

A peer-reviewed version of this preprint was published in PeerJ
on 3 July 2017.

View the peer-reviewed version (peerj.com/articles/cs-122), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Schreiber JM, Noble WS. 2017. Finding the optimal Bayesian network
given a constraint graph. PeerJ Computer Science 3:e122
https://doi.org/10.7717/peerj-cs.122

https://doi.org/10.7717/peerj-cs.122
https://doi.org/10.7717/peerj-cs.122

Finding the optimal bayesian network given a constraint

graph

Jacob M Schreiber Corresp., 1 , William S Noble 2

1 Department of Computer Science, University of Washington, Seattle, Washington, United States

2 Department of Genome Science, University of Washington, Seattle, Washington, United States

Corresponding Author: Jacob M Schreiber

Email address: jmschr@cs.washington.edu

Despite recent algorithmic improvements, learning the optimal structure of a Bayesian

network from data is typically infeasible past a few dozen variables. Fortunately, domain

knowledge can frequently be exploited to achieve dramatic computational savings, and in

many cases domain knowledge can even make structure learning tractable. Several

methods have previously been described for representing this type of structural prior

knowledge, including global orderings, super-structures, and constraint rules. While super-

structures and constraint rules are flexible in terms of what prior knowledge they can

encode, they achieve savings in memory and computational time simply by avoiding

considering invalid graphs. We introduce the concept of a "constraint graph" as an intuitive

method for incorporating rich prior knowledge into the structure learning task. We describe

how this graph can be used to reduce the memory cost and computational time required

to find the optimal graph subject to the encoded constraints, beyond merely eliminating

invalid graphs. In particular, we show that a constraint graph can break the structure

learning task into independent subproblems even in the presence of cyclic prior

knowledge. These subproblems are well suited to being solved in parallel on a single

machine or distributed across many machines without excessive communication cost.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

Finding the Optimal Bayesian Network Given a

Constraint Graph

Jacob Schreiber
Department of Computer Science

University of Washington
Seattle, WA 98195

jmschr@cs.washington.edu

William Stafford Noble
Department of Genome Science

University of Washington
Seattle, WA, 98195

william-noble@uw.edu

Abstract

Despite recent algorithmic improvements, learning the optimal structure of a1

Bayesian network from data is typically infeasible past a few dozen variables.2

Fortunately, domain knowledge can frequently be exploited to achieve dramatic3

computational savings, and in many cases domain knowledge can even make4

structure learning tractable. Several methods have previously been described for5

representing this type of structural prior knowledge, including global orderings,6

super-structures, and constraint rules. While super-structures and constraint rules7

are flexible in terms of what prior knowledge they can encode, they achieve8

savings in memory and computational time simply by avoiding considering invalid9

graphs. We introduce the concept of a “constraint graph" as an intuitive method for10

incorporating rich prior knowledge into the structure learning task. We describe11

how this graph can be used to reduce the memory cost and computational time12

required to find the optimal graph subject to the encoded constraints, beyond merely13

eliminating invalid graphs. In particular, we show that a constraint graph can break14

the structure learning task into independent subproblems even in the presence of15

cyclic prior knowledge. These subproblems are well suited to being solved in16

parallel on a single machine or distributed across many machines without excessive17

communication cost.18

1 Introduction19

Bayesian networks are directed acyclic graphs (DAGs) in which nodes correspond to random variables20

and directed edges represent dependencies between these variables. Conditional independence21

between a pair of variables is represented as the lack of an edge between the two corresponding nodes.22

The parameters of a Bayesian network are typically simple to interpret, making such networks highly23

desirable in a wide variety of application domains that require model transparancy.24

Frequently, one does not know the structure of the Bayesian network beforehand, making it necessary25

to learn the structure directly from data. The most intuitive approach to the task of Bayesian network26

structure learning (BNSL) is “search-and-score," in which one iterates over all possible DAGs and27

chooses the one that optimizes a given scoring function. Recent work has described methods that find28

the optimal Bayesian network structure without explicitly considering all possible DAGs (Malone29

et al., 2011; Yuan et al., 2011; Fan et al., 2014; Jaakkola et al., 2003), but these methods are still30

infeasible for more than a few dozen variables. In practice, a wide variety of heuristics are often31

employed for larger datasets. These algorithms, which include branch-and-bound (Suzuki, 1996),32

Chow-Liu trees (Chow & Liu, 2003), optimal reinsertion (Moore & Wong, 2003), and hill-climbing33

(Tsamardinos et al., 2006), typically attempt to efficiently identify a structure that captures the34

majority of important dependencies.35

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

Group using

Constraint Graph

Use Constraints

to Guide

Structure Learning

A

B

D

Deûne directed

super-structure

C

Figure 1: A constraint graph grouping variables. (a) We wish to learn a Bayesian network over 11
variables. The variables are colored according to the group that they belong to, which is defined by
the user. These variables can either (b) be organized into a directed super structure or (c) grouped into
a constraint graph to encode equivalent prior knowledge. Both graphs define the superset of edges
which can exist, but the constraint graph uses far fewer nodes and edges to encode this knowledge.
(d) Either technique can then be used to guide the BNSL task to learn the optimal Bayesian network
given the constraints.

In many applications, the search space of possible network structures can be reduced by taking into36

account domain-specific prior knowledge (Gamberoni1 et al., 2005; Zuo & Kita, 2012; Schneiderman,37

2004; Zhou & Sakane, 2003). A simple method is to specify an ordering on the variables and38

require that parents of a variable must precede it in the ordering (Cooper & Herskovits, 1992).39

This representation leads to tractable structure learning because identifying the parent set for each40

variable can be carried out independently from the other variables. Unfortunately, prior knowledge is41

typically more ambiguous than knowing a full topological ordering and may only exist for some of the42

variables. A more general approach to handling prior knowledge is to employ a “super-structure,” i.e.,43

an undirected graph that defines the super-set of edges defining valid learned structures, forbidding44

all others (Perrier et al., 2008). This method has been fairly well studied and can also be used as a45

heuristic if defined through statistical tests instead of prior knowledge. A natural extension of the46

undirected super-structure is the directed super-structure (Ordyniak & Szeider, 2013), but to our47

knowledge the only work done on directed super-structures proved that an acyclic directed super-48

structure is solvable in polynomial time. An alternate, but similar, concept is to define which edges49

must or cannot exist as a set of rules (Campos & Ji, 2011). However, these rule-based techniques50

do not specify how one would exploit the constraints to reduce the computational time past simply51

skipping over invalid graphs.52

We propose the idea of a “constraint graph” as a method for incorporating prior information into the53

BNSL task. A constraint graph is a directed graph where each node represents a set of variables in the54

BNSL problem and edges represent which variables are candidate parents for which other variables.55

The primary advantage of constraint graphs versus other methods is that the structure of the constraint56

graph can be used to achieve savings in both memory cost and computational time beyond simply57

eliminating invalid structures. This is done by breaking the problem into independent subproblems58

even in the presence of cyclic prior knowledge. An example of this cyclic prior knowledge is not59

knowing anything about how a group of variables relate to each other. In addition, constraint graphs60

are visually more intuitive than a set of written rules while also typically being simpler than a61

super-structure, because constraint graphs are defined over sets of variables instead of the original62

variables themselves. This intuition, combined with automatic methods for identifying parallelizable63

subproblems, makes constraint graphs easy for non-experts to define and use without requiring them64

to know the details of the structure learning task. This technique is similar to work done by Fan65

et al. (2014), where the authors describe the same computational gains through the identification of66

“potentially optimal parent sets." One difference is that Fan et al. define the constraints on individual67

variables instead of on sets on variables, as this work does. Given that two types of graphs will be68

discussed throughout this paper, the Bayesian network we are attempting to learn and the constraint69

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

graph, we will use the terminology “variable" exclusively in reference to the Bayesian network and70

“node" exclusively in reference to the constraint graph.71

2 Constraint Graphs72

A constraint graph is a directed graph in which nodes contain disjoint sets of variables from the73

BNSL task, and edges indicate which sets of variables can serve as parents to which other sets of74

variables. A self-loop in the constraint graph indicates that no prior knowledge is known about the75

relationship between variables in that node, whereas a lack of a self-loop indicates that no variables76

in that particular node can serve as parents for another variable in that node. Thus, the naive BNSL77

task can be represented as a constraint graph consisting of a single node with a self-loop. A constraint78

graph can be thought of as a way to group the variables (Fig. 1a), define relationships between these79

groups (Fig. 1c), and then guide the BNSL task to efficiently find the optimal structure given these80

constraints (Fig. 1d). In contast, a directed super-structure defines all possible edges that can exist81

in accordance with the prior knowledge (Fig. 1b). Typically, a directed super-structure is far more82

complicated than the equivalent constraint graph. Cyclic prior knowledge can be represented as a83

simple cycle in the constraint graph, such that the variables in node A draw their parents solely from84

node B, and B from A.85

Any method for reducing computational time through prior knowledge exploits the “global parameter86

independence property” of BNSL. Briefly, this property states that the optimal parents for a variable87

are independent of the optimal parents for another variable given that the variables do not form a88

cycle in the resulting Bayesian network. This acyclicity requirement is typically computationally89

challenging to determine because a cycle can involve more variables than the ones being directly90

considered, such as a graph which is simply a directed loop over all variables. However, given an91

acyclic constraint graph or an acyclic directed super-structure, it is impossible to form a cycle in the92

resulting structure; hence, the optimal parent set for each variable can be identified independently93

from all other variables. A convenient property of constraint graphs, and one of their advantages94

relative to other methods, is that independent subproblems can be found through global parameter95

independence even in constraint graphs which contain cycles. We describe in Section 3.2 the exact96

algorithm for finding optimal parent sets for each case one can encounter in a constraint graph. Briefly,97

the constraint graph is first broken up into its strongly connected components (SCCs) that identify98

which variables can have their parent sets found independently from all other variables (“solving a99

component”) without the possibility of forming a cycle in the resulting graph. Typically these SCCs100

will be single nodes from the constraint graph, but may be comprised of multiple nodes if cyclic prior101

knowledge is being represented. In the case of an acyclic constraint graph, all SCCs will be single102

nodes, and in fact each variable can be optimized without needing to consider other variables, in line103

with theoretical results from Ordyniak & Szeider (2013). In addition to allowing these problems104

to be solved in parallel, this breakdown suggests a more efficient method of sharding the data in a105

distributed learning context. Specifically, one can assign an entire SCC of the constraint graph to a106

machine, including all columns of data corresponding to the variables in that SCC and all variables in107

nodes which are parents to nodes in the SCC. Given that all subproblems which involve this shard108

of the data are contained in this SCC of the constraint graph, there will never be duplicate shards109

and all tasks involving a shard are limited to the same machine. The concept of identifying SCCs as110

independent subproblems has also been described in Fan et al. (2014).111

It is possible to convert any directed super-structure into a constraint graph and vice-versa. To convert112

from a directed super-structure to a constraint graph, one must tabulate the unique parent and children113

sets a variable can have. All variables with the same parent and children sets can be grouped together114

into a node in the constraint graph. Edges then connect these sets based on the shared parent sets115

specified for each node. To convert from a constraint graph to a directed super-structure one would116

simply draw, for each node, an edge from all variables in the current node to all variables in the117

node’s children. We suggest, however, that constraint graphs are the more intuitive method both due118

to their simpler representation and ease of extracting computational benefits from the task.119

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

(0, 1)

(0, 1, 2)

(0, 1, 2, 3)

(1, 2)

(1, 2, 3)

(0,) (1,) (2,)

(2, 3)

(0, 2, 3)

(3,)

(0, 3)

(0, 1, 3)

(,)

0

1

2

3

A B

Figure 2: An example of a constraint graph and resulting order graph (a) A constraint graph is
defined as a cycle over four nodes with each node containing a single variable. (b) The resulting
order graph during the BNSL task. It is significantly sparser than the typical BNSL task because after
choosing a variable to start the topological ordering the remaining variables must be added in the
order defined by the cycle.

3 Methods120

3.1 Bayesian Network Structure Learning121

Although solving a component in a constraint graph can be accomplished by a variety of algorithms,122

we assume for this paper that one is using some variant of the dynamic programming algorithm123

proposed by Malone et al. (2011). We briefly review that algorithm here.124

The goal of the algorithm is to identify the optimal Bayesian network defined over the set of variables125

without having to repeat any calculations and without having to use excessive memory. This is done126

by defining additional graphs, the parent graphs and the order graph. We will refer to each node in127

these graphs as “entries” to distinguish them from the constraint graph and the learned Bayesian128

network. A parent graph is defined for each variable and consists of all combinations of other129

variables along with the dynamically calculated optimal subset of parents given each possible set of130

parents and the associated score. The order graph consists of all combinations of all variables ordered131

in a lattice, where edges store the score associated with adding a given variable to the topological sort132

and its optimal parent set. Each path from the empty root node to the leaf node containing the full set133

of variables encodes the optimal network given a topological sort of the variables, and the shortest134

path encodes the optimal network. This data structure reduces the time required to find the optimal135

Bayesian network from super-exponential in the number of variables to simply exponential in the136

number of variables without the need to keep a large cache of values.137

3.2 Solving a Component of the Constraint Graph138

The strongly connected components of a constraint graph can be identified using Tarjan’s algorithm139

(Tarjan, 1971). Each SCC corresponds to a subproblem of the constraint graph and can be solved140

independently. In many cases the SCC will be a single node of the constraint graph, because prior141

knowledge is typically not cyclic. In general, the SCCs of a constraint graph can be solved in any142

order due to the global parameter independence property.143

The algorithm for solving an SCC of a constraint graph is a straightforward modification of the144

dynamic programming algorithm described above. Specifically, parent graphs are created for each145

variable in the SCC but defined only over the union of possible parents for that variable. Consider146

the case of a simple, four-node cycle with no self-loops such that W → X → Y → Z → W . A147

parent graph is defined for each variable in W ∪X ∪ Y ∪Z but only over valid parents. For example,148

the parent graph for X1 would be over only variables in W . Then, an order graph is defined with149

entries that violate the edge structure of the constraint graph filtered out. The first layer of the order150

graph would be unchanged with only singletons, but the second layer would prohibit entries with two151

variables from the same layer because there are no valid orderings in which Xi is a parent of Xj , and152

would prohibit entries in which a variable W is joined with a variable of Y . One can identify valid153

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

AAPL-open

XOM-close

MSFT-open

RTN-close

ORCL-close

GOOGL-open

COB-close

GOOGL-closeBRK.A-close

JNJ-open

GFRD-close

WFC-close

GE-close

PG-open

RDSB-close

FB-close T-closeCVX-close

VZ-open

T-open

DEB-close

VED-open

BWNG-open

BWNG-close

KEISEI-open

Time

TSE

FTSE

NYSE

A

B

Opening

Closing

Figure 3: A section of the learned Bayesian network of the global stock market. (a) The con-
straint graph contains six nodes, the opening and closing prices for each of the three markets. These
are connected such that the closing prices in a market depend on the opening prices but also the most
recent international activity. (b) Since this is another example of an acyclic constraint graph, we
can easily parallelize for near-linear speed gains. (c) The most connected subset of stocks from the
learned network covering 25 variables.

entries by taking the entries of a previous layer and iterating over each variable present, adding all154

valid parents for that variable which are not already present in the set.155

A simple example illustrating the algorithm is a constraint graph made up of a four node cycle where156

each node contains only a single variable (Fig 2a). The parent graphs defined for this would consist157

solely of two entries, the null entry and the entry corresponding to the only valid parent. The first158

layer of the order graph would be all variables as previously (2b). However, once a variable is chosen159

to start the topological ordering the order of the remaining variables is fixed because of the constraints,160

producing a far simpler lattice.161

This algorithm has five natural cases, which we consider separately.162

One node, no parents, no self loop: The variables in this node contain no parents, so nothing needs163

to be done to find the optimal parent sets given the constraints.164

One node, no parents, self loop: This is equivalent to exact BNSL with no prior knowledge. In165

this case, the previously proposed dynamic programming algorithm is used to identify the optimal166

structure of the subnetwork containing only variables in this node.167

One node, one or more parent nodes, no self loop: In this case it is impossible for a cycle to be168

formed in the resulting Bayesian network regardless of optimal parent sets, so we can justify solving169

every variable in this node independently by the global parameter independence property. There is170

also no need to store the full parent graphs because the optimal scoring entry in the parent graphs is171

the resulting optimal parent set.172

One node, one or more parents, self loop: Initially, one may think that solving this SCC could173

involve taking the union of all variables from all involved nodes, running exact BNSL over the full174

set, and simply discarding the parent sets learned for the variables not in the currently considered175

node. However, in the same way that one should not handle prior knowledge by learning the optimal176

graph over all variables and discarding edges which offend the prior knowledge, one should not do177

the same in this case. Instead, a modification to the dynamic programming algorithm itself can be178

made to restrict the parent sets on a variable-by-variable basis. For simplicity, we define the variables179

in the current node of the constraint graph as X and the union of all variables in the parent nodes in180

the constraint graph as Y . We begin by setting up an order graph, as usual defined over X . We then181

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

Exact Constraint Graph
Variables PGN OGN OGE Time (s) PGN OGN OGE Time (s)

4 2304 512 2304 0.080 1024 16 32 0.033
8 53248 8192 53248 1.30 32768 256 1024 0.545

12 1114112 131072 1114112 27.03 786432 4096 24576 9.56

Parents

4 2304 512 2304 0.087 1280 32 80 0.045
8 53248 8192 53258 1.401 20480 32 80 0.356

12 1114112 131072 1114112 27.22 327680 32 80 4.01

Table 1: Algorithm comparison on a node with a self loop and other parents. The exact algorithm
and the constrained algorithm proposed here were on a SCC comprosied of a main node with a
self loop and one parent node. Shown are the results of increasing the number of variables in the
main node while keeping the variables in the parent node steady at 5, and the results of increasing
the number of variables in the parent node while keeping the number of variables in the main node
constant. For both algorithm we show the number of nodes across all parent graphs (PGN), the
number of nodes in the order graph (OGN), the number of edges in the order graph (OGE) and the
time to compute.

add Y to each node in the order graph such that the root node now is now comprised of Y instead182

of the empty set and the leaf node is comprised of X ∪ Y instead of just X . Because the primary183

purpose of the order graph is to identify the optimal parent sets that do not form cycles, this addition184

is intuitive because it is impossible to form a cycle by including any of the variables in Y as parents185

for any of the variables in X . In other words, if one attempted to find the optimal topological ordering186

over X ∪ Y it would always begin with the variables in Y but would be invariant to the ordering of187

Y . Parent graphs are then created for all variables in X but are defined over the set of all variables in188

X ∪ Y , because that is the full set of parents that the variables could be drawn from. This restriction189

allows the optimal parents for each variable in X to be identified without wasting time considering190

what the parent set for variables in Y should be, or potentially throwing away the optimal graph191

because of improper edges leading from a variable in Y to a variable in X .192

Multiple nodes: The algorithm as presented initially is used to solve an entire component at the193

same time.194

4 Results195

While it is intuitive how a constraint graph provides computational gains by splitting the structure196

learning task into subproblems, we have thus far only alluded to the idea that prior knowledge can197

provide efficiencies past that. In this section we examine the computational gains achieved in the198

three non-trivial cases of the algorithm presented in Section 3.2.199

4.1 Acyclic Constraint Graph200

First, we examine the computational benefits of an acyclic constraint graph modeling the global201

stock market. In particular, we want to identify for each stock which other stocks are predictive to202

its performance. We chose to do this by learning a Bayesian network over the opening and closing203

prices of 54 top performing stocks from the New York Stock Exchange (NYSE) in the United States,204

the Tokyo Stock Exchange (TSE) in Japan, and the Financial Times Stock Exchange (FTSE) in205

England. Learning a Bayesian network over all 108 variables is clearly infeasible, so we encode in206

our constraint graph some common-sense restrictions (Fig. 3a). Specifically, opening and closing207

prices for the same market are grouped into separate nodes, for a total of six nodes in the constraint208

graph. There are no self-loops because the opening price of one stock does not influence the opening209

price of another stock. Naturally, the closing prices of one group of stocks are influenced by the210

opening price of the stocks from the same market, but they are also influenced by the opening or211

closing prices of any markets which opened or closed in the meantime. For instance, the TSE closes212

after the FTSE opens, so the FTSE opening prices have the opportunity to influence the TSE closing213

prices. However, the TSE closes before the NYSE opens, so the NYSE cannot influence those stock214

prices.215

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

C

D

A

B

Figure 4: Cyclic constraint graphs (a) This constraint graph is comprised of a simple two node
cycle with each node containing four variables. (b) The learned Bayesian network on random data
where some variables were forced to identical values. Each circle here corresponds to a variable
in the resulting Bayesian network instead of a node in the constraint graph. There were multiple
possible cycles which could have been formed but the constraint graph prevented that from occuring.
(c) This constraint graph now encodes a four node cycle each with four variables. (d) The learned
Bayesian network on random data with two distinct loops of identical values forced. Again, no loops
are formed.

The resulting Bayesian network has some interesting connections (Fig. 3b). For example, the opening216

price of Microsoft influences the closing price of Raytheon, and the closing price of Debenhams217

plc, a British multinational realtor, influences the closing price of GE. In addition, there were some218

surprising and unexplained connections, such as Google and Johnson & Johnson influencing the219

closing price of Cobham plc, a British defense firm. Given that this example is primarily to illustrate220

the types of constraints a constraint graph can easily model, we suggest caution in thinking too deeply221

about these connections.222

It took only ∼35 seconds on a computer with modest hardware to run BNSL over 250 samples. If we223

set the maximum number of parents to three, which is the empirically determined maximum number224

of parents, then it only takes ∼2 seconds to run. In contrast it would be infeasible to run the exact225

BNSL algorithm on even half the number of variables considered here.226

4.2 Self-Loops And Parents227

We then turn to the case where the strongly connected component is a main node with a self loop and228

a parent node. Because an order graph is defined only over the variables in the main node its size is229

invariant to the number of variables in the parent node, allowing for speed improvements when it230

comes to calculating the shortest path. In addition, parent graphs are only defined for variables in the231

parent set, and so while they are not smaller than the ones in the exact algorithm, there are fewer. We232

compare the computational time and complexity of the underlying order and parent graphs between233

the exact algorithm over the full set of variables and the modified algorithm based on a constraint234

graph (Table. 1) We note that in all cases there are significant speed improvements and simpler graphs235

but that there are particularly encouraging speed improvements when the number of variables in the236

main node are increased. This suggests that it is always worth the time to identify which variables237

can be moved from a node with a self loop to a separate node.238

4.3 Cyclic Constraint Graphs239

Lastly, we consider constraint graphs that encode cyclic prior knowledge. We visually inspect the240

results from cyclic constraint graphs to ensure that they do not produce cyclic Bayesian networks241

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

Exact Exact
Variables PGN OGN OGE Time (s) PGN OGN OGE Time (s)

1 32 16 32 0.005 8 14 16 0.005
2 1024 256 1024 0.036 32 186 544 0.014
3 24576 4096 24576 0.611 96 3086 16032 0.320
4 524288 65536 525288 14.0 256 54482 407328 7.12

Nodes

2 192 64 192 0.111 48 56 150 0.008
4 24576 4096 24576 0.634 96 3086 16032 0.217
6 2359296 262144 2359296 60.9 144 168068 1307358 26.12

Samples

100 24576 4096 24576 0.357 96 3086 16032 0.311
1000 – – – 0.615 – – – 0.211

10000 – – – 2.670 – – – 0.357
100000 – – – 243.9 – – – 10.41

Table 2: Algorithm comparison on a cyclic constraint graph. The exact algorithm and the con-
strained algorithm proposed here were run for four node cycles with differing numbers of variables,
cycles with different numbers of nodes but three variables per node, and differing numbers of samples
for a four-node three-variable cycle. All experiments with differing numbers of variables or nodes
were run on 1000 randomly generated samples. Shown for both algorithms are the number of nodes
across all parent graphs (PGN), the number of nodes in the order graph (OGN), the number of edges
in the order graph (OGE) and the time to compute. Since the number of nodes does not change as a
function of samples those values are not repeated in the blank cells.

even when the potential exists. Two separate constraint graphs are inspected, a two node cycle and a242

four node cycle (Fig. 4a/c). In each case two cycles of variables are set to identical values in otherwise243

random data that may cause a careless algorithm to produce a cyclic Bayesian network. However, by244

jointly solving all nodes cycles are avoided while dependencies are still captured (Fig. 4b/d).245

We then compare the exact algorithm without constraints to the use of an appropriate constraint graph246

in a similer manner as before (Table. 2). This is done first for four node cycles where we increase the247

number of variables in each node of the constraint graph and then for increasing sized cycles with248

three variables per node. The exact algorithm likely produces structures that are invalid according249

to the constraints and so this comparison is done solely to highlight that efficiencies are gained by250

considering the constraints. In each case using a constraint graph yields simpler parent and order251

graphs and the computational time is significantly reduced. The biggest difference is in the number252

of nodes in the parent graphs, as the constraints place significant limitations on which variables are253

allowed to be parents for which other variables. Since the construction of the parent graph is the only254

part of the algorithm which considers the dataset itself it is unsurprising that significant savings are255

achieved for larger datasets when much smaller parent graphs are used.256

5 Discussion257

Constraint graphs are a flexible way of encoding into the BNSL task prior knowledge concerning the258

relationships among variables. The graph structure can be exploited to identify potentially massive259

computational gains, and acyclic constraint graphs make problems tractable which would be infeasible260

to solve without constraints. This is particularly useful in cases where there are both a great number261

of variables and many constraints present from prior knowledge. We anticipate that the automatic262

manner in which parallelizable subtasks are identified in a constraint graph will be of particular263

interest given the recent increase in availability of distributed computing.264

Although the networks learned in this paper are discrete, the same principles can be applied to all265

types of Bayesian networks. Because the constraint graph represents only a restriction in the parent266

set on a variable-by-variable basis, the same algorithms that are used to learn linear Gaussian or267

hybrid networks can be seamlessly combined with the idea of a constraint graph. In addition, most of268

the approximation algorithms which have been developed for BNSL can be modified to take into269

account constraints because these algorithms simply encode a limitation on the parent set for each270

variable.271

8

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

One could extend constraint graphs in several interesting ways. The first is to assign weights to edges272

so that the weight represents the prior probability that the variables in the parent set are parents of273

the variables in the child set, perhaps as pseudocounts to take into account when coupled with a274

Bayesian scoring function. A second way is to incorporate “hidden nodes” that are variables which275

model underlying, onobserved phenomena and can be used to reduce the parameterization of the276

network. Several algorithms have been proposed for learning the structure of a Bayesian network277

given hidden variables (Elidan et al., 2001; Elidan & Friedman, 2005; Friedman, 1997). Modifying278

these algorithms to obey a constraint graph seems like a promising way to incorporate restrictions279

on this difficult task. A final way may be to encode ancestral relationships instead of direct parent280

relationships, indicating that a given variable must occur at some point before some other variable in281

the topological ordering.282

Acknowledgments283

We would like to acknowledge Maxwell Libbrecht, Scott Lundberg, and Brandon Malone for many284

useful discussions and comments on drafts of the paper.285

References286

Campos, C.P. and Ji, Q. Efficient structure learning of bayesian networks using constraints. Journal287

of Machine Learning Research, pp. 663–689, 2011.288

Chow, C. and Liu, C. Approximating discrete probability distributions with dependence trees. IEEE289

Transactions on Information Theory, pp. 462 – 467, 2003.290

Cooper, G. and Herskovits, E. A bayesian method for the induction of probabilistic networks from291

data. Machine Learning, 9:309–347, 1992.292

Elidan, G. and Friedman, N. Learning hidden variable networks: The information bottleneck approach.293

Journal of Machine learning Research, 6:81–127, 2005.294

Elidan, G., Lotner, N., Friedman, N., and Koller, D. Discovering hidden variables: A structure-based295

approach. Advances in Neural Information Processing Systems (NIPS) 13, pp. 479–485, 2001.296

Fan, X., Malone, B.M., and Yuan, C. Finding optimal bayesian network structures with constraints297

learned from data. UAI’14 Proceedings of the Thirtieth Conference on Uncertainty in Artificial298

Intelligence, pp. 200–209, 2014.299

Friedman, N. Learning belief networks in the presence of missing values and hidden variables. ICML300

’97 Proceedings of the Fourteenth International Conference on Machine learning, pp. 125–133,301

1997.302

Gamberoni1, G., Lamma1, E., Riguzzi1, F., Storari1, S., and Volinia, S. Bayesian networks learning303

for gene expression datasets. pp. 109–120, 2005.304

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M. Learning bayesian network structure using lp305

relaxations. Proceedings of the Thirteenth International Conference on Artificial Intelligence and306

Statistics (AISTATS-10), pp. 358–365, 2003.307

Malone, B.M., Yuan, C., and Hansen, E.A. Memory-efficient dynamic programming for learning308

optimal bayesian networks. Proceedings of the Twenty-Fifth AAAI Conference on Artificial309

Intelligence, 2011.310

Moore, A. and Wong, W. Optimal reinsertion: A new search operator for accelerated and more311

accurate bayesian network structure learning. pp. 552–559, 2003.312

Ordyniak, S. and Szeider, S. Parameterized complexity results for exact bayesian network structure313

learning. Journal of Artificial Intelligence Research, 46:263–302, 2013.314

Perrier, E., Imoto, S., and Miyano, S. Finding optimal bayesian network given a super-structure.315

Journal of Machine Learning Research, pp. 2251–2286, 2008.316

9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

Schneiderman, Henry. Learning a restricted bayesian network for object detection. In IEEE Confer-317

ence on Computer Vision and Pattern Recognition. IEEE, June 2004.318

Suzuki, J. Learning bayesian belief networks based on the minimum description length principle:319

An efficient algorithm using the b b technique. Machine Learning, Proceedings of the Thirteenth320

International Conference (ICML ’96), 1996.321

Tarjan, R. Depth-first search and linear graph algorithms. SIAM Journal of Computing, 2:146–160,322

1971.323

Tsamardinos, I., Brown, L.E., and Aliferis, C.F. The max-min hill-climbing bayesian network324

structure learning algorithm. Machine Learning, pp. 462 – 467, 2006.325

Yuan, C., Malone, B.M., and Wu, X. Learning optimal bayesian networks using a* search. IJCAI326

proceedings-international joint conference on artificial intelligence, 2011.327

Zhou, H. and Sakane, S. Learning bayesian network structure from environment and sensor planning328

for mobile robot localization. Proceedings of IEEE International Conference on Multisensor329

Fusion and Integration for Intelligent Systems, MFI2003., 2003.330

Zuo, Y. and Kita, E. Up/down analysis of stock index by using bayesian network. Engineering331

Management Research, 2012.332

10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2872v1 | CC BY 4.0 Open Access | rec: 14 Mar 2017, publ: 14 Mar 2017

