
 

A peer-reviewed version of this preprint was published in PeerJ
on 26 September 2017.

View the peer-reviewed version (peerj.com/articles/3812), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Hall MW, Rohwer RR, Perrie J, McMahon KD, Beiko RG. 2017. Ananke:
temporal clustering reveals ecological dynamics of microbial
communities. PeerJ 5:e3812 https://doi.org/10.7717/peerj.3812

https://doi.org/10.7717/peerj.3812
https://doi.org/10.7717/peerj.3812


Ananke: Temporal clustering reveals ecological dynamics of

microbial communities

Michael W Hall Corresp.,   1  ,  Robin R Rohwer  2  ,  Jonathan Perrie  3  ,  Katherine D McMahon  4, 5  ,  Robert G Beiko Corresp.  3 

1 Faculty of Graduate Studies, Dalhousie University, Halifax, Nova Scotia, Canada

2 Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States

3 Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada

4 Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States

5 Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States

Corresponding Authors: Michael W Hall, Robert G Beiko

Email address: mike.hall@dal.ca, beiko@cs.dal.ca

Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial

community analysis. A common first step in marker-gene analysis is grouping genes into

clusters to reduce data sets to a more manageable size and potentially mitigate the

effects of sequencing error. Instead of clustering based on sequence identity, marker-gene

data sets collected over time can be clustered based on temporal correlation to reveal

ecologically meaningful associations. We present Ananke, a free and open-source

algorithm and software package that clusters marker-gene data based on time-series

profiles and provides interactive visualization of clusters. Ananke is able to cluster distinct

temporal patterns from simulations of multiple ecological patterns, such as periodic

seasonal dynamics and organism appearances/disappearances. We apply our algorithm to

two longitudinal marker gene data sets: faecal communities from the human gut of an

individual sampled over one year, and communities from a freshwater lake sampled over

eleven years. Within the gut, the segregation of the bacterial community around a food-

poisoning event was immediately clear. In the freshwater lake, we found that high

sequence identity between marker genes does not guarantee similar temporal dynamics,

and Ananke time-series clusters revealed patterns obscured by clustering based on

sequence identity or taxonomy. Ananke is free and open-source software available at

https://github.com/beiko-lab/ananke.
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ABSTRACT17

Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community

analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data

sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of

clustering based on sequence identity, marker-gene data sets collected over time can be clustered based

on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and

open-source algorithm and software package that clusters marker-gene data based on time-series profiles

and provides interactive visualization of clusters. Ananke is able to cluster distinct temporal patterns

from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism

appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal

communities from the human gut of an individual sampled over one year, and communities from a

freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community

around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence

identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series

clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is

free and open-source software available at https://github.com/beiko-lab/ananke.
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INTRODUCTION33

Phylogenetic marker gene sequencing has revolutionized our understanding of microbial ecology. Nearly34

every conceivable habitat has been profiled using markers such as the 16S ribosomal RNA (rRNA) gene.35

These studies have revealed a hitherto unappreciated degree of diversity among both well-studied and36

novel microorganisms (Lynch and Neufeld, 2015). A single sample provides a detailed view of a microbial37

community at one given point in time, but time-series sampling is increasingly used to track changes in38

a microbial community, often in connection with changes in the environment. Examples of time-series39

sampling include the tracking of microbial succession in the gut of a developing infant (Koenig et al.,40

2011), demonstrating the existence of a “microbial seed bank” in a marine environment (Caporaso et al.,41

2012), and showing differences in temporal variability of human oral, gut, and skin microbial communities42

across individuals (Flores et al., 2014).43
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The large amount of data generated in microbial marker-gene surveys can present a significant44

impediment to analysis; a single data set can contain millions of unique sequences, including real variants45

and products of sequencing error. Clustering methods are often used to reduce the magnitude of the data46

and minimize the impact of sequencing errors. Traditionally, the most common clustering approach is to47

merge sequences into operational taxonomic units (OTUs) at a pre-defined sequence identity threshold,48

often 97% (Koenig et al., 2011; Caporaso et al., 2012; Flores et al., 2014; Shade et al., 2013; David49

et al., 2014; Caporaso et al., 2011). Although sequence-identity-based OTU clustering can streamline and50

simplify analyses, it suffers from limitations. Sequences from ecologically distinct community members51

can be lumped together into the same OTU if their marker genes have high sequence identity, thus52

treating them as a single entity in spite of their ecological differences (Tikhonov et al., 2015). This can53

diminish the effectiveness of analyses that treat OTUs as homogeneous entities, such as co-occurrence54

network analysis (Beiko, 2015). The common sequence identity threshold of 97% is also seen as a proxy55

for species boundary, but the high accuracy of modern sequencers (Schirmer et al., 2015) allows us to56

confidently investigate marker-gene data at a finer resolution (Callahan et al., 2015; Mark Welch et al.,57

2014).58

Methods that construct clusters based on attributes more closely linked to ecological properties can59

overcome the limitations of sequence-identity-based OTUs while retaining the benefits of clustering. With60

time-series data, sequences can be clustered based on correlated changes in relative abundance, which61

emphasizes temporal cohesion at the possible expense of taxonomic coherence. This paper introduces62

Ananke, a new algorithm and software package that clusters sequences based on temporal dynamics rather63

than sequence identity. Ananke generates time-series clusters (TSCs) by grouping marker gene sequences64

based on consistent changes in their relative abundance over time. We describe Ananke’s clustering65

algorithm, as well as its interactive tool for visualizing results. This paper demonstrates Ananke’s high66

fidelity in detecting ecological patterns and events using simulated time-series data, and demonstrates67

Ananke’s utility using two 16S rRNA gene time-series data sets. Ananke TSCs had defined ecological68

roles in a human gut data set, reflected seasonal dynamics in a temperate lake data set, and identified69

subtle patterns in each that may represent previously undescribed ecological processes.70

MATERIALS AND METHODS71

Input data72

Ananke requires only the sequence data and time points as input. The sequence data can be any FASTA-73

formatted data, including but not limited to 16S rRNA gene amplicon sequences. Sequences can be74

preprocessed (quality filtered, trimmed, ambiguous nucleotides removed, etc.) beforehand with users’75

preferred methods. The time point data is a metadata file that relates the sample names to their relative76

sampling time.77

Data tabulation and storage78

Ananke tabulates the abundance of each unique sequence at each time point, resulting in an m×n time-79

series matrix where m is the number of unique sequences and n is the number of time points. To reduce80

space on disk and in memory, this data is stored in compressed sparse row format in an HDF5 file (The81

HDF Group, 1997). The flexible HDF5 format allows for storage of all necessary data and metadata in a82

single file using a binary representation. Taxonomic classifications and traditional sequence-identity-based83

OTUs can be computed with users’ preferred pipelines and stored in the same HDF5 file. Since Ananke84

operates on unique sequences rather than sequence-identity-based OTUs, data filtering is a necessary85

step for larger data sets. Unique sequences can be filtered based on the abundance of the sequence or the86

proportion of samples in which they appear.87

Calculating distance between time series88

Ananke uses the short time-series (STS) distance (Möller-Levet et al., 2003) to compute the distances89

between each pair of unique sequences at each time point. This distance represents the degree of90

dissimilarity between the sequences’ temporal profiles. Before computing the STS distance, the sequence91

counts for each time point are normalized by dividing by each time point’s sequence depth. Then each92

sequence’s temporal profile, xi, is standardized to Z-scores as in (Möller-Levet et al., 2003):93

zi =
xi−x̄i

sxi
94
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where x̄i is the mean and sxi
is the standard deviation of the ith sequence’s temporal profile. The squared95

distance between two standardized temporal profiles, zi and z j, is computed using the formula:96

d2
ST S =

n−1

∑
k=0

(

zi,k+1−zi,k

tk+1−tk
−

z j,k+1−z j,k

tk+1−tk

)2

97

where i and j index the m unique sequences, and k indexes the n time points. For each unique sequence98

there are n−1 slopes between the n consecutive time points. For a given pair of unique sequences, the99

differences between their slopes are squared and summed to obtain their STS distance. Calculating this100

distance between each pair of sequences can be computationally intensive for data sets with many unique101

sequences, so Ananke uses multiple threads to reduce the time required for this step.102

Unsupervised clustering of time-series distances103

The unique sequence pairwise STS distance matrix is clustered into Ananke TSCs by the DBSCAN104

algorithm (Ester et al., 1996) implemented in the scikit-learn Python library (Pedregosa et al., 2011).105

This algorithm requires two parameters: min samples, and ε . The min samples parameter is set to106

2 to prevent singletons from forming their own Ananke TSCs, and instead places them into the “noise107

bin” which contains all unclustered singleton sequences. Ananke allows for interactive exploration of the108

parameter space by pre-computing results over a range of ε values.109

Visualization of time-series clusters110

The Ananke-UI facilitates data exploration with an interactive application built with Shiny (Chang et al.,111

2015), a library for the R programming language (R Core Team, 2015). Ananke-UI imports the results112

file and plots the temporal profiles of Ananke TSCs, allowing users to interactively explore the effects of113

the clustering parameter ε in the browser-based application. The user interface presents the taxonomic114

classifications and sequence-identity-based OTU assignments for each unique sequence in an Ananke115

TSC, allowing users to compare different clustering methods.116

Generation of simulated data117

Ecological patterns were simulated to provide a test set with known ground-truth cluster assignments.118

We simulated six types of temporal patterns: extinction, arrival, seasonality, conditional rarity (Shade119

and Gilbert, 2015), and normal distribution with low and high variance (Figure 1). A template relative120

abundance profile was generated for each pattern and 100 random trials based on each template were121

created by adding additional random noise and scaling by a random factor. The simulations were repeated122

for different time series lengths (25, 100, 250, 500, and 1000 time points). The simulated temporal profiles123

were clustered over a range of ε clustering parameter values, and the adjusted mutual information (AMI)124

score (Vinh et al., 2010) with respect to the ground-truth was used as a measure of cluster quality. The125

AMI score is a chance-corrected version of the mutual information score that accounts for the amount126

of agreement between two sets of clusters that is expected to be due to chance. It has been shown to be127

a better indication of cluster quality than mutual information or normalized mutual information scores128

(Vinh et al., 2010). The highest achieved AMI across the computed ε parameters was reported. The129

code to generate simulations is available in the Ananke software package through the simulation and130

score simulation subcommands.131

Human-associated and environmental data132

Two biological time-series data sets were analyzed using Ananke. From David et al. (2014), we analyzed133

the 191 faecal samples of “Subject B” taken on a nearly daily basis for a year. These data were retrieved134

from the European Bioinformatics Institute under project accession ERP006059. For this data set, Ananke135

TSCs were computed over a parameter range of ε = 3 to ε = 10 with a step size of 0.1. The second data136

set is comprised of 96 time points from an eleven-year time series of Lake Mendota in Wisconsin, USA.137

Sequences and metadata were retrieved through the QIITA service (http://qiita.microbio.me/)138

under study ID 1242. For the lake data, Ananke TSCs were computed over a parameter range of ε = 0.01139

to ε = 1 with a step size of 0.01. For comparative purposes, sequences were clustered into 97% OTUs140

using the UPARSE pipeline (Edgar, 2013) at 97% identity. For the faecal data, all unique sequences141

were classified with the Ribosomal Database Project naı̈ve Bayesian classifier v2.2 (RDP classifier) at142

a minimum 60% posterior probability (Wang et al., 2007) trained against GreenGenes revision 13 8143
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(McDonald et al., 2012) via QIIME v1.9.0 (Caporaso et al., 2010). For the lake data, unique sequences144

with greater than 98% sequence identity to references in the Freshwater Training set (FreshTrain) (Newton145

et al., 2011) were classified with the RDP classifier at a minimum 80% posterior probability trained146

against the FreshTrain, and the remaining unique sequences were classified with the RDP classifier at a147

minimum 70% posterior probability trained against GreenGenes revision 13 8 via the TaxAss workflow148

(www.github.com/McMahonLab/TaxAss).149

Availability of software and data150

The Ananke software, which includes the Python-based clustering algorithm, the R- and Shiny-based151

visualization platform, and associated documentation, is available on GitHub (http://github.com/152

beiko-lab/ananke and http://github.com/beiko-lab/ananke-ui). Ananke data sets153

are available on figshare (doi: 10.6084/m9.figshare.c.3707938).154

RESULTS AND DISCUSSION155

Building clusters with Ananke156

The goal of Ananke is to group unique marker-gene sequences that are “dynamically similar” (i.e., that157

correlate strongly over time) into clusters (Tikhonov et al., 2015). This general approach has been used158

to bin metagenomic sequences for the purpose of genome assembly (Sharon et al., 2013), whereas our159

method focuses on single genes that are used to track phylogenetically distinct groups. Briefly, the160

clustering algorithm proceeds as follows: 1) sequences are dereplicated and the time series are tabulated161

for each unique sequence, 2) data are filtered to remove sequences with sparsely sampled time series, 3)162

the short time-series (STS) distance (Möller-Levet et al., 2003) is calculated between each pair of unique163

sequences, 4) the resulting distance matrix is clustered into Ananke time-series clusters (TSCs) with164

DBSCAN (Ester et al., 1996), and 5) the Ananke TSCs are visualized and presented alongside sequence165

metadata.166

The STS distance measure was designed for sampling schemes that are uneven and contain relatively167

few time points (Möller-Levet et al., 2003). Unlike other measures such as the Euclidean distance168

that are commonly used for clustering, the order of samples is important for the STS distance. The169

DBSCAN clustering algorithm was chosen for several reasons. DBSCAN can define outlier points as170

noise and remove them, rather than creating spurious clusters or adding irrelevant sequences to a cluster.171

DBSCAN is also an efficient method both in terms of memory usage and run time. DBSCAN requires172

a neighbourhood size clustering parameter, denoted by ε , rather than a parameter that prespecifies the173

number of desired clusters, which other common clustering methods require. This is a more intuitive174

parameterization that is similar to sequence-identity clustering, as ε controls the granularity of the clusters.175

A smaller ε value implies clusters of sequences with more similar temporal profiles, whereas a larger ε176

would combine sequences with more disparate patterns.177

Simulated ecological time-series data sets are accurately clustered178

Assessing cluster quality in a biological data set is a difficult task since no ground truth exists for179

comparison. To assess Ananke’s cluster quality, we generated six artificial patterns of temporal variation180

that represent ecological events or patterns that users may wish to identify in a biological data set (Figure181

1). Appearance, disappearance, and conditional rarity (Shade et al., 2014) patterns may indicate responses182

to environmental changes, so it is important that Ananke clusters them appropriately. Periodic patterns183

often reflect seasonal changes in natural environments, so Ananke must cluster time-series profiles with184

coordinated increases and decreases over time. Patterns that follow a normal distribution with low variance185

represent organisms with consistent abundance over time, while patterns that follow a normal distribution186

with a high variance may also represent noisy or undersampled data. Templates of each time-series pattern187

were created, and the simulated data sets were generated by adding random noise and scaling to the188

templates. We used adjusted mutual information (AMI) (Vinh et al., 2010) to quantify the agreement189

between the Ananke TSCs computed for the simulated profiles and the ground-truth patterns from which190

they were generated. The AMI scores provide a quantitative measure of the quality of Ananke TSCs,191

where a higher AMI reflects higher agreement with the ground-truth patterns.192

Ananke yielded average AMI scores > 0.8 on simulated time-series data sets with as few as ten time193

points (Figure 2). However, AMI scores were considerably lower for time-series data sets with 500194

(median AMI = 0.67) and 1000 (median AMI = 0.64) time points. The drop in AMI scores for very long195
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time-series data sets is a consequence of the STS distance metric. The sum of small differences, which196

are a result of random noise added to each point, can overwhelm the effect of the true pattern over a large197

number of time points. To reduce the impact of random noise, very long time series could be smoothed by198

averaging over a sliding window. This would reduce the magnitude of the slopes that are due to random199

noise, resulting in a smaller cumulative impact on the distance measure.200

The majority of the simulations flagged low-variance and high-variance normally distributed time-201

series profiles as noise, or placed these two patterns into the same TSC, which prevented Ananke from202

achieving higher AMI scores. Ananke’s algorithm has trouble clustering normally distributed time-series203

profiles because they lack large slopes to influence the STS distance measure. The STS distance measure204

does not provide enough information to separate the low-variance from the high-variance normally205

distributed patterns since there are no consistently present large slopes. Ananke’s current focus is on the206

detection of distinct ecological patterns such as appearance, disappearance, and conditional rarity, but207

future incorporation of the overall variance of temporal profiles in addition to shared slope would allow208

Ananke to also focus on patterns with a normal distribution.209

Time-series clustering reveals temporal segregation of taxa in the human gut210

We used the time-series data set from David et al. (2014) to demonstrate our method with human-associated211

samples. The data are 16S rRNA gene fragments from faecal samples taken at 191 time points over 318212

days. There were 26,250,106 total sequences and 1,200,847 unique sequences. For time-series clustering,213

the data were filtered to include only sequences which appeared in ≥15% of time points, reducing the214

total data by 10% to 23,533,503 sequences and the unique sequences by 99% to 14,743 sequences. A215

maximum of 157 Ananke TSCs were found at ε=5.4, with an average Ananke TSC comprising 0.6% of216

the data set with 149,894 total sequences and 94 unique sequences (Supplementary Figure S1).217

The sampled subject experienced food poisoning as a likely result of Salmonella sp. around day218

159. The authors of the original study showed that the food-poisoning event divides the faecal microbial219

community into three clear segments from days 0-144, 145-162, and 163-240 (David et al., 2014). In220

Ananke TSCs this segregation is readily apparent (e.g., Figure 3A and Figure S3). Some Ananke TSCs221

disappear after the disturbance event, such as one containing Coriobacteriaceae sequences (Figure222

3A, Figure S3A), while others thrive in the environment after the illness, such as the Ananke TSC223

containing sequences classified as Clostridium citroniae (Figure 3A, Figure S3C). During the food-224

poisoning disturbance, 17 conditionally rare sequences increased in relative abundance and were assigned225

to the same Ananke TSC (Figure 3A, Figure S3B). The two most abundant sequences in this spike classify226

to Enterobacteriaceae (the family containing Salmonella sp.) and Haemophilus parainfluenzae. The227

remaining sequences belonged to various taxonomic groups including the genera Leuconostoc, Weissella,228

Lactococcus, and Turicibacter from the class Bacilli; Clostridium and Veillonella from the class Clostridia;229

and two sequences from the genus Acinetobacter. An additional Ananke TSC contained three abundant230

Enterobacteriaceae sequences that increased during the food-poisoning event but had also occured prior231

to the disturbance (Figure S3D).232

Ananke highlighted several smaller changes in the community in addition to the changes associated233

with the food-poisoning disturbance. Around day 75 an Ananke TSC containing Akkermansia muciniphila234

sequences fell below detectable levels (Figure 3B) and was replaced by distinct sequences (> 97%235

sequence identity) that also classified to Akkermansia muciniphila (Figure 3C). Another event highlighted236

by several Ananke TSCs occurred around day 100 (Figure S3E). Many sequences classifying to the237

genus Ruminococcus increased rapidly in abundance and then returned to lower abundance around day238

155 coincident with the food-poisoning event. This increase in relative abundance was not associated239

with a known event in the time series. The analysis of this data set in David et al. (2014) identified the240

major partitioning around the food-poisoning event using a pairwise distance matrix visualization, and the241

subtler Akkermansia replacement was identified by an analysis of non-stationary OTUs. Ananke provides242

an alternate, more rigorous method to highlight both clear and subtle partitioning of the profiles with243

respect to time.244

Seasonal dynamics in a freshwater lake are captured by time-series clustering245

The second biological time-series data set is from Lake Mendota in Wisconsin, USA. This 16S rRNA246

gene amplicon data set spans eleven years with 96 total time points. There were 45,094,125 total and247

3,058,149 unique sequences. For Ananke clustering, the data were filtered to only include sequences248

which appeared in ≥20% of time points, reducing the total data by 16% to 37,796,894 sequences and the249
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unique sequences by 99% to 38,203 sequences. A more stringent filter of 20% (vs. 15% for the gut data)250

was required for this more diverse data set to fit in the memory of a standard desktop computer (16GB).251

A maximum of 635 Ananke TSCs were found at ε=0.16, with an average TSC comprising 0.2% of the252

data set with 59,523 total sequences and 61 unique sequences (Figure S2). This is in contrast to a recent253

analysis of this data set that grouped 97% OTUs from these sequences into only 14 clusters based on their254

annual peak (Dam et al., 2016). Ananke’s clustering is based on the entire time series instead of a single255

temporal feature, which results in finer-resolution clusters.256

In the Lake Mendota decade-long data set, Ananke identified seasonal patterns obscured in analyses257

using traditional 97% OTUs or taxonomy. Freshwater bacteria in this data set were named according258

to the freshwater training set (FreshTrain) nomenclature, where the taxa levels lineage, clade, and tribe259

approximate the Linnaean family, genus, and species (Newton et al., 2011). Ananke TSCs revealed both260

similarities between phylogenetically diverse organisms and fine-scale differences within taxa and OTUs.261

The abundant freshwater Bacteroidetes lineage bacI is known to prefer high dissolved organic carbon,262

which often occurs during cyanobacterial or algal blooms (Newton et al., 2011). Two of the most abundant263

bacI Ananke TSCs, which account for 4.6% of all Mendota reads and 10% of all bacI reads, also included264

cyanobacterial reads from the common freshwater genuses Aphanizomenon and Synechococcus (Figures265

4A and 4B). These two distinct Ananke TSCs identify two bacI subgroups that both bloom in September;266

however, one co-occurs with Aphanizomenon and the other with Synechococcus. The possibility of this267

type of differentiation is supported by a previous incubation study that found heterotrophic bacterial268

community composition correlates with the phytoplankton species (Bagatini et al., 2014). Ananke was269

able to identify this type of relationship in an observational time series, despite the fine-level taxonomy270

being unknown and the 97% OTUs grouping these sequences with sequences displaying different temporal271

dynamics.272

Ananke also identified ecological differences between closely related organisms. A single 97% OTU273

represented most of the Actinobacterial Iluma-A1 tribe; however, two distinct Ananke TSCs reveal274

divergent ecological dynamics within this 97% OTU and tribe (Figure 4C). Little is known about the275

acIV lineage (to which Iluma-A1 belongs) beyond that it is one of the most abundant and widespread276

Actinobacteria in lakes along with acI (Newton et al., 2011). The fine-scale diversity revealed by Ananke277

can provide insights into the ecology of this lineage that would go unobserved in analyses even at the 97%278

OTU or tribe/species level.279

The most dominant bacterial lineage in many freshwater lakes is the Actinobacteria acI. This lineage280

is made up of three major clades, acI-A, acI-B, and acI-C, which accounted for 10, 7, and 2% of all reads281

in the Lake Mendota data set, respectively. In Lake Mendota each of these three clades contained a single282

dominant sequence that accounted for 37, 71, and 61% of each clade’s abundance. Since the ecology of283

these organisms is often studied at the clade level, the dynamics of these dominant sequences drive our284

understanding of the clades. Multiple Ananke TSCs were identified within each clade, many of which285

were both abundant and divergent from the dominant sequences (Figure 5). All of the acI-C Ananke286

TSCs shared the September peak of the dominant acI-C sequence, but two Ananke TSCs accounting for287

6% of all acI-C reads differed in terms of the duration of the peak or the relative intensities in different288

years. Four acI-A Ananke TSCs and one acI-B Ananke TSC displayed seasonal dynamics with peaks289

in May, some with a secondary peak in November. These seasonal clusters account for 24 and 2% of290

each clade’s abundance. These results indicate that the acI-A and acI-B clades encompass more diverse291

life strategies than previously recognized. Additionally, many sequences in the divergent Ananke TSCs292

belong to unclassified tribes or to the broad ACK-M1 group, which indicates that the FreshTrain should be293

updated to include additional reference sequences. Ananke clustering was able to reveal these dynamics294

despite limits of the taxonomy reference, suggesting that Ananke could be especially insightful in other295

ecosystems where taxonomic analyses occur at even coarser levels because they lack a custom, curated296

reference database like the FreshTrain.297

Exploration of temporal clusters using Ananke-UI facilitates identification of potential298

microbial interactions299

Unlike sequence-identity-based clustering where a static cut-off such as 97% sequence identity is used,300

there is no single ε parameter appropriate across multiple data sets. The choice of ε depends on properties301

such as the number of time points, diversity, and sequence depth of the data set. Users must explore302

Ananke’s results and identify the ε parameter that best addresses their research questions. Decreasing ε303
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results in Ananke TSCs containing sequences with more cohesive temporal profiles, while increasing ε304

assembles larger clusters containing sequences with more dissimilar temporal profiles (Figure 6). Ananke305

and the associated user interface Ananke-UI allow users to visualize and explore Ananke TSCs and306

relevant metadata such as the taxonomic classification and sequence-identity-based OTU membership307

of an Ananke cluster’s constituent unique sequences. Potential relationships between microorganisms308

can be uncovered using Ananke-UI by interactively exploring Ananke TSCs at various ε values. For309

example, two distinct Ananke TSCs in the lake data set were each taxonomically homogeneous with310

sequences from Actinomycetales or Acidimicrobiales at ε=0.11 (Figure 6 A-B). When the ε value is311

increased to 0.12, these two Ananke TSCs merge into a single Ananke TSC (Figure 6C). An overlay of312

constituent sequences’ temporal profiles shows that both sets of sequences tend to increase and decrease in313

relative abundance cohesively, with the exception of one period where the two subclusters show divergent314

patterns of temporal abundance. By highlighting these temporal similarities, Ananke can aid in generating315

hypotheses about the relationships between microorganisms in a comparable way to other techniques like316

co-occurrence networks.317

CONCLUSIONS318

Ananke is intended to complement, not replace, traditional sequence-identity-based OTU clustering by319

examining the assumption that sequence similarity implies similar ecological properties. Using Ananke320

TSCs as a base, our work can be extended with deeper analyses of the relationships among Ananke TSCs.321

Future improvements to Ananke could include improvements to the distance measure or transformations322

of the time-series data that increase clustering performance with normally distributed temporal profiles323

and longer time series.324

Ananke employs time-series clustering and interactive data exploration to highlight ecological events325

that can be obscured by alternative methods. We have demonstrated that Ananke can generate clusters of326

sequences that reflect ecological events such as enteric disease onset in the gut and seasonal changes in327

a lake. Ananke can also identify subtler patterns that would not be evident in taxonomic analyses, like328

the replacement of one strain by another of the same species (e.g., Figure 3B-C) or discordant dynamics329

among sequences of a single OTU (e.g., Figure 4C). Ananke represents a novel approach to analyzing330

longitudinal marker gene data with an emphasis on ecological relevance.331
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Möller-Levet, C. S., Klawonn, F., Cho, K.-H., and Wolkenhauer, O. (2003). Fuzzy clustering of short384

time-series and unevenly distributed sampling points. In Advances in Intelligent Data Analysis V, pages385

330–340. Springer.386

Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D., and Bertilsson, S. (2011). A guide to the natural387

history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews, 75(1):14–49.388

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,389

P., Weiss, R., Dubourg, V., and others (2011). Scikit-learn: Machine learning in Python. The Journal of390

Machine Learning Research, 12:2825–2830.391

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for392

Statistical Computing, Vienna, Austria.393

Schirmer, M., Ijaz, U. Z., D’Amore, R., Hall, N., Sloan, W. T., and Quince, C. (2015). Insight into biases394

and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids395

Research, 43(6):e37–e37.396

Shade, A. and Gilbert, J. A. (2015). Temporal patterns of rarity provide a more complete view of microbial397

diversity. Trends in Microbiology, 23(6):335–340.398

Shade, A., Gregory Caporaso, J., Handelsman, J., Knight, R., and Fierer, N. (2013). A meta-analysis of399

changes in bacterial and archaeal communities with time. The ISME Journal, 7(8):1493–1506.400

Shade, A., Jones, S. E., Caporaso, J. G., Handelsman, J., Knight, R., Fierer, N., and Gilbert, J. A. (2014).401

Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio,402

5(4):e01371–14.403

Sharon, I., Morowitz, M. J., Thomas, B. C., Costello, E. K., Relman, D. A., and Banfield, J. F. (2013).404

Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage405

during infant gut colonization. Genome Research, 23(1):111–120.406

The HDF Group (1997). Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/.407

Tikhonov, M., Leach, R. W., and Wingreen, N. S. (2015). Interpreting 16S metagenomic data without408

8/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2879v1 | CC BY 4.0 Open Access | rec: 16 Mar 2017, publ: 16 Mar 2017



clustering to achieve sub-OTU resolution. The ISME journal, 9(1):68–80.409

Vinh, N. X., Epps, J., and Bailey, J. (2010). Information Theoretic Measures for Clusterings Comparison:410

Variants, Properties, Normalization and Correction for Chance. J. Mach. Learn. Res., 11:2837–2854.411

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid assign-412

ment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology,413

73(16):5261–5267.414

9/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2879v1 | CC BY 4.0 Open Access | rec: 16 Mar 2017, publ: 16 Mar 2017



Disappearance Appearance

Conditionally Rare Periodic

Normal, low variance Normal, high variance

Time

S
e
q
u
e
n
c
e
 A

b
u
n
d
a
n
c
e

Figure 1. Examples of the six types of simulated temporal patterns.
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Figure 2. AMI scores for Ananke TSCs reconstructed from simulated time series data sets of varying

lengths. Boxplots of AMI scores across 10 independent simulations are shown.
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Figure 3. Examples of Ananke TSCs from human faecal 16S rRNA gene sequences. A) Three Ananke

TSCs superimposed show the segregation of the timeline around a food-poisoning event which occurred

around day 159. Green: Two sequences from the family Coriobacteriaceae present only before the event.

Brown: A cluster of seventeen sequences that increase in relative abundance during a food-poisoning

incident. Blue: Nine sequences belonging to the family Lachnospiraceae, the most abundant classifying

to Clostridium citroniae. B) Four sequences classified as Akkermansia muciniphila that disappear after

day 71. C) Nine sequences classified as Akkermansia muciniphila that appear after day 70.
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Figure 4. Ananke TSCs can group sequences from distant taxonomic groups, highlighting shared

temporal dynamics and suggesting possible associations. Ananke TSC 3 contains sequences classified to

the heterotrophic Bacteroidetes bacI (A, top) and the cyanobacterial genus Aphanizomenon (A, bottom).

Ananke TSC 23 contains sequences classified more finely to BacI-A (B, top) and the cyanobacterial

genus Synechococcus (B, bottom). Both TSCs display periodicity in September (yellow shading), yet

differ in annual intensity. Conversely, sequence-identity-based OTUs can contain sequences from

multiple distinct TSCs. Sequence-identity-based OTU 56, based on a 97% sequence-identity cut-off,

contains sequences from the Iluma-A1 tribe that belong to two distinct TSCs (shown in blue and red),

representing two distinct temporal patterns (C).
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Figure 5. The clades acI-A, -B, and -C, in panels A, B, and C respectively, comprise the abundant

Actinobacteria lineage acI. Each clade contains one dominant unique sequence (bold), but Ananke

identified additional clusters with divergent dynamics from the dominant sequence. Months in which

population increases occur are highlighted by orange shading: May (A,B) and September (C).
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Figure 6. A) and B): Two Ananke TSCs at clustering parameter ε=0.11. The cluster in A) contains only

sequences belonging to the order Actinomycetales, while B) contains only sequences belonging to the

order Acidimicrobiales. The red box highlights an area of the temporal profile that differs between the

two TSCs. C) When the clustering parameter is increased to ε=0.12, these two similar TSCs merge into a

more taxonomically heterogeneous cluster.
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Figure S1. Time-series cluster descriptions for the faecal sample data. A) Number of time-series

clusters as a function of the clustering parameter, ε . B) Proportion of sequences in the “noise bin” as a

function of the clustering parameter, ε . C) Distribution of the sizes of time-series clusters (in log10

number of total sequences). D) Distribution of the sizes of time-series clusters (in log10 number of unique

sequences).
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Figure S2. Time-series cluster descriptions for the freshwater lake data. A) Number of time-series

clusters as a function of the clustering parameter, ε . B) Proportion of sequences in the “noise bin” as a

function of the clustering parameter, ε . C) Distribution of the sizes of time-series clusters (in log10

number of total sequences). D) Distribution of the sizes of time-series clusters (in log10 number of unique

sequences).
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Figure S3. A-C) The time-series clusters from Figure 3A plotted individually. A) Two sequences from

the family Coriobacteriaceae present only before the event. B) A cluster of seventeen sequences that

increase in relative abundance during a food-poisoning incident. C) Nine sequences belonging to the

family Lachnospiraceae, the most abundant classifying to Clostridium citroniae. D) Three sequences

classifying to the family Enterobacteriaceae that are coincident with the food-poisoning event and also

observed in high relative abundance earlier in the time-series. E) 25 sequences, the majority of which

classified to Ruminococcus bromii.
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