A peer-reviewed version of this preprint was published in PeerJ on 24 May 2017.

View the peer-reviewed version (peerj.com/articles/3367), which is the preferred citable publication unless you specifically need to cite this preprint.

Microsatellite markers for Sturnira parvidens (Illumina paired-end sequences), and cross species amplification with other bats of the genus

Edgar G Gutiérrez¹, Giovani Hernández Canchola², Livia S León Paniagua², Norberto Martínez Méndez¹, Jorge Ortega Corresp.³

¹ Zoology, Instituto Politécnico Nacional /ENCB, CDMX, CDMX, México
² Zoología, Facultad de Ciencias, UNAM, CDMX, CDMX, México
³ Zoology, Instituto Politécnico Nacional /ENCB

Corresponding Author: Jorge Ortega
Email address: artibeus2@aol.com

Abstract

Background. Sturnira is one of the most species-richness in the Neotropic, and it is found from Mexico, Lesser Antilles to Argentina. Genus forms a well-supported monophyletic clade with at least twenty-one recognized species, and several under taxonomic review. Sturnira parvidens is a widespread frugivorous bat of the deciduous forest in the Neotropics, highly abundant, and a major component in the fruit dispersal to regenerate ecosystems. It can be consider a non-model organism to isolate and characterize polymorphic microsatellites.

Methods. We used a technique based on Illumina paired-end sequencing of a library highly enriched for microsatellite repeats to develop loci for S. parvidens. We analyzing millions of resulting reads with specific software to extract those reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites.

Results. We select and test 14 polymorphic (di, tri, and tetra) microsatellites. All markers were genotyped on 26 different individuals from distinct locations of its distributional area. We observed medium–high genetic variation across most loci, but only 12 were functional polymorphic. Levels of expected heterozygosity across all markers was high to medium (mean HE = 0.79, mean HO = 0.72). We probed ascertainment bias in twelve bats of the genus, obtaining null/monomorphic/polymorphic amplifications.

Discussion. Illumina paired-end sequencing system is capable to identify massive microsatellite loci, expending few time, reducing costs, and providing a large amount of data. Described polymorphic loci for S. parvidens particularly, and the genus, could be suitable for further genetic analysis, including taxonomic inconsistencies, parenting/relatedness analysis, and population genetics assessments.
Microsatellite markers for *Sturnira parvidens* (Illumina paired-end sequences), and cross species amplification with other bats of the genus

Gutiérrez, E. G.*, G. Hernández-Canchola\(^b,c\), L. León-Paniagua\(^b\), N. Martínez-Méndez\(^d\), and J. Ortega\(^a\)*.

\(^a\)Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Quimicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomas, 11340, Mexico City, Mexico.

\(^b\)Museo de Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito exterior s/n, Col. UNAM CU, 04510, Mexico City, Mexico.

\(^c\)Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. UNAM CU, 04510, Mexico City, Mexico

\(^d\)Laboratorio de Bioconservación y Manejo, Posgrado en Biociencias, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomas, 11340, Mexico City, Mexico

*corresponding author: Jorge Ortega e-mail: artibeus2@aol.com*

Abstract

**Background.** *Sturnira* is one of the most species-richness in the Neotropic, and it is found from Mexico, Lesser Antilles to Argentina. Genus
forms a well-supported monophyletic clade with at least twenty-one recognized species, and several under taxonomic review. *Sturnira parvidens* is a widespread frugivorous bat of the deciduous forest in the Neotropics, highly abundant, and a major component in the fruit dispersal to regenerate ecosystems. It can be consider a non-model organism to isolate and characterize polymorphic microsatellites.

**Methods.** We used a technique based on Illumina paired-end sequencing of a library highly enriched for microsatellite repeats to develop loci for *S. parvidens*. We analyzing millions of resulting reads with specific software to extract those reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites.

**Results.** We select and test 14 polymorphic (di, tri, and tetra) microsatellites. All markers were genotyped on 26 different individuals from distinct locations of its distributional area. We observed medium–high genetic variation across most loci, but only 12 were functional polymorphic. Levels of expected heterozygosity across all markers was high to medium (mean $H_E = 0.79$, mean $H_O = 0.72$). We probed ascertainment bias in twelve bats of the genus, obtaining null/monomorphic/polymorphic amplifications.

**Discussion.** Illumina paired-end sequencing system is capable to identify massive microsatellite loci, expending few time, reducing costs, and providing a large amount of data. Described polymorphic loci for *S. parvidens* particularly, and the genus, could be suitable for further genetic analysis, including taxonomic inconsistencies, parenting/relatedness analysis, and population genetics assessments.

**Keywords:** Illumina, Microsatellites, Pal_finder, *Sturnira parvidens*

**Introduction**
The yellow-shouldered Mesoamerican bat (*Sturnira parvidens*) is primarily associated with lower elevations (0 to 2000 m), found mainly in tropical/subtropical habitats, and ecotones (*Villalobos & Valerio* 2002). *S. parvidens* is found from northern of the Mexican Pacific Slope, and northern Mexican Gulf Slope southward, including Yucatan Peninsula, to Northern Costa Rica (Figure 1) (*Hernández-Canchola & León-Paniagua, submitted*). *S. parvidens* has been caught in the understory or in the subcanopy in tropical and subtropical forests, xeric scrubs, secondary and temperate forest. They like to roost in leaves of forest with advanced successional stages, but their home ranges includes mature and secondary forest (*Evelyn & Stiles, 2003*). It mainly consumes fruits from early stages of plant succession, like pioneer trees (*Cecropia peltata*), pioneer herbs (*Solanum americanum, S. torvum, S. ochraceo-ferrugineum, Capsicum annuum*), or pioneer shrubs (*Piper hispidum, P. lapathifolium, Olea-Wagner et al., 2007*). This frugivorous species is an important seed dispersal, executing an important ecosystemic role in the restauration of secondary tropical forest. It is considered abundant, which is not found in any risk category but as fragmentation intensifies, the species is particular vulnerable to local extinctions (*Evelyn & Stiles, 2003*).

Regarding genetic studies, analyzing some mitochondrial and nuclear genes, results showed that Pleistocene climatic oscillations and the complex orogeny of its distributional area shaped the phylogeography of this bat, generating two lowland linages. Both genetic lineages, one in the Western Slope in Mexico, and the other in the Eastern Slope in Mexico and Central America, diverged in haplogroups around c. 0.423 Ma, and demographic expansion was detected later after split-up event (*Hernández-Canchola & León-Paniagua, submitted*). *Sturnira* is the most specious genus of frugivorous bat, due its capability to colonize new areas, complex group showed different genetic linages in distinct stages of diversification (*Velazco & Patterson, PeerJ Preprints| https://doi.org/10.7287/peerj.preprints.2886v1 | CC BY 4.0 Open Access | rec: 22 Mar 2017, publ: 22 Mar 2017*).
The genus *Sturnira* involves a highly and complex diversified group of species. This specious group of bats inhabits in all the Neotropics, and it contains three mountain basal species *S. aratathomasi*, *S. bidens*, and *S. nana*. Also, it has been described a clade formed by species that usually inhabit highland mountain forest *S. bogotensis*, *S. burtonlimi*, *S. erythromos*, *S. hondurensis*, *S. koopmanhilli*, *S. ludovici*, *S. magna*, *S. mordax*, *S. ororaphilum*, *S. perla*, and *S. tildae*. Lastly, a group of species that inhabits in lowland tropical forests comprises *S. angeli*, *S. bakeri*, *S. lilium*, *S. luisi*, new species 3, *S. paulsoni*, and *S. parvidens* (Velazco & Patterson, 2013).

Very little is known about molecular markers of *Sturnira parvidens*, our goal was to isolate and characterize polymorphic microsatellite loci for the species by using Next-Generation Sequencing. The making of these markers can be useful to: (1) understand the genetic structure of subpopulations in its distributional range. (2) Identify the human impact in the fragmentation of the populations and assess the divergent lineages formed by the genetic drift. (3) evaluate the individual movements in the mosaic-fragmented landscapes, and (4) realize the genetic component in the social structure of the population by assessing relatedness and paternity, etc. We probed cross-species amplification in twelve species of the *Sturnira* genus, under the hypothesis of having a positive ascertainment bias due the phylogenetic relatedness among species (Crawford et al., 1998; Li & Kimmel, 2013). A suitable cross-species amplification will facilitate similar appointed studies in related bat populations of Middle and South America.

**Materials and Methods**
We obtained tissue samples for 26 distinct individuals of *S. parvidens* from different localities in its distributional range in Mexico. Matters were proportionate by Colección de Mamíferos del Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias-Universidad Nacional Autónoma de México. Tissue samples were stored individually in 95% ethanol until analysis. We followed guidelines set forth by the American Society of Mammalogists for the use of wild (Gannon & Sikes, 2007). Fieldwork was managed under permission of SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales de Mexico—permit FAUT-0307). Six samples were used to elaborate the enrichment library process, meanwhile the rest were used to standardize protocols and assess polymorphism in microsatellites.

DNA was extracted following instructions of the Qiagen protocol (Blood and Tissue Kit, Cat No. 69504), and in some samples we used the Universal Salt Protocol to extract DNA (Aljanabi & Martinez, 1997). An Illumina paired-end shotgun library was prepared by shearing 11 g of tissue DNA using a Covaris S220 and following the standard protocol of the Illumina TruSeq DNA Library Kit. Five million of the resulting reads were analyzed with the program PAL_FINDER_v0.02.03 (Castoe et al., 2012), to extract those reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites.

Once positive reads were identified in PAL_FINDER_v0.02.03 they were batched to a local installation of the program MSATCOMMANDER for primer design. We recovered 6790 unique loci (48 hexa, 97 penta, 1260 tetra, 1097 tri and 4288 dinucleotide—Table 1), but only 14 were chosen for PCR trials. We directly labelled forward primers (FAM) for each of the chosen loci. PCR reactions were performed in a 10 μl volume containing 30 ng of DNA, 0.2 mM of dNTP’s, 10 mM of each primer, 1 Taq buffer (Buffer PCR 10x), and 1.0 U of FlexiTaq polymerase. PCR cycling conditions were as follows: initial
denaturation at 95 °C for 3 min, followed by 30 cycles of 95 °C for 3 min, gradient temperature for 30 s (range from 56 to 60
°C), and 72 °C for 2 min, and extension with 68 °C for 8 min, and final ending of 4 °C. Exact annealing temperatures for each
primer are given in Table 2. We visualized the PCR products by electrophoresis on 1.5 % agarose gels. Markers were tested for
amplification success, polymorphism and specificity in 26 individuals of S. parvidens.

The results of the microsatellite profiles were examined using GeneMarker® v. 2.4.2 (SoftGenetics®) and peaks were
scored by hand. We obtained the number of homozygotes and heterozygotes by capturing data in an Excel spreadsheet with a
.csv extension. We estimated the proportion of polymorphic loci and the average number of alleles per locus by using the GDA
software (Lewis & Zaykin, 2001). We assessed the observed (H_0) and the expected heterozygosity (H_E), linkage disequilibrium,
and Hardy–Weinberg proportions by using Genepop 4.2 (Rousset, 2008), and corroborated with Arlequin 3.5 (Excoffier, Laval
& Schneider, 2005). We used MICROCHECKER to screen null alleles in each locus (van Oosterhout et al., 2004). We
measured polymorphic information content (PIC) with Cervus 3.0.7 (Kalinowski, Taper & Marshall, 2007).

We probed cross-species amplification in tissues of twelve species of the genus: S. hondurensis, S. burtonlimi, S.
(Supplemental Information 1). All polymorphic loci were tested in the mentioned species by using similar PCR conditions. We
followed the ascertainment bias hypothesis of broad amplification in similar phylogenetic species (Schlötterer, 2000).

**Results and Discussion**

We obtained a total of 6790 potentially amplified loci (PAL´s), containing perfect, imperfect, and compound
microsatellites (Table 1). Dinucleotide microsatellites were the most abundant (4288), followed by tetra (1260); hexa microsatellites were the less abundant in our lecture (48). PCR reactions showed of the 14 loci tested, two were non-specific or monomorphic, only 12 loci were polymorphic and we were able to get proper amplification (Table 2). Annealing temperature ranged from 56 to 60 °C.

Next Generation Sequencing allowed the project to obtain a large number of microsatellite loci for the target species. This method has been probed for several bat species, and it is becoming a standard method to acquire specific molecular markers (McCulloch & Stevens, 2011). This technique is time and cost effective and it is becoming a popular tool for a wide assortment of professionals. Given the natural applicability of microsatellites to solve ecological questions, these molecular markers has emerged as a multipurpose indicator for ecological applications (Zane, Bargelloni, & Patarnello, 2002; Selkoe & Toonen, 2006). Its applicability strengths academic fields such as population genetics, behavioral ecology, genomics, phylogenies, etc.

We found moderate levels of allelic richness, with an average of 8.8 alleles per locus in the screened wide area of its distribution. Polymorphic information content (PIC) presented values above 0.5 showing a significant content of alleles per locus. Allele frequencies shown a remarkable number of alleles per locus, driving a superior number of valuable loci to be use in different genetic analysis (Supplemental Information 2). No evidence of linkage disequilibrium was found on the analyzed loci. We did not observe loci out of Hardy–Weinberg equilibrium. Levels of HE ranged from medium to high for all markers (mean $H_E = 0.79$, and mean $H_O = 0.72$). There was no evidence of null alleles, but three (Spar05, Spar07, Spar013) showed significant frequencies of null alleles (above 15%--Table 3).
Describers for our microsatellites set the normal standard measures concordant with the evolutionary mutational models proposed for these markers (Balloux & Lugon-Moulin, 2002). These indicators provide a straightforward approach to describe genetic variation due the high level of presented alleles. Low allelic richness can affect the accuracy to estimate population genetic parameters, leading to significant errors in genetic diversity of target populations (Bashalkhanov, Pandey & Rajora, 2009). Here, we present a novel set of microsatellite loci with the potential to estimate genetic diversity in a non-model species. The proper scenery of describers for our microsatellites may have important implications in the evolutionary biology of the target species, because can be used to develop conservation strategies for Neotropical bats. The use of highly informative microsatellites has been used to assess genetic diversity in a large range of bat populations and to propose measures for its conservation (i.e. Rossiter et al., 2000; Romero-Nava, León-Paniagua & Ortega, 2014; Korstian, Hale, & Williams, 2015).

Amplified microsatellites for *S. parvidens* presented similar levels of polymorphism and heterozygosity found in another bat species (i.e. *Artibeus jamaicensis*—Ortega et al., 2002; *Rhinolophus ferrumequinum*—Dawson et al., 2004; *Desmodus rotundus*—Piaggio, Johnston & Perkins, 2008; *Corynorhinus* spp.—Lee, Howell & Van Den Bussche, 2011; *Myotis* spp.—Jan et al., 2012; *Carollia castanea*—Cleary, Waits & Hohenlohe, 2016).

Cross-species amplification showed a differential strengthening for the twelve related species (Table 4). *S. new species3* presented the main number of amplified microsatellites (8), followed by *S. bakeri* (7). *S. mordax* has the less number of amplified loci (4).

The use of microsatellite markers to infer levels of genetic diversity in natural populations is widely distributed.
Molecular markers are not always developed for the target species and the use of microsatellites loci from related species can be accurate. Ascertainment bias limited the microsatellite-based approach due to the particular selection of polymorphic markers in the genome, plus the reduced sensitivity of the markers due to the phylogenetic constraints (Crawford et al., 1998; Schlötterer, 2000; Li & Kimmel, 2013). The bias arises in a minor average allele length due to the phylogenetic restriction (Li & Kimmel, 2013). We tested the potential employ of our markers in related species, founding multilocus heterozygosities inside the Sturnira genus. This positive effect suggests using the developed markers to extrapolate genetic diversity in future studies for this highly specious genus; where the past demographic shared histories barely affect the cross-species amplification consolidation.

Conclusions

- We used Illumina Paired-Sequences to develop efficiently microsatellite loci for Sturnira parvidens.
- We formed a genomic library to obtain 12 specific and polymorphic microsatellites for this bat.
- We assessed specific PCR conditions to amplify successfully the development of microsatellite loci.
- Microsatellites showed high allelic richness per locus, enquiring their effectiveness for posterior studies (i.e. population genetics, behavioral ecology, etc.).
- Cross-species amplification was effective for the twelve related species, but inexact in several cases.

Acknowledgments

We thank supporting fieldwork provided by students of the Facultad de Ciencias, UNAM (MZFC-M). We will like to
thank Field Museum of Natural History, Chicago (FMNH), Louisiana State University, Museum of Natural Science, Baton Rouge (LSUMZ), Museo de Zoología de la Universidad Costa Rica, San José, Costa Rica (MZUCR), Museum of Texas Tech University, Lubbock (TTU) for providing tissues from their collections. Particular special thanks to Bruce D. Patterson and Natalia Cortés-Delgado from FMNH; David Villalobos and Bernal Rodríguez from MZUCR; Frederick H. Sheldon and Donna L. Dittmann from LSUMZ; Caleb D. Phillips from TTU for providing samples.

References


Cleary KA, Waits LP, Hohenlohe PA. 2016. Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (*Carollia castanea*), and cross-amplification to related species. *PeerJ* 4:e2465; DOI:


Figure 1. - Geographic distribution of *Sturnira parvidens*. It is distributed from the Gulf of Mexico and Pacific slopes in northern Mexico to southeast until Middle America, with a meridional limit in the mountain range of Talamanca in Costa Rica. Map created by E. G. Gutiérrez. Picture of Juan Cruzado.
Table 1. - Potentially amplified loci (PAL’s) with positive microsatellites found in the enriched library. Perfect, imperfect and compound loci scattered from dinucleotide to hexanucleotide microsatellite forms.

Table 2. - Primer sequences and characteristics of the 14 microsatellites loci isolated for *Sturnira parvidens*.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Primer (Forward) (5-3’)</th>
<th>Primer (Reverse) (5-3’)</th>
<th>Motif</th>
<th>Annealing T(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinucleotide</td>
<td>2279</td>
<td>619</td>
<td>Perfect</td>
<td>20</td>
</tr>
<tr>
<td>Trinucleotide</td>
<td>1908</td>
<td>619</td>
<td>Imperfect</td>
<td>28</td>
</tr>
<tr>
<td>Tetranucleotide</td>
<td>101</td>
<td>24</td>
<td>Compound</td>
<td>0</td>
</tr>
<tr>
<td>Pentanucleotide</td>
<td>136</td>
<td>54</td>
<td>1</td>
<td>2279</td>
</tr>
<tr>
<td>Hexanucleotide</td>
<td>500</td>
<td>20</td>
<td>23</td>
<td>1908</td>
</tr>
<tr>
<td>Spar01</td>
<td>6 FAM-TGCCCTGAAGAACTTTGAGC</td>
<td>CCCATACTTCTCCCTCACAGC</td>
<td>AAAG(92)</td>
<td>58</td>
</tr>
<tr>
<td>Spar02</td>
<td>6 FAM-AGAAAGAAGGGAGGGCGG</td>
<td>TCTTTATGCCCTTTGCTCTAGG</td>
<td>AAAG(104)</td>
<td>60</td>
</tr>
<tr>
<td>Spar05</td>
<td>6 FAM-TG CCTGCCTAGTCCTGACCC</td>
<td>AAGCAGTTCCCATACATGC</td>
<td>ATC(33)</td>
<td>56</td>
</tr>
<tr>
<td>Spar06</td>
<td>6-FAM-CCTGGGATGAAGTTTCTGACG</td>
<td>GAATAATGGGAATACAGAATAAGACG</td>
<td>TTC(30)</td>
<td>×</td>
</tr>
<tr>
<td>Spar07</td>
<td>6 FAM-C TCCACGGGACAATCAACG</td>
<td>CCCAGATTGCTGCCTTCC</td>
<td>TGC(30)</td>
<td>56</td>
</tr>
<tr>
<td>Spar08</td>
<td>6 FAM-GGAGTCTCTCTTCAATAGTGCC</td>
<td>GGATGTGTGTTGGAAGATTGTGC</td>
<td>ATT(30)</td>
<td>56</td>
</tr>
<tr>
<td>Spar09</td>
<td>6 FAM-AAGTCCATTCAAAGCGCTGGG</td>
<td>CCCATCATACCCCTCTTGC</td>
<td>AC(44)</td>
<td>60</td>
</tr>
<tr>
<td>Spar10</td>
<td>6 FAM-TCTGGCCTGAGGTATTTGGG</td>
<td>ACTGTAGCCACTTCCTGCC</td>
<td>AC(44)</td>
<td>60</td>
</tr>
<tr>
<td>Spar11</td>
<td>6 FAM-AAGCCACTGCCTTGTGCC</td>
<td>GACTCTTCGACAATGGCACC</td>
<td>TC(44)</td>
<td>60</td>
</tr>
<tr>
<td>Spar12</td>
<td>6 FAM-GGGAGTGAATGAGAAAGATAAAGTCC</td>
<td>CTGTCATTTGCATGAGTTGG</td>
<td>AC(44)</td>
<td>60</td>
</tr>
<tr>
<td>Spar13</td>
<td>6 FAM-AAAGATTCTGAGATCATACCC</td>
<td>TGAATGTATCCATTAGGCGAGC</td>
<td>AC(42)</td>
<td>60</td>
</tr>
<tr>
<td>Spar14</td>
<td>6-FAM-TTTCTCTCACTGCTAACTCTGCC</td>
<td>AGTCCCTGGAAGGTTGTGC</td>
<td>TC(32)</td>
<td>×</td>
</tr>
<tr>
<td>Spar30</td>
<td>6 FAM-AAGATCAGCATATTATCTACATAGG</td>
<td>CCGTTCTAGGCTCAAGTTCC</td>
<td>ATT(36)</td>
<td>60</td>
</tr>
<tr>
<td>Spar40</td>
<td>6 FAM-GACTGAGACAATTGCTTGAGATAGC</td>
<td>GAGTTTCAGGGAGTTATTCAGTGC</td>
<td>ATC(33)</td>
<td>60</td>
</tr>
</tbody>
</table>
Table 3. Diagnostic characteristics of selected microsatellites. Number of alleles, allelic range, polymorphic information (PI), observed heterozygosity (Ho), expected heterozygosity (He), Hardy-Weinberg equilibrium (HWE), and null alleles.

<table>
<thead>
<tr>
<th>Locus</th>
<th>GenBank Accession Number</th>
<th>No. alleles</th>
<th>Alleles range (bp)</th>
<th>PIC</th>
<th>Ho</th>
<th>He</th>
<th>HWE</th>
<th>Null alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spar01</td>
<td>KY645946</td>
<td>7</td>
<td>132-236</td>
<td>0.7098</td>
<td>0.941</td>
<td>0.761</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar02</td>
<td>KY645947</td>
<td>6</td>
<td>130-222</td>
<td>0.6455</td>
<td>0.765</td>
<td>0.692</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar05</td>
<td>KY645948</td>
<td>6</td>
<td>124-226</td>
<td>0.6069</td>
<td>0.412</td>
<td>0.699</td>
<td>&gt;0.05</td>
<td>✔</td>
</tr>
<tr>
<td>Spar07</td>
<td>KY645949</td>
<td>10</td>
<td>121-226</td>
<td>0.8028</td>
<td>0.824</td>
<td>0.865</td>
<td>&gt;0.05</td>
<td>✔</td>
</tr>
<tr>
<td>Spar08</td>
<td>KY645950</td>
<td>11</td>
<td>130-382</td>
<td>0.8052</td>
<td>0.800</td>
<td>0.860</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar09</td>
<td>KY645951</td>
<td>13</td>
<td>134-230</td>
<td>0.8864</td>
<td>0.875</td>
<td>0.933</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar10</td>
<td>KY645952</td>
<td>12</td>
<td>132-236</td>
<td>0.8698</td>
<td>0.882</td>
<td>0.919</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar11</td>
<td>KY645953</td>
<td>8</td>
<td>124-222</td>
<td>0.8125</td>
<td>0.588</td>
<td>0.863</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar12</td>
<td>KY645954</td>
<td>8</td>
<td>128-214</td>
<td>0.7068</td>
<td>0.750</td>
<td>0.772</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar13</td>
<td>KY645955</td>
<td>10</td>
<td>124-220</td>
<td>0.8577</td>
<td>0.500</td>
<td>0.867</td>
<td>&gt;0.05</td>
<td>✔</td>
</tr>
<tr>
<td>Spar30</td>
<td>KY645957</td>
<td>6</td>
<td>133-169</td>
<td>0.7088</td>
<td>0.741</td>
<td>0.735</td>
<td>&gt;0.05</td>
<td></td>
</tr>
<tr>
<td>Spar040</td>
<td>KY645958</td>
<td>6</td>
<td>124-190</td>
<td>0.6721</td>
<td>0.662</td>
<td>0.669</td>
<td>&gt;0.05</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Cross-species amplifications of the designed primers for *S. parvidens*. We followed same PCR conditions in the
twelve related species. (√) no positive amplification, (√p) positive polymorphic amplification, (√m) positive monomorphic amplification, (√*) polymorphism not probed because inexact PCR conditions.