A peer-reviewed version of this preprint was published in PeerJ on 2 October 2017.

<u>View the peer-reviewed version</u> (peerj.com/articles/3621), which is the preferred citable publication unless you specifically need to cite this preprint.

Fang Z, Lou L, Tai Z, Wang Y, Yang L, Hu Z, Cai Q. 2017. Comparative study of Cd uptake and tolerance of two Italian ryegrass (*Lolium multiflorum*) cultivars. PeerJ 5:e3621 https://doi.org/10.7717/peerj.3621

Comparative study of Cd uptake and tolerance of two Italian ryegrass (Lolium multiflorum) cultivars

Zhigang Fang 1,2 , Laiqing Lou 1 , Zhenglan Tai 1 , Yufeng Wang 1 , Lei Yang 1 , Zhubing Hu $^{\text{Corresp.}-1}$, Qingsheng Cai $^{\text{Corresp.}-1}$

Corresponding Authors: Zhubing Hu, Qingsheng Cai Email address: huzhubing@njau.edu.cn, qscai@njau.edu.cn

Cadmium (Cd) is one of the most toxic heavy metals and is difficult to remove from contaminated soil and water. Italian ryegrass (Lolium multiflorum), as an energy crop, exhibits a valuable potential to develop Cd polluted sites due to its use as a biofuel rather than as food and forage. Previously, via a screening for Cd-tolerant ryegrass, the two most extreme cultivars (IdyII and Harukaze) with high and low Cd tolerance during seed germination, respectively, were selected. However, the underlying mechanism for Cd tolerance was not well investigated. In this study, we comparatively investigated the growth, physiological responses, and Cd uptake and translocation of Idyll and Harukaze when the seedlings were exposed to a Cd (0-100 μM) solution for 12 days. As expected, excess Cd inhibited seedling growth and was accompanied by an accumulation of malondialdehyde (MDA) and reduced photosynthetic pigments in both cultivars. The effects of Cd on the uptake and translocation of other nutrient elements (Zn, Fe, Mn and Mg) were dependent on Cd concentrations, cultivars, plant tissues and elements. Compared with Harukaze, IdyII exhibited better performance with less MDA and higher pigment content. Furthermore, Idyll was less efficient in Cd uptake and translocation compared to Harukaze, which might be explained by the higher NPT (non-protein thiols) content in its roots. Taken together, our data indicate that Idyll is more tolerant than Harukaze, which partially resulted from the differences in Cd uptake and translocation.

 $^{^{}f 1}$ College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China

² Kashghar University, Kashghar, Xinjiang, China

Comparative study of Cd uptake and tolerance of two Italian ryegrass

2	(Lolium multiflorum) cultivars
3	Zhigang Fang ^{1,2} , Laiqing Lou ¹ , Zhenglan Tai ¹ , Yufeng Wang ¹ , Lei Yang ¹ Zhubing Hu ¹ ,
4	Qingsheng Cai ¹
5	¹ College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
6	² Kashghar University, Kashghar, Xinjiang, Province, People's Republic of China
7	Corresponding authors:
8	Qingsheng Cai, Zhubing Hu
9	E-mail address: qscai@njau.edu.cn and huzhubing@njau.edu.cn
10	
11	
12	
12	
13	
14	
15	
16	
16	
17	
18	
19	
20	
21	
22	

24

ABSTRACT

- 25 Cadmium (Cd) is one of the most toxic heavy metals and is difficult to remove from 26 contaminated soil and water. Italian ryegrass (Lolium multiflorum), as an energy crop, exhibits a valuable potential to develop Cd polluted sites due to its use as a biofuel rather than as food and 27 forage. Previously, via a screening for Cd-tolerant ryegrass, the two most extreme cultivars 28 (IdyII and Harukaze) with high and low Cd tolerance during seed germination, respectively, 29 were selected. However, the underlying mechanism for Cd tolerance was not well investigated. 30 In this study, we comparatively investigated the growth, physiological responses, and Cd uptake 31 32 and translocation of IdyII and Harukaze when the seedlings were exposed to a Cd (0-100 µM) 33 solution for 12 days. As expected, excess Cd inhibited seedling growth and was accompanied by an accumulation of malondialdehyde (MDA) and reduced photosynthetic pigments in both 34 cultivars. The effects of Cd on the uptake and translocation of other nutrient elements (Zn, Fe, 35 Mn and Mg) were dependent on Cd concentrations, cultivars, plant tissues and elements. 36 37 Compared with Harukaze, IdyII exhibited better performance with less MDA and higher pigment 38 content. Furthermore, IdyII was less efficient in Cd uptake and translocation compared to Harukaze, which might be explained by the higher NPT (non-protein thiols) content in its roots. 39 Taken together, our data indicate that IdyII is more tolerant than Harukaze, which partially 40 41 resulted from the differences in Cd uptake and translocation.
- INTRODUCTION

translocation

42

43

44

45 Heavy metal contamination in agricultural soil and water introduced by human activities poses a

Keywords Cadmium, Italian ryegrass, physiological response, tolerance, uptake and

- serious environment issue (Bonfranceschi, Flocco & Donati, 2009; Mwamba et al., 2016; Toth 46
- et al., 2016). Among heavy metals, cadmium (Cd), known as a highly toxic and non-47
- biodegradable pollutant, is easily taken up by plant roots and translocated to other parts (Nocito 48

et al., 2011), thus threatening human health via food contamination and ecosystem safety (Agami 49 & Mohamed 2013). In view of the difficulty of a clean up of Cd-contaminated soil by physical or 50 51 chemical means, planting energy crops became a viable alternative for exploiting heavy-metal 52 contaminated land (Shi & Cai 2009; Zhang et al., 2013; Al Chami et al., 2015; Pandey, Bajpai & 53 Singh, 2016). Thus, increasing efforts have been devoted to isolating a tolerant cultivar and dissecting the mechanisms underlying their tolerance. 54 55 Several direct and indirect toxic effects caused by excess Cd have been well-documented. First, 56 excess Cd generates free radicals and reactive oxygen species (ROS), which can oxidize proteins, DNA, lipids and carbohydrates, thus disturbing a number of physical and biological processes in 57 plants (Belkhadi et al., 2010; Fernandez et al., 2013). For instance, excess Cd induced an 58 59 accumulation of a lipid peroxidation product, MDA, in rice, which is an indicator of oxidative 60 stress and disturbed cellular metabolism (Celekli, Kapi & Bozkurt, 2013; Mostofa, Seraj & Fujita, 2014; Xie et al., 2015). Second, the uptake of nutrient elements (Fe, Mn, Cu and Zn) is 61 disturbed by Cd stress, which can impair the transport of these elements from the roots to aerial 62 parts, thus leading to a reduction of electron transport in photosystem I transport due to the lack 63 64 of chlorophyll synthesis (Aravind & Prasad 2005; Lopes Júnior, Mazzafera & Arruda 2014). Due to Cd toxicity in plants, it is not surprising that a set of strategies have been evolved to 65 cope with exogenous Cd, which include active exclusion, vacuolar sequestration, retention in the 66 67 roots, immobilization by cell walls and complexation by binding metal to low-molecular weight 68 proteins (Ramos et al., 2002; Wahid, Arshad & Faroog, 2010). It has been reported that reducing Cd accumulation by exclusion in the roots of *Thlaspi arvense* conferred enhanced tolerance in 69 the Cd-tolerance ecotype (Martin et al., 2012). In Dittrichia viscosa (L.) Greuter, the responses 70 71 of Cd toxicity involved Cd retention in the cell wall of the roots and the upregulated contents of non-protein thiols and organic acids (Fernandez et al., 2014). In wheat, Cd binds to the sulphur 72 group of cysteine-forming Cd-PC complexes, reducing the free Cd²⁺ in the cytosol, and the Cd-73 PC complexes are in turn transported into the vacuole or out of the cell by ATP binding cassette 74 transporters (Greger et al., 2016). 75

Different approaches have been employed to unravel the mechanisms that address Cd toxicity. 76 such as screening for cadmium sensitive mutants (McHugh & Spanier 1994) and dissecting the 77 role of metal transporters by transgenic manipulations (*Uraguchi & Fujiwara 2012*). The cultivar 78 79 screen is another way to find evolved mechanisms in plants due to different environments and 80 natural variations. This has been conducted for Cd tolerance and accumulation in several species such as hemp (Shi et al., 2012), Indian mustard (Gill, Khan & Tuteja, 2011), barley (Sghayar et 81 al., 2014) and castor (Zhang et al., 2014), revealing that Cd tolerance is related to the 82 83 characteristics of plant morphology, the amounts of phytochrome synthesis, Cd uptake and thiol 84 levels. 85 Italian ryegrass (Lolium multiflorum), also called annual ryegrass, is broadly grown in the south of China during the winter before the emergence of rice to relieve green fodder shortages 86 87 (Ye et al., 2015). Recently, this species has been considered an appropriate material for bio-88 ethanol production due to its high ethanol conversion, rapid growth and low input costs (Yasuda et al., 2015; Ye et al., 2015). Two recent studies reported that Italian ryegrass had a high 89 90 tolerance to Cd during seed germination and was able to be cultivated in sites polluted by mine 91 tailings (Liu et al., 2013; Mugica-Alvarez et al., 2015). In regards to these properties, Italian ryegrass has been suggested as a new species for the bioremediation of heavy metal polluted 92 soils (including Cd) (Yamada et al., 2013). However, compared with other species, little 93 94 information is available concerning the capacity of Cd tolerance and uptake and tolerance mechanisms in Italian ryegrass. Here, through investigating the underlying causes for differential 95 Cd tolerance in two ryegrass cultivars (IdyII and Harukaze), we found that IdyII is less efficient 96 in Cd uptake and translocation than Harukaze. Furthermore, a high NPT content in IdyII might 97 98 be one of causes for low Cd translocation. Our findings can provide a new tool for further dissecting the molecular mechanisms of Cd uptake and translocation in ryegrass cultivars and 99 100 will be helpful for breeding Italian ryegrass as a bioenergy crop for heavy metal remediation.

MATERIALS AND METHODS

Plant cultivation

101

Two extreme ryegrass cultivars (IdyII and Harukaze) with high and low Cd tolerance during seed 103 germination (Fang et al., 2016), respectively, were selected for this study. Seeds were sterilized 104 with 10% H₂O₂ for 10 min, rinsed thoroughly with distilled water, and germinated via immersion 105 106 in distilled water at 25°C in the dark. After five days, uniform seedlings were transferred to 1-L 107 plastic pots (14 plants per pot) filled with 1/4 Hoagland's solution. Seedlings were maintained for 10 days in a growth chamber at a 12 h light/dark cycle with 300 µmol m⁻² s⁻¹ light intensity, a 108 109 day/night temperature of $25/20^{\circ}$ C and $65 \pm 5\%$ relative humidity. Five Cd concentrations for the treatments were as follows: 0, 10 μ M, 25 μ M, 50 μ M, and 100 μ M Cd as CdCl₂·2.5H₂O 110 (analytical reagent) was added to the nutrient solution. Each treatment had six replicates. The 111 nutrient solution was renewed every 3 days, and the pH was adjusted to 6.5 with 2 M NaOH or 112 113 2.7 M HCl.

- After a 12-day Cd exposure, plants were divided into two groups and collected. One group was for biomass and Cd concentration determination, and the other group was for physiological index measurements, including chlorophyll content, lipid peroxidation and non-protein thiols
- 117 (NPT). Each group had three replicates.

118 Estimation of plant growth and Cd accumulation

- 119 The harvested plants were soaked in 20 mM Na₂-EDTA for 15 min, rinsed with distilled water to
- 120 remove metals on the root surfaces, and separated into roots and shoots. Subsequently, samples
- were oven dried at 70°C to the constant weight. The dried samples were weighed and digested
- with mixed acid [HNO₃ + HClO₄ (85:15, v/v)]. The concentrations of Cd, zinc (Zn), iron (Fe),
- 123 manganese (Mn) and magnesium (Mg) were determined by an inductively coupled plasma
- optical emission spectrometer (ICP-OES, Optima 2100DV, PerkinElmer, Inc. US).
- The TIs (tolerance index), translocation factors (TFs), bioconcentration factors (BCF), and Cd
- accumulation were determined according to the method of *Chen et al.* (2011):
- 127 $TIs = biomass_{Cd}/biomass_{control}$
- TFs = $Cd_{concentration in shoot} / Cd_{concentration in root}$
- BCF = $Cd_{concentration in root} / Cd_{concentration in the nutrient solution}$

- Cd accumulation = [biomass] $_{dry \text{ weight}} \times [Cd]$ concentration in plant tissues
- Total Cd accumulation = Cd accumulation in root + Cd accumulation in shoot
- Cadmium distribution proportion of root = Cd accumulation in root/ Total Cd accumulation

133 Estimation of photosynthetic pigment contents

- 134 The middle part of 100 mg of fresh leaves was extracted in 10 mL 95% ethanol for 24 h in the
- ark. Absorbance at 665, 649 and 470 nm were determined with spectrophotometry (SHIMADZU
- 136 UV-2450, Kyoto, Japan). Chlorophyll a, b and carotenoids (Car) were calculated according to
- the method of *Knudson*, *Tibbitts & Edwards* (1977).

138 Estimation of lipid peroxidation

- Plant fresh tissues (0.1-0.3 g) were homogenized and extracted in 5 mL of 0.25% TBA made in
- 140 10% trichloroacetic acid (TCA). The sample extractions were heated at 95°C for 30 min and then
- 141 quickly cooled on ice. After centrifugation at 10000 × g for 10 min, the absorbance of the
- supernatant was measured at 532 and 600 nm. Lipid peroxidation and MDA content was
- 143 estimated with the concentration of thiobarbituric acid-reacting substances (TBARS) as
- 144 described by *Ali et al.* (2014).

145 **Determination of non-protein thiols**

- Non-protein thiols (NPT) were assayed following *Tian et al.* (2011) with minor modifications.
- 147 Fresh tissues (approximately 0.3 g) were homogenized in 3 mL ice-cold 5% sulfosalicylic acid
- solution and centrifuged at $12000 \times g$ (4°C) for 15 min. The resulting supernatant was used for
- NPT assays. First, 0.3 mL of the supernatant was mixed with 1.2 mL 0.1 M K-phosphate buffer
- 150 (pH 7.6) and 50 µL 6 mM 5.5'-dithiobis-2- nitrobenzoic acid (DTNB) (dissolved in 5 mM EDTA
- and 0.1 M phosphate buffer solution at pH 7.6). The mixture was incubated at room temperature
- 152 for 20 min and then measured for absorbance at 412 nm with spectrophotometry. The NPT
- 153 content was estimated with a standard curve of reduced glutathione in the range of 0-100 µg/mL.

154 Statistical analysis

- 155 Statistical analyses were performed using a two-way analysis of variance (ANOVA) with SPSS
- 156 Version 20.0 (SPSS Inc., USA). Duncan's multiple range test was employed to compare the

- 157 changes among the different treatments at P < 0.05. The relationships among TIs, Cd
- 158 concentration, accumulation, and some physiology parameters in plant roots were determined by
- 159 Pearson's correlation analysis.

RESULTS

- 161 Plant biomass, TIs and root/shoot ratio response to Cd stress
- 162 Increasing the Cd supply in the medium posed variable effects on plant biomass, TIs and the
- 163 root/shoot ratio (Table 1). Cd treatments tended to reduce the biomass of both cultivars. The
- biomass of IdyII was significantly higher than that of Harukaze in the same treatment (P<0.01),
- and biomass reductions with increasing Cd dose from 5 µM to 100 µM were more distinct in
- Harukaze (P<0.01). Similar alterations were also observed with the TIs. For example, when
- 167 exposed to 25 µM Cd, root biomass was reduced by 37% in Harukaze and 22% in IdyII. A clear
- decline in the roots/shoot ratio was demonstrated in both cultivars with increasing Cd
- 169 concentrations.
- 170 Ecotoxicological response based on the plant biomass inhibition rate
- 171 As shown in Table 2, positive correlations were observed between the inhibition of plant
- biomass (root and shoot) and Cd concentrations in the solution (P<0.01), which was represented
- by the quadratic equation. To evaluate toxicity, the inhibitory concentration (EC50; Cd
- 174 concentration when the root or shoot biomass decreased by 50% compared with the control) and
- lethal concentration (IC90; Cd concentration when the root or shoot biomass decreased by 90%
- 176 compared with the control) were determined by the fitting equation. The EC50 values of the
- shoots and roots of IdyII were 1.9-fold and 3.2-fold higher than that of Harukaze, respectively.
- 178 The lethal concentration of the roots and shoots (IC90) in IdyII were also higher than that of
- Harukaze, implying that IdyII was tolerant to Cd.
- 180 Cd concentration, accumulation in plant tissues, and BCFs and TFs responses to Cd stress
- 181 With elevating Cd concentrations in the treatment solutions, root Cd concentration in both
- cultivars increased, ranging from 2.09 to 9.89 mg·g⁻¹ in Harukaze and from 1.26 to 6.89 mg·g⁻¹
- in IdyII. Obviously, Cd concentrations in Harukaze roots were higher than that of IdyII roots,

197

198

200

201

202

203

204

205

206

207

208

209

210

especially at the 50 to 100 μ M Cd treatments (Fig. 1A, P< 0.01). Similar trends were also 184 observed in the shoots (Fig. 1B). A gradual increase of Cd TFs in Harukaze was correlated with 185 186 the increasing Cd concentration in the treatment solutions, whereas no significant Cd TFs 187 changes in IdyII were observed. The Cd TFs value in Harukaze was significantly higher than that in IdyII after exposure to the highest Cd concentration (Fig. 1C, P< 0.01). Cd accumulation in 188 the roots of Harukaze remained constant, while there was a dramatic increase in IdyII with the 189 190 application of 25-100 µM Cd in the treatment solutions (Fig. 1D). An increasing trend of Cd accumulation in the shoots and total accumulation was observed with an increasing Cd supply, and their accumulation amounts in IdyII were significantly higher than that in Harukaze in the 192 193 presence of higher Cd dosages (Figs. 1E and 1F, P < 0.05). The proportion of cadmium distribution in the roots was 78.5-45.4% in Harukaze and 67.2-194 54.7% in IdyII under Cd stress. The distribution proportion in both Harukaze and IdyII 195 significantly decreased with the 25 µM and 100 µM Cd treatments, respectively (Fig. 2A, P< 196

0.01). The increasing Cd supply reduced the root BCFs of the two cultivars (Fig. 2B), and the

reduction was especially obvious in Harukaze (range from 3715 to 880). At low Cd treatments

199 (5-10 μ M), the BCFs of Harukaze were markedly higher than that of IdyII (P< 0.01).

Effects of Cd on plant mineral concentrations and TFs

Cadmium treatments altered the uptake and TFs of several nutrient elements (Fig. 3). Compared with the control, the 25-100 μM Cd supply markedly increased the Zn and Fe concentrations in the roots of Harukaze (Figs. 3A and 3B), whereas the Mn concentration in the roots of Harukaze was significantly decreased with lower Cd concentrations (5 and 10 µM) (Fig. 3C). Additionally, Mg concentration was greatly increased at the highest Cd concentrations (Fig. 3D). In contrast, compared with the control, 100 µM Cd significantly promoted Zn uptake in the roots of IdyII (Fig. 3A), while the uptakes of Fe, Mn, and Mg exhibited no change in the roots of IdyII (Figs. 3B, 3C and 3D). In the shoot, Cd supply did not affect Zn and Mg concentrations in both cultivars, but severely decreased Mn concentrations (Figs. 3E, 3H and 3G). Compared with the control, shoot Fe concentrations in IdyII exhibited a gentle decrease with increasing Cd

concentration, while a reduction occurred in Harukaze at the highest Cd treatment (Fig. 3F). In 211 both cultivars, Zn TFs were significantly inhibited at the 25-100 µM Cd treatments (Fig. 3I), and 212 the amounts in IdyII were significantly higher than that of Harukaze. Fe TFs reached a maximum 213 214 in both cultivars under 5 µM Cd and then showed a decrease with increasing Cd (Fig. 3J). Cd treatments in IdyII significantly reduced Mn TFs and had no change in Mg TFs. In contrast, the 215 TFs of Mn and Mg in Harukaze decreased considerably only at the highest concentration of Cd 216 217 (Figs. 3K and 3L). According to a two-way ANOVA analysis, significant differences in the Zn, 218 Fe, Mn (P<0.01) and Mg (P<0.05) concentrations of the roots were found between the two cultivars, as well as the Zn concentration of the shoots (P<0.05) and the TF of Zn (P<0.01). 219 Effects of Cd on pigment content, lipid peroxidation and NPT content 220 The cadmium supply tended to reduce chlorophyll a, chlorophyll b, chlorophyll (a + b) and Car 221 222 contents in both cultivars (Table 3). For example, the chlorophyll a, chlorophyll b, and Car content decreased by 42.5%, 44.7% and 44.4% in Harukaze and by 11.8%, 5.9%, and 22.2% in 223 IdyII under 25 μM Cd stress, respectively. The chlorophyll a, chlorophyll b and chlorophyll (a+b) 224 content of IdyII was significantly higher than that of Harukaze at 25-100 µM Cd concentrations 225 (P<0.01); a similar trend occurred in Car under 50-100 µM Cd stress. The Cd treatments did not 226 affect the Chl a/b ratio of IdyII but significantly inhibited that of Harukaze at 100 µM Cd. 227 The MDA content in plant tissues was increased with elevated Cd concentrations, and the 228 229 amounts in the leaves were higher than in the roots (Fig. 4A P<0.01). Compared with the control, when treated with high Cd concentrations (50 and 100 µM), the MDA content of the seedling 230 roots increased by 252.5% and 610.2% in Harukaze but only by 140.7% and 291.7% in IdvII, 231 respectively. Similarly, the MDA content of the leaves in Harukaze increased sharply with the 232 25-100 μM Cd treatments and was considerably higher than that of IdyII (Fig. 4B, P<0.01). 233 As shown in Fig. 5, compared with the control, the NPT content in the roots of IdyII increased 234 at least 3 times with the application of 5 µM Cd and reached its maximum under 50 µM Cd. No 235 significant change occurred in Harukaze with the addition of 5-50 µM Cd in the medium (Fig. 236 5A). Furthermore, the NPT content in the roots of IdyII were significantly higher than that of 237

- Harukaze with the treatments of 10-100 μ M Cd (P<0.01). The NPT content in the shoots of the
- 239 two cultivars were also enhanced under Cd stress. The values in IdyII were significantly higher
- than that in Harukaze at the 25-100 μ M Cd treatments (Fig. 5B, P<0.05).
- 241 Correlation analysis
- 242 Pearson's correlation analysis was carried out to investigate the correlations among TIs, Cd
- 243 uptake, Cd TFs, Cd accumulation, MDA content and NPT content of the two cultivars in the
- roots (Table 4). TIs were negatively correlated to Cd concentration, MDA content and Cd TFs.
- 245 Cd uptake and TFs were positively correlated to MDA content. Additionally, a positive
- 246 correlation was observed between Cd accumulation and NPT content.

DISCUSSION

- 248 In this study, our data demonstrated that Italian ryegrass possesses a stronger capacity in Cd
- 249 uptake than common crops. After 12 days of exposure at 50 μM Cd, the Cd concentration in
- 250 Italian ryegrass reached at least 4.9 mg·g⁻¹ (DW) in the roots and 0.4 mg·g⁻¹ (DW) in the shoots
- 251 (Fig. 1A and B). These concentrations are higher than that in rice after 15 days of exposure at 50
- 252 μM Cd (*Lin et al., 2012*), as well as that in maize after 15 days of exposure at 100 μM Cd (*Wang*
- 253 et al., 2007).
- The biomass reduction in the roots was more visible than that in the shoots when Cd levels
- were over 10 μM (Table 1). Similar results were reported in barley (*Tiryakioglu et al., 2006*),
- and the reason may be the fact that the roots are directly exposed to Cd (Hegedüs, Erdei &
- 257 Horváth 2001). As plant biomass and TIs are two important parameters to evaluate the Cd
- tolerance in plants (Metwally et al., 2005; Shi et al., 2012), the biomass of the roots and shoot in
- 259 Harukaze were reduced over 50% under 50 and 100 μM Cd, and the TIs were less than 0.5,
- 260 which was not observed in IdyII (Table 1), thus demonstrating that IdyII was more tolerant to Cd
- 261 than Harukaze. This was further supported by the higher EC50 and IC90 of Cd toxicity in IdyII
- 262 (Table 2); two parameters commonly represent phytotoxin under a threshold and acute toxicity,
- 263 respectively (Paschke, Valdecantos & Redente, 2005; An, 2006; Pannacci, Pettorossi & Tei
- 264 *2013*).

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

Although Cd is a non-redox metal unable to produce reactive oxygen species (ROS) through single election transfer, Cd interferes with the antioxidant defence system and diminishes the capacity for ROS removal (Wahid, Arshad & Faroog. 2010). Cd also affects the functions of two important organelles, the mitochondria and chloroplasts, which in turn disturb their election transfers and generate free radicals and ROS in the cell (Celekli, Kapi & Bozkurt, 2013; Mostofa, Seraj & Fujita, 2014). The accumulated ROS can interact with proteins, lipids, carbohydrates, and DNA, perturbing a number of physiological processes (Gallego et al., 2012). In IdyII and Harukaze, the Cd supply enhanced the MDA content, indicating Cd induced oxidative damage (Fig. 4). The oxidative damage might partially be attributed to the reduction in photosynthetic pigments and plant biomass under Cd stress in both cultivars (Table 1 and Table 3). Relatively high MDA content and low photosynthetic pigments demonstrated that Cdinduced toxicity in Harukaze was more severe than in IdyII, which was consistent with their Cd tolerance. Similar correlations between Cd tolerance and MDA content were observed in oilseed cultivars (Wu et al. 2015), the leaves of Indian mustard cultivars (Gill, Khan & Tuteja, 2011) and Artichoke cultivars (Chen et al., 2011). Apart from oxidative damage, the uptake, transport, and subsequent distribution of nutrient elements in IdyII and Harukaze were affected by the presence of Cd (Fig. 3). An elevated Cd dosage increased Zn, Fe, Mg and Mn concentrations in Harukaze roots, whereas it did not significantly increase that in the IdyII roots, except for Zn (Fig. 3A-D). Possibly, the metal transportation systems in the roots are different between Harukaze and IdyII, and Harukaze may have a high-dose Cd activated transportation system. This is further supported by the higher Cd concentrations in Harukaze. Likewise, Cd promoting the uptake of Mg, Ca, and Fe were reported in tomato (Kisa, Ozturk & Tekin 2016). No significant differences in metal concentration were observed between the shoots of Harukaze and IdyII, indicating that cultivar differences in metal uptake are mainly in the roots rather than in the shoots. Goncalves et al. (2009) also suggested that microelement uptake, such as Fe²⁺, Mn²⁺ and Zn²⁺, was determined by the level of Cd in the substrate, cultivar and plant tissue specificity in potato (Solanum tuberosum). Several metal

transporters have been identified that translocate nutrient elements from the roots to the shoot, 292 such as NRAMP families and ZIP families (Choppala et al., 2014). With exposure to Cd, the Cd 293 TF remained constant or increased with Cd treatments (Fig. 1C), whereas the TFs of Zn, Fe and 294 295 Mn exhibited a decline (Fig. 3I, 3J and 3K), indicating that there may be possible competition 296 with the metal transporters for translocation between Cd and other micronutrients in Italian ryegrass. It was reported that there were antagonistic effects from Cd and microelement elements 297 298 (Zn, Fe, Mn) using the same transporters and/or cation channels as Ca and Mg (Sarwar et al., 299 2010; Kisa, Ozturk & Tekin 2016). Non-protein thiols (NPT), including glutathione, thiol-rich peptides and other SH groups, play 300 an important role in defence response against the detoxification of heavy metals in plants 301 (Ozdener & Aydin 2009; Nadgorska-Socha et al., 2013). In our study, Cd concentration in the 302 303 roots and shoots of Harukaze were significantly higher than that of IdyII, whose tendency was the opposite of NPT content (Figs. 1A, 1B and Fig. 5). NPT are essential for the synthesis of Cd-304 binding peptides such as phytochelatins, which inactivate and sequester Cd by forming stable 305 306 Cd-complexes in the vacuole (Cobbett 2000). The high NPT in IdyII may promote Cd 307 sequestration into the vacuole and block its translocation, thus leading to the decline of Cd concentration in the shoots and the Cd TF. A similar phenomenon was observed in the variation 308 of Cd tolerance among cultivars of cabbage and barley, suggesting that NPT content may be an 309 310 important indicator for Cd tolerance (Tiryakioglu et al., 2006; Sun et al., 2013). NPT triggering 311 sequestration was also for other metal elements, except for Cd, and the higher NPT content in IdyII might be contributed to the decreased translocation of Zn, Fe, Mg and Mn from the roots to 312 the shoots. 313

CONCLUSIONS

314

In the present study, the biomass, Cd uptake, translocation, accumulation, and physiology parameters of two Italian ryegrass cultivars were significantly affected by Cd treatments.

Compared with Harukaze, IdyII is a Cd-tolerant cultivar, exhibiting a low Cd uptake and a high NPT content. These two distinct capacities may be the major physiological changes that

contributed to the difference of Cd tolerance between the two cultivars. Taken together, our data 319 demonstrates that IdyII is more tolerant than Harukaze, which is correlated with low Cd uptake 320 321 and high NPT content. This will be helpful in investigating the molecular mechanisms of Cd 322 uptake and translocation in Italian ryegrass. **ACKNOWLEDGEMENTS** 323 We would like to thank Chunhua Zhang, who is working at the experimental center of life 324 325 science Nanjing agricultural university, for samples determination during phases of the project. 326 We thank the seeds provided by Chenglong Ding, manager of Livestock Science, Jiangsu Academy of Agricultural Sciences. We also thank Dr. Gaoling Shi for his help with discussion 327 and comments on the early version of this manuscript. 328 329 REFERENCES 330 Agami RA, Mohamed GF. 2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental 331 Safety 94:164-171 DOI 10.1016/j.ecoenv.2013.04.013. 332 Al Chami Z, Amer N, Al Bitar L, Cavoski I. 2015. Potential use of Sorghum bicolour and 333 334 Carthamus tinctorius in phytoremediation of nickel, lead and zinc. *International Journal* of Environmental Science and Technology 12:3957-3970 335 DOI 10.1007/s13762-015-0823-0. 336 337 Ali B, Gill RA, Yang S, Gill MB, Ali S, Rafiq MT, Zhou W. 2014. Hydrogen sulfide alleviates 338 cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Environmental Safety 110:197-207 339 Ecotoxicology and DOI 10.1016/j.ecoenv.2014.08.027. 340 341 An YJ. 2006. Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere 62:1359-1365 DOI 10.1016/j.Chemosphere.2005.07.044. 342 Aravind P, Prasad MNV. 2005. Cadmium-Zinc interactions in a hydroponic system using 343 Ceratophyllum demersum L: adaptive ecophysiology, biochemistry and molecular 344 toxicology. Brazilian Journal of Plant Physiology 17:3-20 DOI 10.1590/S1677-345

346	04202005000100002.									
347	Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaibi W, Djebali W.									
348	2010. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf									
349	lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety									
350	73:1004-1011 DOI 10.1016/j.ecoenv.2010.03.009.									
351	Bonfranceschi BA, Flocco CG, Donati ER. 2009. Study of the heavy metal phytoextraction									
352	capacity of two forage species growing in an hydroponic environment. Journal of									
353	Hazardous Materials 165:366-371 DOI 10.1016/j.jhazmat.2008.10.024.									
354	Celekli A, Kapi M, Bozkurt H. 2013. Effect of cadmium on biomass, pigmentation,									
355	malondialdehyde, and proline of Scenedesmus quadricauda var. longispina. Bulletin of									
356	Environmental Contamination and Toxicology 91:571-576									
357	DOI 10.1007/s00128-013-1100-x.									
358	Chen L, Long X-H, Zhang Z-H, Zheng X-T, Rengel Z, Liu Z-P. 2011. Cadmium									
359	Accumulation and Translocation in Two Jerusalem Artichoke (Helianthus tuberosus L.)									
360	Cultivars. <i>Pedosphere</i> 21: 573-580 DOI 10.1016/s1002-0160(11)60159-8.									
361	Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N,									
362	Ok YS. 2014. Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium									
363	Toxicity. Critical Reviews in Plant Sciences 33:374-391 DOI									
364	10.1080/07352689.2014.903747.									
365	Cobbett CS. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant									
366	Physiology 123:825-832 DOI http://dx.doi.org/10.1104/pp.123.3.825									
367	Fang ZG, Hu ZY, Zhao HH, Yang L, Ding CL, Lou LQ, Cai QS. 2016. Screening for									
368	cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during									
369	germination. Grassland Science (First published: 24 January 2017) Available at									
370	http://onlinelibrary.wiley.com/doi/10.1111/grs.12138/full									
371	Fernandez R, Bertrand A, Reis R, Mourato MP, Martins LL, Gonzalez A. 2013. Growth									
372	and physiological responses to cadmium stress of two populations of Dittrichia viscosa									

373	(L.) Greuter. Journal of Hazardous Materials 244:555-562
374	DOI 10.1016/j.jhazmat.2012.10.044.
375	Fernandez R, Fernandez-Fuego D, Bertrand A, Gonzalez A. 2014. Strategies for Cd
376	accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols
377	and organic acids. Plant Physiol Biochem 78:63-70 DOI 10.1016/j.plaphy.2014.02.021.
378	Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS,
379	Groppa MD, Benavides MP. 2012. Unravelling cadmium toxicity and tolerance in
380	plants: Insight into regulatory mechanisms. Environmental and Experimental Botany
381	83:33-46 DOI 10.1016/j.envexpbot.2012.04.006.
382	Gill SS, Khan NA, Tuteja N. 2011. Differential cadmium stress tolerance in five Indian mustard
383	(Brassica juncea L.) cultivars. Plant Signalling and Behaviour 6:293-300 DOI
384	10.4161/psb.6.2.15049.
385	Goncalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV,
386	Bisognin DA, Dressler VL, Flores EM, Nicoloso FT. 2009. Cadmium and mineral
387	nutrient accumulation in potato plantlets grown under cadmium stress in two different
388	experimental culture conditions. Plant Physiogyl and Biochemistry 47:814-821 DOI
389	10.1016/j.plaphy.2009.04.002.
390	Greger M, Kabir AH, Landberg T, Maity PJ, Lindberg S. 2016. Silicate reduces cadmium
391	uptake into cells of wheat. Environmental Pollution 211:90-97
392	DOI 10.1016/j.envpol.2015.12.027.
393	Hegedüs A, Erdei S, Horváth G. 2001. Comparative studies of H ₂ O ₂ detoxifying enzymes in
394	green and greening barley seedlings under cadmium stress. Plant Science 160:1085-1093
395	DOI 10.1016/S0168-9452 (01)00330-2.
396	Kisa D, Ozturk L, Tekin S. 2016. Gene expression analysis of metallothionein and mineral
397	elements uptake in tomato (Solanum lycopersicum) exposed to cadmium. Journal of
398	Plant Research 129:989-995 DOI 10.1007/s10265-016-0847-7.
399	Knudson LL, Tibbitts T W, Edwards GE 1977. Measurement of Ozone Injury by

Determination of Leaf chlorophyll concentration. Plant Physiology 60:606-608 DOI 10. 400 1104/pp.60.4.606. 401 Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F. 2012. Selenium reduces cadmium uptake and 402 403 mitigates cadmium toxicity in rice. Journal of Hazardous Materials 235-236:343-351 DOI 10.1016/j.jhazmat.2012.08.012. 404 Liu Z, He X, Chen W, Zhao M. 2013. Ecotoxicological responses of three ornamental herb 405 406 species to cadmium. Environmental Toxicology and Chemistry 32:1746-1751 DOI 407 10.1002/etc.2237. Lopes Júnior CA, Mazzafera P, Arruda MAZ. 2014. A comparative ionomic approach 408 focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environmental and 409 410 Experimental Botany 107:180-186 DOI 10.1016/j.envexpbot.2014.06.002. 411 Martin SR, Llugany M, Barceló J, Poschenrieder C. 2012. Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biologia Plantarum 56:729-734 412 DOI 10.1007/s10535-012-0056-8 413 McHugh JP, Spanier JG. 1994. Isolation of cadmium sensitive mutants in Chlamydomonas 414 415 reinhardtii by transformation/insertional mutagenesis. FEMS microbiology letters **124**:239-244 DOI https://doi.org/10.1111/j.1574-6968.1994.tb07290.x. 416 Metwally A, Safronova VI, Belimov AA, Dietz KJ. 2005. Genotypic variation of the response 417 418 to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany 56:167-178 419 DOI 10.1093/jxb/eri017. Mostofa MG, Seraj ZI, Fujita M. 2014. Exogenous sodium nitroprusside and glutathione 420 alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza 421 sativa L.) seedlings. Protoplasma 251:1373-1386 422 DOI 10.1007/s00709-014-0639-7. 423 Mugica-Alvarez V, Cortés-Jiménez V, Vaca-Mier M, Domínguez-Soria V. 2015. 424 Phytoremediation of Mine Tailings Using Lolium Multiflorum. *International Journal of* 425 Environmental Science and Development 6:246-251 DOI 10.7763/ijesd.2015.v6.599. 426

427	Mwamba TM, Li L, Gill RA, Islam F, Nawaz A, Ali B, Farooq MA, Lwalaba JL, Zhou W.
428	2016. Differential subcellular distribution and chemical forms of cadmium and copper in
429	Brassica napus. Ecotoxicology and Environmental Safety 134:239-249 DOI
430	10.1016/j.ecoenv.2016.08.021.
431	Nadgorska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A. 2013.
432	Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on
433	monometallic contaminated soil. Environmental science and pollution research
434	international 20: 1124-1134 DOI 10.1007/s11356-012-1191-7.
435	Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA. 2011. Cadmium retention in rice
436	roots is influenced by cadmium availability, chelation and translocation. Plant Cell
437	Environment 34: 994-1008 DOI 10.1111/j.1365-3040.2011.02299.x.
438	Ozdener Y, Aydin BK. 2009. The effect of zinc on the growth and physiological and
439	biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiologiae
440	Plantarum 32: 469-476 DOI 10.1007/s11738-009-0423-z.
441	Pannacci E, Pettorossi D, Tei F. 2013. Phytotoxic effects of aqueous extracts of sunflower on
442	seed germination and growth of Sinapis alba L., Triticum aestivum L. and Lolium
443	multiflorum Lam. Allelopathy Journal 32:23 Available at
444	http://search.proquest.com/docview/1458282973?accountid=43630
445	Pandey VC, Bajpai O, Singh N. 2016. Energy crops in sustainable phytoremediation.
446	Renewable and Sustainable Energy Reviews 54:58-73
447	DOI 10.1016/j.rser.2015.09.078.
448	Paschke MW, Valdecantos A, Redente EF. 2005. Manganese toxicity thresholds for
449	restoration grass species. Environmental Pollution 135:313-322
450	DOI 10.1016/j.envpol.2004.08.006.
451	Ramos I, Esteban E, Lucena JJ, Gárate An. 2002. Cadmium uptake and subcellular
452	distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science 162:761-767 DOI
453	10.1016/S0168-9452(02)00017-1.

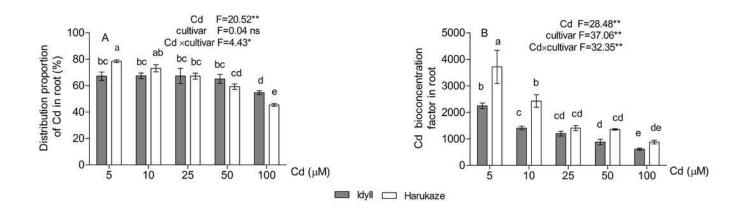
454	Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G. 2010. Role of mineral nutrition in
455	minimizing cadmium accumulation by plants. Journal of the Science of Food and
456	Agriculture 90: 925-937 DOI 10.1002/jsfa.3916
457	Sghayar S, Ferri A, Lancilli C, Lucchini G, Abruzzese A, Porrini M, Ghnaya T, Nocito FF,
458	Abdelly C, Sacchi GA. 2014. Analysis of cadmium translocation, partitioning and
459	tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism.
460	3: 311-320 Biology and Fertility of Soils
461	DOI 10.1007/s00374-014-0977-9.
462	Shi G, Cai Q. 2009. Cadmium tolerance and accumulation in eight potential energy crops.
463	Biotechnology Advance 27:555-561 DOI 10.1016/j.biotechadv.2009.04.006.
464	Shi G, Liu C, Cui M, Ma Y, Cai Q. 2012. Cadmium tolerance and bioaccumulation of 18 hemp
465	accessions. Applied Biochemistry Biotechnology 168:163-173
466	DOI 10.1007/s12010-011-9382-0.
467	Sun J, Cui J, Luo C, Gao L, Chen Y, Shen Z. 2013. Contribution of cell walls, nonprotein
468	thiols, and organic acids to cadmium resistance in two cabbage varieties. Archives of
469	Environment Contamination and Toxicology 64:243-252
470	DOI 10.1007/s00244-012-9824-x.
471	Tian S, Lu L, Zhang J, Wang K, Brown P, He Z, Liang J, Yang X. 2011. Calcium protects
472	roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere
473	84: 63-69 DOI 10.1016/j.chemosphere.2011.02.054.
474	Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I. 2006. Antioxidant defence system
475	and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of
476	Trace Elements in Medicine and Biology 20:181-189
477	DOI 10.1016/j.jtemb.2005.12.004.
478	Toth G, Hermann T, Da Silva MR, and Montanarella L. 2016. Heavy metals in agricultural
479	soils of the European Union with implications for food safety. Environment International
480	88:299-309 DOI 10.1016/j.envint.2015.12.017.

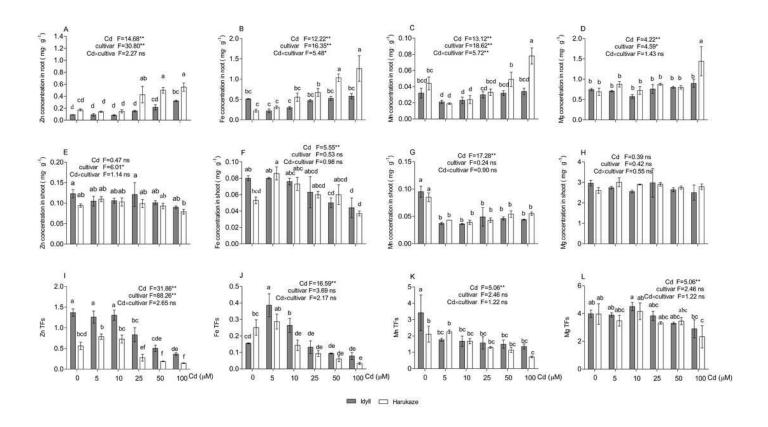
- 481 Uraguchi S, Fujiwara T. 2012. Cadmium transport and tolerance in rice: perspectives for
- reducing grain cadmium accumulation. *Rice (N Y)* 5:5 DOI 10.1186/1939-8433-5-5.
- 483 Wahid A, Arshad M, Farooq M. 2010. Cadmium phytotoxicity: responses, mechanisms and
- mitigation strategies: a review. Organic Farming, Pest Control and Remediation of Soil
- 485 *Pollutants*: Springer, 371-403.
- 486 Wang M, Zou J, Duan X, Jiang W, Liu D. 2007. Cadmium accumulation and its effects on
- metal uptake in maize (Zea mays L.). Bioresource Technology 98:82-88 DOI
- 488 10.1016/j.biortech.2005.11.028.
- 489 Wu Z, Zhao X, Sun X, Tan Q, Tang Y, Nie Z, Qu C, Chen Z, Hu C. 2015. Antioxidant
- 490 enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium
- accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under
- 492 moderate cadmium stress. *Chemosphere* **138:526-536**
- 493 DOI 10.1016/j.chemosphere.2015.06.080.
- 494 Xie P-p, Deng J-w, Zhang H-m, Ma Y-h, Cao D-j, Ma R-x, Liu R-j, Liu C, Liang Y-g. 2015.
- 495 Effects of cadmium on bioaccumulation and biochemical stress response in rice (*Oryza*
- sativa L.). Ecotoxicology and Environmental Safety 122:392-398 DOI.
- 497 Yamada T, Inoue M, Stewart AV, Cai H, Saha MC, Rao KM, Rognli OA, Ellison NW,
- Bushman BS, Amundsen K. 2013. Genetics, genomics and breeding of forage crops.
- 499 CRC Press, Boca Rato. 53-54.
- 500 Yasuda M, Takenouchi Y, Nitta Y, Ishii Y, Ohta K. 2015. Italian ryegrass (Lolium
- 501 multiflorum Lam) as a High-Potential Bio-Ethanol Resource. Bioenergy Research
- 502 **8:**1303-1309. DOI 10.1007/s12155-015-9582-5.
- 503 Ye S, Yang Y, Xin G, Wang Y, Ruan L, Ye G. 2015. Studies of the Italian ryegrass-rice
- rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil
- microorganisms and enzyme activities in the *Lolium mutiflorum* L. rhizosphere. *Applied*
- *Soil Ecology* **90:**26-34 DOI 10.1016/j.apsoil.2015.01.017.
- Zhang H, Guo Q, Yang J, Chen T, Zhu G, Peters M, Wei R, Tian L, Wang C, Tan D, Ma J,



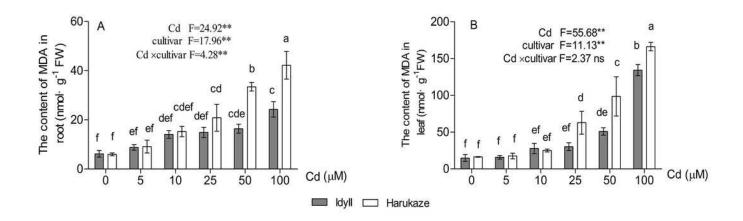
508	Wang G, Wan Y. 2014. Cadmium accumulation and tolerance of two castor cultivars in
509	relation to antioxidant systems. Journal of Environment Science 26:2048-2055 DOI
510	10.1016/j.jes.2014.08.005.
511	Zhang H, Zhang X, Li T, Fu H. 2013. Variation of cadmium uptake, translocation among rice
512	lines and detecting for potential cadmium-safe cultivars. Environmental Earth Sciences
513	71: 277-286 DOI 10.1007/s12665-013-2431-y.

Cadmium concentration, translocation factors (TFs) and cadmium accumulation in two cultivars of Italian ryegrass

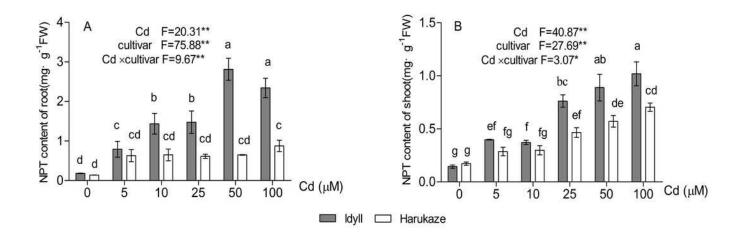

Data are means \pm SE. (n = 3) of three replicates. *P <0.05.**P <0.01. ns, not significant. Different letters indicate significant differences at P<0.05 according to the Duncan's test multiple range.


The distribution proportion of Cd (A) and Cd bioconcentration factors (B) in roots under Cd stress

Data are means \pm SE. (n = 3) of three replicates. *P <0.05.**P <0.01. ns, not significant. Different letters indicate significant differences at P<0.05 according to the Duncan's test multiple range.


Nutrient element concentrations in the roots, shoot and TFs in the presence of Cd Data are means \pm SE. (n = 3) of three replicates. *P < 0.05.**P < 0.01. ns, not significant.Different letters indicate significant differences at P < 0.05 according to the Duncan's test multiple range.

Effects of Cd on malondialdehyde (MDA) content in the roots and shoots of two Italian ryegrass cultivars


Data are means \pm SE. (n = 3) of three replicates. *P<0.05.**P<0.01. ns, not significant. Different letters indicate significant differences at P<0.05 according to the Duncan's test multiple range.

Effects of Cd on non-protein thiols (NPT) content in the roots and shoots of two Italian ryegrass cultivars

Data are means \pm SE.(n = 3) of three replicates. *P <0.05.**P <0.01. ns, not significant. Different letters indicate significant differences at P<0.05 according to the Duncan's test multiple range.

Table 1(on next page)

Effects of Cd on plant biomass, Cd tolerance, and the root/shoot ratio in two cultivars of Italian ryegrass

DW indicates dry weight; TI, tolerance index; R, root; S, shoot. Values (means \pm S.E., n=3) followed by different letters in the same columns are significantly different according to Duncan's test. *P< 0.05, **P< 0.01, ***P< 0.001, n.s., not significant.

aultiman	Cd supply µM	Plant biomass	(mg·plant-1 DW)	TIs		Root/Shoot ratio
cultivar		R	S	R	S	
	0	22.51±2.77 a	123.98±10.40 a			0.18±0.012 a
	5	22.60±1.94 a	120.19±12.04 a	1.00±0.09 a	0.97±0.10 a	0.19±0.031 a
IdyII	10	21.52±2.33 ab	113.92±14.28 a	0.96 ± 0.10 ab	$0.92\pm0.12~ab$	0.19±0.005 a
IdyII	25	17.54±1.09 bc	103.17±12.63 ab	0.78 ± 0.05 bc	$0.83\pm0.10~abc$	0.18±0.036 a
	50	13.30±1.57 cde	80.48±8.41 bcd	0.59±0.07 d	0.65±0.07 c	0.16±0.003 ab
	100	9.26±0.99 ef	78.08±7.86 bcd	0.41±0.04 e	0.63±0.13 cd	0.12±0.014 b
	0	15.29±0.99 cd	84.00±5.05 bc			0.18±0.023 a
	5	14.64±0.76 cd	67.99±2.92 cd	$0.96\pm0.05~ab$	$0.81\pm0.03 \ bc$	0.22±0.006 a
Harukaze	10	12.26±0.90 de	63.36±3.64 cd	$0.80\pm0.06~bc$	0.75 ± 0.04 bc	0.19±0.011 a
Trarakaze	25	9.69±0.70 ef	55.06±3.74 de	0.63±0.05 cd	0.65±0.04 c	0.18±0.010 a
	50	5.46±0.58 fg	35.20±3.62 ef	0.36±0.04 ef	0.42±0.04 de	0.16±0.017 ab
	100	3.22±0.13 g	29.55±1.43 f	0.21±0.01 f	0.35±0.02 e	0.11±0.007 b
ANOVA	Cd	153.72**	11.04**	38.32**	11.87**	5.97*
	cultivar	25.79**	92.04**	15.15**	18.93**	0.017n.s
	Cd×cultivar	0.268n.s	0.13n.s	0.63n.s	0.24n.s	0.194n.s

Table 2(on next page)

Fitted equations of Cd concentration and the inhibition rate of root or shoot biomass

x is Cd concentration, and y is inhabitation of root or shoot biomass. EC50 indicates an effective Cd concentration (when the root or shoot biomass decreased by 50% compared with the control), and IC90 indicates a lethal concentration (when the root or shoot biomass decreased by 90% compared with the control). ** indicates P < 0.01.

Table 2 fitted equations of Cd concentration and inhibition rate of root or shoot biomass										
	Fit equations between Cd	EC_{50}	IC_{90}	R^{2}	Fit equations between Cd	EC_{50}	IC_{90}			
cultivar	concentration and inhibition	(μM) (μM)			concentration and inhibition rate	(μM)	(μM)	\mathbb{R}^2		
	rate of root biomass				of shoot biomass					
IdyII	$y = -0.0049x^2 + 1.1198x - 3.612$	68.27	192.03	0.991**	$y = -0.006x^2 + 0.9837x - 1.2897$	124.73	174.14	0.989**		
Harukaze	$y = -0.01x^2 + 1.7983x - 0.8778$	35.17	121.58	0.994**	$y=-0.009x^2+1.4841x+6.4125$	38.23	132.34	0.967**		

Table 3(on next page)

Effects of Cd on the photosynthetic pigments in the leaves of two Italian ryegrass cultivars

ChI a, ChI b, and Car, indicate chlorophyll a, chlorophyll b, and carotenoids, respectively. Values (means \pm SE., n=3) followed by different letters in the same columns are significantly different according to the Duncan's test. *P< 0.05, **P< 0.01, ***P< 0.001, n.s., not significant.

Table 3 Effects of Cd on photosynthetic pigments in leaves of two Italian ryegrass cultivars							
14:	Cd supply	chl a	chl b	car	chl (a+b)	chl a/b	
cultivar	μM	$mg \cdot g^{-1} FW$					
	0	1.10±0.07 abc	0.34±0.01 ab	0.18±0.01 abc	1.44±0.05 ab	3.25±0.02 ab	
IdyII	5	1.03±0.09 bcd	0.32±0.02 abc	0.16±0.02 abcd	1.36±0.07 bc	3.21±0.05 abc	
	10	0.97±0.22 cd	0.31 ± 0.04 bc	0.16±0.02 bcde	1.28±0.16 bc	3.08±0.08 abcd	
	25	0.97±0.05 cd	0.32±0.02 abc	0.14±0.03 cde	1.33±0.04 bc	3.05±0.22 abcd	
	50	0.86±0.01 d	0.27±0.01 c	0.13±0.01 cde	1.13±0.02 c	3.13±0.12 abc	
	100	0.58±0.03 ef	0.20±0.01 d	0.10±0.01 ef	0.79±0.01 de	2.86±0.20 bcd	
	0	1.20±0.12 ab	0.38±0.02 a	0.19±0.01 ab	1.60±0.10 a	3.17±0.08 abc	
	5	1.22±0.06 a	0.38±0.01 a	0.20±001 a	1.60±0.05 a	3.18±0.04 abc	
Harukaze	10	0.95±0.12 cd	0.29±0.02 bc	0.14±0.01 cde	1.24±0.09 bc	3.34±0.04 a	
Turukuze	25	0.69±0.06 e	0.21±0.01 d	0.12±0.01 def	0.89±0.04 d	3.30±0.03 a	
	50	0.48±0.11 f	0.17±0.02 d	0.08±0.01 f	0.65±0.08 e	2.83±0.03 cd	
	100	0.21±0.08 g	0.07±0.02 e	0.03±0.01 g	0.29±0.06 f	2.71±0.21 d	
ANOVA	Cd	51.73***	42.84***	20.56***	51.17***	4.43**	
	cultivar	15.04*	19.39***	4.92*	16.73***	0.01 ns	
	Cd×cultivar	9.584***	10.24***	5.39**	10.18***	1.86 ns	

Table 4(on next page)

Correlation coefficients (n=30) among Cd tolerance, uptake, translation, MDA, NPT in Italian ryegrass roots.

TIs, TFs, MDA, and NPT indicate tolerance indexes, translocation factors, malondialdehyde, and non-protein thiols, respectively. *P < 0.05; **P < 0.01.

Table 4 Correlation coefficients (n=30) among Cd tolerance, uptake, translation, MDA, NPT in Italian ryegrass root								
index	TIs	Cd concentration	TFs	Cd accumulation	MDA content	NPT content		
TIs	1							
Cd concentration	-0.922**	1						
TFs	-0.612*	0.635*	1					
Cd accumulation	-0.185	0.293	-0.003	1				
MDA content	-0.796**	0.837**	0.722**	0.054	1			
NPTcontent	-0.143	0.147	0.04	0.738**	-0.072	1		