using sterile 3mm glass beads. Inoculated plates were 

178 incubated at 27  C for 1-6 weeks. Isolates were selected based on colony morphology and Gram 

179 stain, picked and re-streaked several times to obtain pure cultures. Isolates were maintained on 

180 AIM1 and AIM6 agar plates for short-term storage, and long-term strain collections were set up 

181 in 50% glycerol and preserved at 220°C (sporulated) and 280°C (non-sporulated).

182 Nucleic acid extraction

183 To confirm Actinobacteria identity and further phylogenetic analysis of isolates, after testing 

184 several techniques, genomic DNA was prepared using a modified phenol/ chloroform method 

185 that yielded the best quality DNA for our isolates: colonies of putative Actinobacteria were 

186 carefully scraped from agar plates and placed in centrifuge tubes; cell pellets were washed 2× 

187 10mL of 10% (w/v) with sucrose and resuspended in 400µl of lysis solution (4% Triton x-100, 

188 20% SDS, 5M NaCl, 2M Tris-HCl pH 8, 500mM EDTA pH 8). After resuspension, 400 µl of 

189 Phenol/Chloroform and 0.1mm glass beads were added to lysis mix and this was mechanically 

190 disrupted for 2 minutes. The lysates were centrifuged (12,000 x rpm, 15 min) and DNA in 

191 aqueous phase was precipitated with 2 volumes of ethanol and 1/10 volume of 3M sodium 
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192 acetate, pH 5.2; after overnight incubation at -20 °C, DNA was centrifuged (12,000 x rpm, 10 

193 min at 4°C), washed with 70% ethanol and eluted in TE with RNase.

194 Molecular Identification and Phylogenetic Analysis

195 Genomic DNA from putative Actinobacteria was sent to Macrogen, Inc., USA, to perform 16S 

196 rDNA gene amplification by PCR and sequencing using the universal primers 27F (52-

197 GAGTTTGATCCTGGCTCAG-32) and 1492R (52-TACGGYTACCTTGTTACGACTT-32), as 

198 well as phylum-specific primers: S-C-Act-235-a-S-20 (52CGCGGCCTATCAGCTTGTTG-32) 

199 (Stach, Maldonado, Ward 2003) and 23SR (52-AGGCATCCACCGTGCGCCCT32) (Yoon, Lee, 

200 Kim 1997). 

201 The 16S rDNA gene sequences were edited and assembled using CodonCode Aligner 5.1 

202 software (CodonCode Corporation, Dedham, MA); assembled contigs were compared to 16S 

203 rDNA gene sequences in the NCBI database (http: //www.ncbi.nlm.nih.gov/) using the Basic 

204 Local Alignment Search Tool (BLAST) to determine genus-level affiliations and are deposited in 

205 GenBank, which is associated with this document and are also available as Supplementary 

206 Material.

207 Our 16S rDNA gene sequences sharing a phylogenetic affiliation with Actinobacteria and 

208 reference sequences were aligned with ClustalW (Higgins 1994) using Molecular Evolutionary 

209 Genetics Analysis MEGA Version 7 (Kumar, Stecher & Tamura 2016). 

210 Phylogenetic reconstructions were performed to analyze CCB OTUs clustering and 

211 taxonomic identification of the isolates in an evolutionary context. The phylogenetic tree of total 

212 Actinobacterial isolates was constructed by Maximum Likelihood (ML) algorithm using MEGA 

213 software v. 7 (Kumar, Stecher & Tamura 2016) and Tamura3Nei I+G (Tamura 1992) parameter 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2893v1 | CC BY 4.0 Open Access | rec: 28 Mar 2017, publ: 28 Mar 2017



214 as an evolutionary model with 1,000 replicates. For a more comprehensive interpretation of 

215 results, 16S sequences of previously characterized species of Actinobacteria with closest 

216 affiliations to our isolates, were obtained from GenBank databases and added to reconstructions 

217 of this Phylum. Criteria for selection of reference sequences was based on similarity and length 

218 of nucleotide sequences, but also, the selection of 16S sequences from study model organisms 

219 (such as S. coelicolor) and also microorganisms originally isolated from water and sediments 

220 from aquatic environments. Other reference strains were added to provide biological 

221 interpretation, and were selected from previous work reporting isolation of Streptomyces from 

222 deserts (Okoro, Brown, Jones 2009; Rateb et al., 2011). Model selection was performed using 

223 statistical and evolutionary analysis of multiple sequence alignments TOPALi v2  (Milne, 

224 Lindner, Bayer 2009).  

225 Abundance and diversity were clearly remarkable for Streptomyces. From these early 

226 observations, we decided to compare distances between our Streptomyces isolates, to available 

227 information from previous studies, so we included a dataset of 667 16S-rDNA sequences of 

228 validated species of Streptomyces; most of them were selected for a wide phylogenetic analysis 

229 within the family (Labeda, Goodfellow, Brown 2012; Labeda, Dunlap, Rong 2017). We first 

230 performed a phylogenetic reconstruction using parameters and conditions reported by Labeda, et. 

231 al., 2012. Obtaining a preliminary Neighbour Joining (NJ) tree and leading us to the 

232 identification of relevant information regarding evolutionary relationships as well as the extent of 

233 the isolated diversity. It also provided criteria for selection of ideal reference strains for a later, 

234 more stringent analysis. 

235 To reconstruct a second phylogenetic tree of the members of family Streptomycetaceae, 

236 we used the Maximum-likelihood (ML) method using MEGA software v. 7 and the Tamura3Nei 
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237 I + G parameter as an evolutionary model. The reliability of nodes was estimated by ML 

238 bootstrap percentages (Felsenstein 1985) obtained after 1,000 replications. A total of 41 16S 

239 sequences obtained in this study were included, and 73 reference strains belonging to the genera 

240 Streptomyces, 6 of Kitasatospora and 3 Streptoacidophilus, which were the most closely related 

241 to our isolates, were selected (trimmed to 1074 bp).

242 To provide support to ML tree, we conducted a Bayesian analysis employing MrBayes v3.2.5 

243 (Ronquist, Teslenko, van der Mark 2012) with 10,000,000 Markov chain Monte Carlo 

244 generations and the GTR+ G model of evolution with a nucmodel= 4by4, nruns = 2, nchains = 4, 

245 and sampled freq = 100. The average standard deviation of split frequences was below 0.001. 

246 The nodes that had posterior probabilities greater than 95 % (Bayesian), were considered well-

247 supported and were shown in the resulting tree. 

248

249 Estimation of diversity of Actinobacteria in CCB 

250 To estimate species richness in the IL in the Churince system, we performed a rarefaction 

251 analysis for total Actinobacteria isolates, and another for only Streptomyces isolates. The 

252 definition of operational taxonomic units (OTUs) was conducted with MEGA software v. 7 at 

253 97% cutoff according to their pairwise distances. Then we conducted the rarefaction curve using 

254 the EstimateS 9.1.0 software package (Colwell & Elsensohn 2014) at the 95% confidence level.

255

256

257 RESULTS

258 Diversity of culturable Actinobacteria within the Churince system in CCB
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259 A total of 350 morphologically and nutritionally diverse isolates were successfully 

260 cultured and characterized as members of the Phylum Actinobacteria throughout the three-year 

261 period. AIM2 and AIM4 were the best nutrient conditions for culturing Actinomycetes (Figure 

262 2). Soy flour and mannitol-based medium allowed an isolation of 5 different genera of 

263 Actinobacteria and the greatest number of total isolates. The genus Streptomyces was found to be 

264 the most abundant taxa, accounting for over 50% of total sequenced isolates.

265 Diversity of cultured Actinobacteria varied in relation to sampling sites within the 

266 Churince. Among all sampling sites, C was the location where we found the highest diversity 

267 and abundance of Streptomyces strains. Only Streptomyces was ubiquitous in Churince IL and 

268 through the seasons, while isolation of the other 10 genera showed fluctuations. 

269 From the entire isolated collection, 105 strains were successfully subcultured, processed 

270 for DNA extraction and 16S-rDNA sequenced (Supplementary Table 1). These strains belong to 

271 the order Actinomycetales, and to suborders Corynebacterineae, Pseudonocardineae, 

272 Streptosporangineae, Frankineae, Streptomycineae, Micromonosporineae, Glycomycineae, and 

273 Micrococcineae, encompassing 11 genera of Actinobacteria. For phylogenetic analysis, a radial 

274 tree is presented in supplementary material (Supp. Fig.1) showing the extent of macrodiversity of 

275 the genera of Actinobacteria retrieved from CCB. 

276  Two rarefaction curves showed that the potentially yet-to-be-cultured diversity at both 

277 taxonomic levels (Actinobacteria phylum and Streptomyces genus) is large (Figure 3) in fact, far 

278 higher than the 30 and 12 OTUs for Actinobacteria and Streptomyces respectively, defined with 

279 a 97% cutoff according to their pairwise distances of the 16S-rDNA sequences, as seen by the 

280 curves, which are far from reaching the asymptote. 

281

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2893v1 | CC BY 4.0 Open Access | rec: 28 Mar 2017, publ: 28 Mar 2017



282 High diversity and phylogenetic clustering of Streptomyces from Cuatro Cienegas.

283 Primary isolation plates were enriched with Streptomyces-like colonies in every sampling 

284 culture, with characteristic morphologies and geosmin-like odor. Streptomyces isolates account 

285 for 54% of the total sequenced isolates and since this genus was the most abundant in all media, 

286 sampling site and season, we first characterized these isolates based on their morphology to 

287 avoid picking clonal individuals for later DNA sequencing. Morphologies and other culture-

288 related phenotypes varied among all selected individuals throughout the process of subculturing, 

289 such as colony morphology, pigment production, colony sporulation, optimal growth 

290 temperature and growth rate. Some of the different colony morphologies in Streptomyces are 

291 shown in Figure 4.

292 A preliminary phylogenetic reconstruction of the family Streptomycetaceae was 

293 performed using isolates from this study and a dataset of 667 16S-rDNA sequences from 

294 Streptomyces previously used for a broad phylogenetic analysis within the family 

295 Streptomycetaceae (Labeda et al., 2012) (Supplementary Material Fig. 2). The analysis shows 

296 that numerous CCB isolates are closer to each other and separated along the tree topology from 

297 most reference organisms. To construct a summarized and well-supported phylogenetic analyses, 

298 two different methods were used (Bayesian and ML), including 95 close reference strains, as 

299 well as sequences from isolates from the Atacama Desert and other ecologically similar isolates 

300 (Figure 5). In this summarized analysis, we can unambiguously identify six novel monophyletic 

301 clades with 31 new OTUs and 7 single-member clusters, all of them isolated in the present study.

302

303 DISCUSSION

304 Actinobacteria from oligotrophic CCB are diverse and abundant.
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305 Several different culture media were defined and applied for maximum recovery of 

306 culturable Actinobacteria in this study over a 3-year period, including different seasons. From 

307 this effort, 350 morphologically diverse isolates of Actinobacteria within the Churince system, 

308 were successfully cultured making a large, valuable, indigenous collection of different cultivated 

309 morphologies within one particular site. Nevertheless, due to well-known difficulties in 

310 genotyping this phylum (Yoon et al., 1997; Stach et al., 2003; Farris & Olson 2007; Kumar, 

311 Aiemsum-Ang, Ward 2007), we were able to extract DNA and sequence 16S-rDNA of only 105 

312 of them. In light of our observations of the abundance and uniqueness of the 16S sequence of the 

313 Streptomyces from the CCB and the reported biases from other studies in Actinobacteria 

314 (Hansen, Tolker-Nielsen, Givskov 1998; Farris & Olson 2007; Krogius-Kurikka, Kassinen, 

315 Paulin 2009; Rajendhran & Gunasekaran 2011), it is not difficult to speculate that this group of 

316 microorganisms would require a different approach for a detailed characterization, such as 

317 whole-genome analysis of culturable strains. Ongoing work in our research group is applying 

318 this strategy for the most peculiar strains of our collection.

319 Although gram-positive bacteria are more commonly observed in organic rich habitats 

320 (Fenical 1993), isolated strains from the extremely oligotrophic Churince IL encompass 11 

321 genera of Actinobacteria (Figure 2), which is comparable to the culturable diversity found in rich 

322 marine environments (Duncan et al., 2015; Duran et al., 2015; Kuang et al., 2015; Chen et al., 

323 2016; Undabarrena et al., 2016). Interestingly, Streptomyces was the most abundant taxa, 

324 representing over 50% of the total sequenced isolates varying in relation to sampling point within 

325 the Churince system (figure 2). This result is comparable to the Streptomyces-enriched isolation 

326 in extreme environments such as the Atacama Desert (Okoro et al., 2009), nonetheless CCB 

327 culturable diversity within the Phylum Actinobacteria is greater.
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328 CCB culturable Streptomyces diversity is still far from being exhaustively explored as 

329 shown by rarefaction analysis (figure 3), suggesting a complex community structure, both in 

330 sediment and in the water column.

331 Morphological and genetic diversity of this phylum in the Churince does not come totally 

332 as a surprise since in concurrent studies using Illumina16S rRNA tags (Souza et al., in review) it 

333 was observed that Actinobacteria are the most successful lineage in CCB water, with notable 

334 presence of genera Streptomyces, Yaniella, Arthrobacter, Trueperella, as well as several putative 

335 Actinobacteria from non-culturable marine lineages, in particular a strain closely related to the 

336 marine PeM15, which is very sensitive to nutrient enrichment (Lee et al., submitted) and other 

337 clades unique to soil and sediment. These analyses are consistent with our isolation efforts, 

338 which yielded abundant and diverse Streptomyces and abundant Arthrobacter isolates. It is 

339 possible to speculate that those several putative non-culturable Actinobacteria lineages detected 

340 by Illumina in concurrent projects, relate to our great numbers of cultured isolates which were 

341 not able to be detected by universal and phylum-specific primers. 

342 Many interesting morphotypes could not be identified using 16S rDNA sequences, and in 

343 addition, many were lost as the purification of a single colony proceeded. Success at bringing the 

344 environment into the laboratory culture is not sufficient for successful cultivability of bacteria. 

345 Subsequent culturing of Actinomycetes to obtain axenic (pure) cultures from the Churince, 

346 dramatically reduced the total number of unique pure isolates, suggesting obligate mutualism and 

347 cross-feeding (Tanaka, Hanada, Manome 2004; Kim, Kim, Masui 2011; Seth & Taga 2014).

348 It is quite interesting to observe that previous bacterial isolation efforts in the IL of the 

349 Churince in the CCB, using a culture-dependent approach initially based on thermo-resistant 

350 aquatic strains, did not lead to the isolation of Streptomyces individuals among the numerous 
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351 isolated Actinobacteria (Cerritos et al., 2011). Many variables can play a role in this marked 

352 difference, most probably the different culture methods of Cerritos et al. (2011) through which 

353 thermoresistant bacteria in Marine Agar media were selected, thus enriching the isolation of 

354 Micrococcineae members. In contrast, our study applied several media with different carbon and 

355 nitrogen sources to maximize the possibility of culturing a wider diversity. Even so, the 

356 rarefaction curve shows that the potentially yet-to-be-cultured diversity is large (Figure 3), as 

357 commonly occurs in highly diverse communities (Colwell, Mao & Chang 2004; Colwell & 

358 Elsensohn 2014). 

359 Another possible factor that could explain differences between our study and Cerritos et 

360 al. (2011) is the years which passed between sampling periods, including possible temporal 

361 variation in the community structure. Notably in the CCB, after the time of the initial isolations 

362 described in Cerritos et al. (2011), a decline of the Churince aquifer occurred.  As shown in 

363 experiments with UV and temperature increase in mesocosms (Pajares, Eguiarte, Bonilla-Rosso 

364 2013; Pajares, Souza & Eguiarte 2015), endemic CCB Actinobacteria are particularly susceptible 

365 to perturbation. Hence, it is possible that enrichment of Streptomyces after 2010 is a succession 

366 response to the shrinkage and concomitant changes in the Churince aquifer system. 

367

368 Endemicity of Streptomyces in CCB 

369 As expected from previous studies finding endemic microorganisms at CCB (Alcaraz et al., 

370 2008; Rebollar et al., 2012), we found 38 unique operational taxonomic units (OTU´s) for 

371 Streptomyces.  Moreover, these 38 novel OTUs are in six new monophyletic clades in a deeply 

372 represented and well-supported phylogeny of the family Streptomycetaceae, which is a sign of 

373 endemicity. What makes this result unprecedented in a relatively very well-known cosmopolitan 
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374 genus, Streptomyces (Barka et al., 2016), is the discovery of this degree of diversity and 

375 endemism in such an oligotrophic extreme environment. 

376 Even though these data do not represent evidence of dispersal limitation per se, the phylogenetic 

377 clustering of OTUs of the CCB among themselves, and the genetic distance between OTUs from 

378 667 reported species of Streptomycetaceae family from other sites around the world (Fig. 5 and 

379 Supplementary Fig. 2), could be explained by migration limitation to and out of the CCB. 

380  

381 Relevance of culturing new Actinobacteria strains and lineages 

382 Only a tiny fraction of the universal bacterial diversity has been pure cultured (Pace 2009), and 

383 with this, the description of the biological diversity of the prokaryotic branch of the tree of life 

384 remains limited. Moreover, as culturable Actinobacteria diversity available for the study and 

385 characterization has been still insufficient when searching for bioactive compounds, there has 

386 been an increasing urge to culture untapped diversity within under-explored habitats (Katz & 

387 Baltz 2016). 

388 While genome mining represents a major paradigm shift for exploration of rare taxa 

389 (Cano-Prieto, Garcia-Salcedo, Sanchez-Hidalgo 2015; Tang, Liu, Peng 2015; Iftime, Kulik, 

390 Hartner 2016; Smanski, Schlatter & Kinkel 2016), recent studies from genome mining for 

391 secondary metabolites gene clusters of unculturable Actinobacteria support the culturable 

392 approach for natural product discovery targeting <gifted microbes=, obtaining samples from 

393 unexplored habitats. In particular, untapped marine sediments are recommended when searching 

394 for cultivable potentially bioactive natural products from Actinobacteria (Baltz 2016). 

395 Although clades and clusters of CCB-isolates along the phylogeny might suggest that 

396 OTUs within the same groups are very close to each other, figure 4 shows distinctive 
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397 morphologies that clearly reflect the uniqueness of each isolate. Hence, this collection of 

398 Actinobacteria from Cuatro Cienegas represents an invaluable source of great diversity for 

399 microbial ecology and biotechnology studies considering that: i) phylogenies constructed with 

400 the sequenced portion of our collection indicate six novel clades of Streptomyces, but they only 

401 represent a third of the successfully cultured collection; ii) this collection has been isolated from 

402 an environment of a diversity and endemicity, that has previously been considered comparable to 

403 that in the Galápagos Island (Souza et al., 2012), and as revealed by our six clades cointaining 

404 only CCB isolates (Fig. 5), it is quite likely that we have cultured several unique species yet to be 

405 described; iii) the great diversity shown here has been calculated using the conserved 16S rDNA 

406 marker, but it is well known that single-gene phylogenies might not always reflect the 

407 evolutionary history of a species due to the high degree of horizontal gene transfer (Marri, Hao 

408 & Golding 2006), a phenomenon particularly common in Streptomyces (Huguet-Tapia, Lefebure, 

409 Badger 2016; Tian, Zhang, Yang 2016).

410 In conclusion, we can mention that our findings suggest a very high, albeit still 

411 uncalculated richness in microbial diversity in CCB, as well as suggested endemism. Our main 

412 result show that the CCB is not only a special place to study community structure where 

413 Actinobacteria diversity plays a major ecological role in such an oligotrophic environment, but it 

414 also represents a promising area for bioprospecting studies that will require concerted long-term 

415 efforts to search for genuine and substantial contributions to the discovery of natural products.

416

417

418

419
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422 Figure 1. The Churince hydrological system. (I) Map of Mexico displaying the State of Coahuila 

423 and the location of the Cuatro Cienegas Basin (CCB) and the Churince hydrological system 

424 (circle) © 2016 INEGI. (II) Aerial view of the intermediate lagoon (IL) in the Churince 

425 hydrological system. The circular forms point out the sampling sites. Image © 2016 

426 DigitalGlobe © 2016 Google © 2016 INEGI.

427

428

429

430

431

432

433

434

435

436

437 Figure 2. (A) Pie chart of the percentage of Actinobacteria genera isolated from the intermediate 

438 lagoon in Churince system. (B) Number of Actinobacteria isolated according to the sampling 

439 sites. (C) Number of Actinobacterial isolated according to the culture media used.  

440
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441

442

443

444 Figure 3. Rarefaction curves show sampling effort on the estimation of the numbers of OTUs at 

445 97% sequence identity from cultured Actinobacteria (A), and total isolated Streptomyces (B) 

446 from CCB.
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448

449

450

451

452

453 Figure 4. Colony morphological diversity of Streptomyces isolated from CCB within clades.
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455 Figure 5. Phylogenetic tree of Streptomycetaceae family based on nearly full-lenght 16s rRNA 

456 gene sequences and their closely related type strains based on the maximum likelihood (ML) 

457 method, constructed by Tamura3Nei  I + G evolutionary model with 1000  bootstrap replicates.  

458 Bootstrap values for ML in the range from 0.7 to 1 were marked with black circles. Bayesian 

459 supports at nodes in ranges 0.95 to 1 were marked with a red triangles and Bootstrap values for 

460 neighbor-joining at ranges 0.6 to 1 in blue squares.

461
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