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Abstract

Background. Sturnira is one of the most species-richness in the Neotropic, and it is found

from Mexico, Lesser Antilles to Argentina. Genus forms a well-supported monophyletic

clade with at least twenty-one recognized species, and several under taxonomic review.

Sturnira parvidens is a widespread frugivorous bat of the deciduous forest in the

Neotropics, highly abundant, and a major component in the fruit dispersal to regenerate

ecosystems. It can be consider a non-model organism to isolate and characterize

polymorphic microsatellites.

Methods. We used a technique based on Illumina paired-end sequencing of a library highly

enriched for microsatellite repeats to develop loci for S. parvidens. We analyzing millions

of resulting reads with specific software to extract those reads that contained di-, tri-,

tetra-, penta-, and hexanucleotide microsatellites.

Results. We select and test 14 polymorphic (di, tri, and tetra) microsatellites. All markers

were genotyped on 26 different individuals from distinct locations of its distributional area.

We observed medium3high genetic variation across most loci, but only 12 were functional

polymorphic. Levels of expected heterozygosity across all markers was high to medium

(mean HE = 0.79, mean HO = 0.72). We probed ascertainment bias in twelve bats of the

genus, obtaining null/monomorphic/polymorphic amplifications.

Discussion. Illumina paired-end sequencing system is capable to identify massive

microsatellite loci, expending few time, reducing costs, and providing a large amount of

data. Described polymorphic loci for S. parvidens particularly, and the genus, could be

suitable for further genetic analysis, including taxonomic inconsistencies,

parenting/relatedness analysis, and population genetics assessments.
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15 Abstract

16 Background. Sturnira is one of the most species-richness in the Neotropic, and it is found from Mexico, Lesser Antilles to Argentina.  Genus 
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17 forms a well-supported monophyletic clade with at least twenty-one recognized species, and several under taxonomic review.  Sturnira 

18 parvidens is a widespread frugivorous bat of the deciduous forest in the Neotropics, highly abundant, and a major component in the 

19 fruit dispersal to regenerate ecosystems.  It can be consider a non-model organism to isolate and characterize polymorphic microsatellites.

20 Methods. We used a technique based on Illumina paired-end sequencing of a library highly enriched for microsatellite repeats to 

21 develop loci for S. parvidens.  We analyzing millions of resulting reads with specific software to extract those reads that 

22 contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites.

23 Results. We select and test 14 polymorphic (di, tri, and tetra) microsatellites.  All markers were genotyped on 26 different 

24 individuals from distinct locations of its distributional area.  We observed medium3high genetic variation across most loci, but 

25 only 12 were functional polymorphic.  Levels of expected heterozygosity across all markers was high to medium (mean HE = 

26 0.79, mean HO = 0.72).  We probed ascertainment bias in twelve bats of the genus, obtaining 

27 null/monomorphic/polymorphic amplifications.

28 Discussion. Illumina paired-end sequencing system is capable to identify massive microsatellite loci, expending few time, 

29 reducing costs, and providing a large amount of data.  Described polymorphic loci for S. parvidens particularly, and the genus, 

30 could be suitable for further genetic analysis, including taxonomic inconsistencies, parenting/relatedness analysis, and 

31 population genetics assessments.

32 Keywords: Illumina, Microsatellites, Pal_finder, Sturnira parvidens

33 Introduction
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34 The yellow-shouldered Mesoamerican bat (Sturnira parvidens) is primarily associated with lower elevations (0 to 2000 m), 

35 found mainly in tropical/subtropical habitats, and ecotones (Villalobos & Valerio 2002).  S. parvidens is found from northern of 

36 the Mexican Pacific Slope, and northern Mexican Gulf Slope southward, including Yucatan Peninsula, to Northern Costa Rica 

37 (Figure 1) (Hernández-Canchola & León-Paniagua, submitted).  S. parvidens has been caught in the understory or in the 

38 subcanopy in tropical and subtropical forests, xeric scrubs, secondary and temperate forest.  They like to roost in leaves of forest 

39 with advanced successional stages, but their home ranges includes mature and secondary forest (Evelyn & Stiles, 2003).  It 

40 mainly consumes fruits from early stages of plant succession, like pioneer trees (Cecropia peltata), pioneer herbs (Solanum 

41 americanum, S. torvun, S. ochraceo-ferrugineum, Capsicum annuum), or pioneer shrubs (Piper hispidum, P. lapathifolium; 

42 Olea-Wagner et al., 2007).  This frugivorous species is an important seed dispersal, executing an important ecosystemic role in 

43 the restauration of secondary tropical forest.  It is considered abundant, which is not found in any risk category but as 

44 fragmentation intensifies, the species is particular vulnerable to local extinctions (Evelyn & Stiles, 2003).

45 Regarding genetic studies, analyzing some mitochondrial and nuclear genes, results showed that Pleistocene climatic 

46 oscillations and the complex orogeny of its distributional area shaped the phylogeography of this bat, generating two lowland 

47 linages.  Both genetic lineages, one in the Western Slope in Mexico, and the other in the Eastern Slope in Mexico and Central 

48 America, diverged in haplogroups around c. 0.423 Ma, and demographic expansion was detected later after split-up event 

49 (Hernández-Canchola & León-Paniagua, submitted).  Sturnira is the most specious genus of frugivorous bat, due its capability 

50 to colonize new areas, complex group showed different genetic linages in distinct stages of diversification (Velazco & Patterson, 
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51 2013; 2014; Hernández-Canchola & León-Paniagua, submitted).

52 The genus Sturnira involves a highly and complex diversified group of species.  This specious group of bats inhabits in all 

53 the Neotropic, and it contains three mountain basal species S. aratathomasi, S. bidens, and S. nana.  Also, it has been described a 

54 clade formed by species that usually inhabits highland mountain forest S. bogotensis, S. burtonlimi, S. erythromos, S. 

55 hondurensis, S. koopmanhilli, S. ludovici, S. magna, S. mordax, S. oporaphilum, S. perla, and S. tildae.  Lastly, a group of 

56 species that inhabits in lowland tropical forests comprises S. angeli, S. bakeri, S. lilium, S. luisi, S. new species 3, S. paulsoni, 

57 and S. parvidens (Velazco & Patterson, 2013).

58 Very little is known about molecular markers of Sturnira parvidens, our goal was to isolate and characterize polymorphic 

59 microsatellite loci for the species by using Next-Generation Sequencing.  The making of these markers can be useful to: (1) 

60 understand the genetic structure of subpopulations in its distributional range.  (2) Identify the human impact in the fragmentation 

61 of the populations and assess the divergent linages formed by the genetic drift.  (3) evaluate the individual movements in the 

62 mosaic-fragmented landscapes, and (4) realize the genetic component in the social structure of the population by assessing 

63 relatedness and paternity, etc.  We probed cross-species amplification in twelve species of the Sturnira genus, under the 

64 hypothesis of having a positive ascertainment bias due the phylogenetic relatedness among species (Crawford et al., 1998; Li & 

65 Kimmel, 2013).  A suitable cross-species amplification will facilitate similar appointed studies in related bat populations of 

66 Middle and South America.

67 Materials and Methods
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68 We obtained tissue samples for 26 distinct individuals of S. parvidens from different localities in its distributional range in 

69 Mexico.  Matters were proportionate by Colección de Mamíferos del Museo de Zoología <Alfonso L. Herrera=, Facultad de 

70 Ciencias-Universidad Nacional Autónoma de México.  Tissue samples were stored individually in 95% ethanol until analysis.  

71 We followed guidelines set forth by the American Society of Mammalogists for the use of wild (Gannon & Sikes, 2007).  

72 Fieldwork was managed under permission of SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales de Mexico4

73 permit FAUT-0307).  Six samples were used to elaborate the enrichment library process, meanwhile the rest were used to 

74 standardize protocols and assess polymorphism in microsatellites.

75 DNA was extracted following instructions of the Qiagen protocol (Blood and Tissue Kit, Cat No. 69504), and in some 

76 samples we used the Universal Salt Protocol to extract DNA (Aljanabi & Martinez, 1997).  An Illumina paired-end shotgun 

77 library was prepared by shearing 1l g of tissue DNA using a Covaris S220 and following the standard protocol of the Illumina 

78 TruSeq DNA Library Kit.  Five million of the resulting reads were analyzed with the program PAL_ FINDER_v0.02.03 (Castoe 

79 et al., 2012), to extract those reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites.

80 Once positive reads were identified in PAL_FINDER_v0.02.03 they were batched to a local installation of the program 

81 MSATCOMMANDER for primer design.  We recovered 6790 unique loci (48 hexa, 97 penta, 1260 tetra, 1097 tri and 4288 

82 dinucleotide4Table 1), but only 14 were chosen for PCR trials.  We directly labelled forward primers (FAM) for each of the 

83 chosen loci.  PCR reactions were performed in a 10 ¿l volume containing 30 ng of DNA, 0.2 mM of dNTP´s, 10 mM of each 

84 primer, 1 Taq buffer (Buffer PCR 10x), and 1.0 U of FlexiTaq polymerase.  PCR cycling conditions were as follows: initial 
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85 denaturation at 95 ºC for 3 min, followed by 30 cycles of 95 ºC for 3 min, gradient temperature for 30 s (range from 56 to 60 

86 ºC), and 72 ºC for 2 min, and extension with 68 ºC for 8 min, and final ending of 4 ºC.  Exact annealing temperatures for each 

87 primer are given in Table 2.  We visualized the PCR products by electrophoresis on 1.5 % agarose gels.  Markers were tested for 

88 amplification success, polymorphism and specificity in 26 individuals of S. parvidens.

89 The results of the microsatellite profiles were examined using GeneMarker® v. 2.4.2 (SoftGenetics®) and peaks were 

90 scored by hand.  We obtained the number of homozygotes and heterozygotes by capturing data in an Excel spreadsheet with a 

91 .csv extension.  We estimated the proportion of polymorphic loci and the average number of alleles per locus by using the GDA 

92 software (Lewis & Zaykin, 2001).  We assessed the observed (HO) and the expected heterozygosity (HE), linkage disequilibrium, 

93 and Hardy3Weinberg proportions by using Genepop 4.2 (Rousset, 2008), and corroborated with Arlequin 3.5 (Excoffier, Laval 

94 & Schneider, 2005).  We used MICROCHECKER to screen null alleles in each locus (van Oosterhout et al., 2004).  We 

95 measured polymorphic information content (PIC) with Cervus 3.0.7 (Kalinowski, Taper & Marshall, 2007).

96 We probed cross-species amplification in tissues of twelve species of the genus: S. hondurensis, S. burtonlimi, S. 

97 oporaphilum, S. mordax, S. tildae, S. erythromos, S. bogotensis. S. magna, S. new species 3, S. luisi, S. lilium, and S. bakeri 

98 (Supplemental Information 1).  All polymorphic loci were tested in the mentioned species by using similar PCR conditions.  We 

99 followed the ascertainment bias hypothesis of broad amplification in similar phylogenetic species (Schlötterer, 2000).

100 Results and Discussion

101 We obtained a total of 6790 potentially amplified loci (PAL´s), containing perfect, imperfect, and compound 
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102 microsatellites (Table 1).  Dinucleotide microsatellites were the most abundant (4288), followed by tetra (1260); hexa 

103 microsatellites were the less abundant in our lecture (48).  PCR reactions showed of the 14 loci tested, two were non-specific or 

104 monomorphic, only 12 loci were polymorphic and we were able to get proper amplification (Table 2).  Annealing temperature 

105 ranged from 56 to 60 °C.

106 Next Generation Sequencing allowed the project to obtain a large number of microsatellite loci for the target species.  This 

107 method has been probed for several bat species, and it is becoming a standard method to acquire specific molecular markers 

108 (McCulloch & Stevens, 2011).  This technique is time and cost effective and it is becoming a popular tool for a wide assortment 

109 of professionals.  Given the natural applicability of microsatellites to solve ecological questions, these molecular markers has 

110 emerged as a multipurpose indicator for ecological applications (Zane, Bargelloni, & Patarnello, 2002; Selkoe & Toonen, 2006).  

111 Its applicability strengths academic fields such as population genetics, behavioral ecology, genomics, phylogenies, etc.

112 We found moderate levels of allelic richness, with an average of 8.8 alleles per locus in the screened wide area of its 

113 distribution.  Polymorphic information content (PIC) presented values above 0.5 showing a significant content of alleles per 

114 locus.  Allele frequencies shown a remarkable number of alleles per locus, driving a superior number of valuable loci to be use 

115 in different genetic analysis (Supplemental Information 2).  No evidence of linkage disequilibrium was found on the analyzed 

116 loci.  We did not observe loci out of Hardy3Weinberg equilibrium.  Levels of HE ranged from medium to high for all markers 

117 (mean HE = 0.79, and mean HO = 0.72).  There was no evidence of null alleles, but three (Spar05, Spar07, Spar013) showed 

118 significant frequencies of null alleles (above 15%--Table 3).
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119 Describers for our microsatellites set the normal standard measures concordant with the evolutionary mutational models 

120 proposed for these markers (Balloux & Lugon-Moulin, 2002).  These indicators provide a straightforward approach to describe 

121 genetic variation due the high level of presented alleles.  Low allelic richness can affect the accuracy to estimate population 

122 genetic parameters, leading to significant errors in genetic diversity of target populations (Bashalkhanov, Pandey & Rajora, 

123 2009).  Here, we present a novel set of microsatellite loci with the potential to estimate genetic diversity in a non-model species.  

124 The proper scenery of describers for our microsatellites may have important implications in the evolutionary biology of the 

125 target species, because can be used to develop conservation strategies for Neotropical bats.  The use of highly informative 

126 microsatellites has been used to assess genetic diversity in a large range of bat populations and to propose measures for its 

127 conservation (i.e. Rossiter et al., 2000; Romero-Nava, León-Paniagua & Ortega, 2014; Korstian, Hale, & Williams, 2015).  

128 Amplified microsatellites for S. parvidens presented similar levels of polymorphism and heterozygosity found in another 

129 bat species (i.e. Artibeus jamaicensis4Ortega et al., 2002; Rhinolophus ferrumequinum4Dawson et al., 2004; Desmodus 

130 rotundus- Piaggio, Johnston & Perkins, 2008; Corynorhinus spp.-Lee, Howell & Van Den Bussche, 2011; Myotis spp.-Jan et al., 

131 2012; Carollia castanea4Cleary, Waits & Hohenlohe, 2016).

132 Cross-species amplification showed a differential strengthening for the twelve related species (Table 4).  S. new species3 

133 presented the main number of amplified microsatellites (8), followed by S. bakeri (7).  S. mordax has the less number of 

134 amplified loci (4).  

135 The use of microsatellite markers to infer levels of genetic diversity in natural populations is widely distributed.  
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136 Molecular markers are not always develop for the target species and the use of microsatellites loci from related species can be 

137 accurate.  Ascertainment bias limited the microsatellite-based approach due the particular selection of polymorphic markers in 

138 the genome, plus the reduced sensitivity of the markers due the phylogenetic constrictions (Crawford et al., 1998; Schlötterer, 

139 2000; Li & Kimmel, 2013).  The bias arises in a minor average allele length due the phylogenetic restriction (Li & Kimmel, 

140 2013).  We tested the potential employ of our markers in related species, founding multilocus heterozygosities inside the 

141 Sturnira genus.  This positive effect suggest using the developed markers to extrapolate genetic diversity in future studies for 

142 this highly specious genus; where the past demographic shared histories barely affect the cross-species amplification 

143 consolidation.

144 Conclusions

145 ÷ We used Illumina Paired-Sequences to developed efficiently microsatellite loci for Sturnira parvidens.

146 ÷ We formed a genomic library to obtain 12 specific and polymorphic microsatellites for this bat.

147 ÷ We assessed specific PCR conditions to amplify successfully the development of microsatellite loci.

148 ÷ Microsatellites showed high allelic richness per locus, enquiring their effectiveness for posterior studies (i.e. population 

149 genetics, behavioral ecology, etc.).

150 ÷ Cross-species amplification was effective for the twelve related species, but inexact in several cases.
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227 Figure 1. -  Geographic distribution of Sturnira parvidens.  It is distributed from the Gulf of Mexico and Pacific slopes in 

228 northern Mexico to southeast until Middle America, with a meridional limit in the mountain range of Talamanca in Costa 

229 Rica.  Map created by E. G. Gutiérrez.  Picture of Juan Cruzado.
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233

234 Table 1. - Potentially amplified loci (PAL´s) with positive microsatellites found in the enriched library.  Perfect, imperfect and 

235 compound loci scattered from dinucleotide to hexanucleotide microsatellite forms.

236

237

238

239

240

241

242

243 Table 2. - Primer 

244 sequences and 

245 characteristics of the 

246 14 microsatellites loci 

247 isolated for Sturnira 

248 parvidens.

Locus Primer (Forward) (5-39) Primer (Reverse) (5-39) Motif Annealing

T(°C)

2279

612 619

42 20

1908

462

617

54 28
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23 24 1 0
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249

250

Spar01 6 FAM-TGCCCTGAAGAACTTTGAGC CCCATACTTCTCCCTCACAGC AAAG(92) 58

Spar02 6 FAM-AGAAAGAAAGGGAGGGCGG TTCTTTATGCCCTTTGCTCTAGG AAAG(104) 60

Spar05 6 FAM-TGCCTGCCTAGTCTGTCACC AAGCAGTTCCCATCACATGC ATC(33) 56

Spar06 6-FAM-CCTGGGATGAAGTTTCTGACG GAATAATGGGAATACCAGAATAAGACG TTC(30) ò

Spar07 6 FAM-CTCCCACGGACAATCAACG CCCAGATTGCTGCCTCTCC TGC(30) 56

Spar08 6 FAM-GGAGTCTCCTTCATTAAGTGCC GGATGTGTTGTGAAGATTGTGC ATT(30) 56

Spar09 6 FAM-AAGTCCATTTCAAGGCTGGG CCCATCATACCCTCCTTTGC AC(44) 60

Spar010 6 FAM-TCTGGCCTGAGGTATTTGGG ACTGTAGCCACTTCCCTGCC AC(44) 60

Spar011 6 FAM-AAGCCACTGCCTTGTGCC GACTCTCTGGACATTGGCCC TC(44) 60

Spar012 6 FAM-

GGGAGTGAATGAGAAAGATAAAGTCC

CTGTCATTGCATGGGTTGG AC(44) 60

Spar013 6 FAM-

AAAGATTCCTGGAGATCATACCC

TGAATGTATCCTAGGGCGAGC AC(42) 60

Spar014 6-FAM-

TTTCTCTCACTGTCTAACTCTGCC

AGTCCTGGCAGGTGTGTCC TC(32) ò

Spar030 6 FAM- 

AATGGCACCATATTATTCTACATAGG

CCGTTCTAGGCTCAGTTTCC ATT (36) 60

Spar040 6 FAM-

GACTGAGACAATTGCTTGAGATAGC

GAGTTTCAGGGAGTATTTCAGTGC ATC(33) 60
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251 Table 3. - Diagnostic characteristics of selected microsatellites.  Number of alleles, allelic range, polymorphic information (PI), 

252 observed heterozygosity (Ho), expected heterozygosity (He), Hardy-Weinberg equilibrium (HWE), and null alleles.

253

254

255

Locus GenBank

Accession 

Number

No. 

alleles 

Alleles 

range 

(bp)

PIC Ho He HW

E

Null 

alleles

Spar01 KY645946 7 132-236 0.7098 0.941  0.761 >0.05 ò

Spar02 KY645947 6 130-222 0.6455 0.765 0.692 >0.05 ò

Spar05 KY645948 6 124-226 0.6069 0.412 0.699 >0.05 ü

Spar07 KY645949 10 121-226 0.8028 0.824 0.865 >0.05 ü

Spar08 KY645950 11 130-382 0.8052 0.800 0.860 >0.05 ò

Spar09 KY645951 13 134-230 0.8864 0.875 0.933 >0.05 ò

Spar010 KY645952 12 132-236 0.8698 0.882 0.919 >0.05 ò

Spar011 KY645953 8 124-222 0.8125 0.588 0.863 >0.05 ò

Spar012 KY645954 8 128-214 0.7068 0.750 0.772 >0.05 ò

Spar013 KY645955 10 124-220 0.8577 0.500 0.867 >0.05 ü

Spar030 KY645957 6 133-169 0.7088 0.741 0.735 >0.05 ò

Spar040 KY645958 6 124-190 0.6721 0.662 0.669 >0.05 ò
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256

257 Table 4. - Cross-species amplifications of the designed primers for S. parvidens.  We followed same PCR conditions in the 

Locus S. 

hondurensis

S. burtonlimi S. 

oporaphilum

S. 

mordax

S. 

tildae

S. 

erythromos

S. 

bogotensis

S. 

magna

S. 

newspecies_3

S.

lui

Spar0

1

ò üp ò ò ò ò ò ò üp ò ü ü

Spar0

2

üp ò ü* ò ò ò ò ü* ü* ò ò ü

Spar0

5

üp üp ü* ü* ü* ò ò ü* ü* ü ü ò

Spar0

7

ò ò ò ò ò ò ò ò üp ò ò ü

Spar0

8

ü* üp ü* üp ü* ü* ü* ò üp ü ü ü

Spar0

9

ò üp ü* ü* ü* ü* ü* ò üp ü ü ü

Spar0

10

ò ü* ü* ò ü* ü* ü* ü* üp ü ü ü

Spar0

11

ü* üp ü* üp ü* ü* ü* ü* ü* ü ü ü

Spar0

12

üm ò ü* ò ü* ü* ü* ü* ò ò ò ò

Spar0

13

ò ò ü* ò ü* ü* ü* ü* ò ò ò ò
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258 twelve related species.  (ò) no positive amplification, (üp) positive polymorphic amplification, (üm) positive 

259 monomorphic amplification, (ü*) polymorphism not probed because inexact PCR conditions.

260

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2886v1 | CC BY 4.0 Open Access | rec: 22 Mar 2017, publ: 22 Mar 2017


