Optimizing Pedigrees: Using a Biasing System
to Determine Likely Inheritance Systems

Justin Ang!
March 28, 2017

*Correspondence: jya005Qucsd.edu
1University of California, San Diego

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2871v4 | CC BY 4.0 Open Access | rec: 29 Mar 2017, publ: 29 Mar 2017



Abstract

Pedigrees, though straightforward and versatile, lack the ability to tell us information about many individuals.
Though numerical systems have been developed, there is currently no system to quantify the probability of a
pedigree following certain inheritance systems. My system intends to fulfill that chasm by creating a flexible
numerical system and testing it for variance. First, my system attempts to adapt inheritance system to known
pedigree data. Then, it calculates the difference between the calculated values and the known pedigree data.
It aggregates these values, then it uses a chi-squared analysis in order to determine the likelihood of said
inheritance system. This is done for many different systems, until we have a general idea of which systems
are probable and which are not.

Introduction

Pedigrees are fundamentally used to represent phenotypic data in a binary system. By using 'Black’ as af-
fected and "White’ as unaffected, the pedigree system is able to cover a wide range of inheritance systems.
It also gives a general idea of the dispersion of the phenotype in question. A simple improvement to this
existing model would be to assign scores instead of coloring. These scores would keep track of the chance
that individuals hold certain traits which can be used to easily calculate the probability of child generations.
This approach has many limitations, but the idea of such an implementation is very interesting and appli-
cable [1](Weighted-Based Statistics) (7 Test)[2] (Mqrs Test)[3]. However, using scores can also be used to
determine the chance of basic inheritance systems, which I will prove. By finding the variance between the
expected value and observed values of models, a chi-squared analysis can be performed to obtain a p-value.
This p-value will then allow us to determine if a system is probable or not.

My system and framework is very similar to other recent models. For example, a Bayesian framework][7]
has been introduced to quantify pedigrees as well. My algorithm is not intended to compete with, nor beat
those models. Alternatively, my model focuses on being able to quantify inheritance patterns. Of course,
my model has many similarities to other work in the field due to the need for a numerical ordering system.
As such, it carries many of the benefits and drawbacks that other numerical systems hold. I understand
that others have tried to maximize positives and minimize negatives by introducing more layers of statistical
analysis. The model I created was less rigorous in order to prove the benefits of determining inheritance
patterns more easily. However, additional levels of statistics are definitely applicable to these models, and
may be a point of interest for some.

Methods

Assumptions

This model depends on several assumptions:
1. We are only looking at a two-allele, one gene system that is governed by Mendelian inheritance.

e This model assumes that for every subsequent level the genotypes of the parents is diluted by
exactly % If the alleles are not separated, then there is no guarantee that these models will hold
true. [7]

2. We are only looking at: Autosomal Recessive, Autosomal Dominant, X-linked Recessive, X-linked
Dominant, and Y-linked inheritance patterns.

3. There are no abnormal females and males. The individuals have normal karyotypes. (XXY, XO, XXX,
etc. are not present)

4. There is full penetrance.
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Basic Structure
Here, I will document key aspects of my representations. These are present in every implementation:

Each individual will be assigned one number. This number is responsible for representing the probability
of affected /unaffectedness. This number will be also used to calculate offspring.

Signed numbers:

Positive (0-2) = Affected Bias (Possibly Affected)
Very Positive (1-2) = Definitely Affected

Neutral (0) = No Bias

Negative (-1-0) = Unaffected Bias (Unaffected)

Bias represents the chance of being affected. Bias will be integral in calculating the probabilities of
subsequent generations inheriting alleles.

Why is the Bias unbalanced?

The bias is unbalanced because Dominant and Recessive inheritance schemes are unbalanced. Giving the
same weighting system, say, {-2, 2} fails to give us a distinction between the two. By adding favoritism to
the bias of Dominant traits, we ensure that the variance between Recessive and Dominant models is
significant.

Level Calculations:

The biases of the parents will be summed and divided by two for every subsequent generation unless
otherwise specified (X-Linked traits and Y-Linked traits). This is due to each parent only having a 50%
chance of passing on their genotype under the aforementioned environment. This is essentially a Kinship
Coefficient [1] calculation restricted to parents and children. For every child, assign the biases based on the
kinship Coefficient, where 1 is the sum of the two parents’ biases.

Essentially:

6=}
1) is the sum of the parents’ biases.
¢ is the child’s bias. [1][4]

Self-Correcting: The algorithm will always prioritize data over calculations. Suppose a calculation for an
individual gives us a value that is inconsistent with the known traits of the individual. We will use values
based on the trait of the individual instead of the one we have calculated. This will only occur when we are
mating an individual based on phenotype, and are unsure if they are homozygous or heterozygous. This is
could be seen as following the same logic as the Collapsing Method Fundamental[1], albeit much simpler.

0 if variance of children is reduced
wr = .
—1 otherwise.

2 if variance of children is reduced
Ya = .
1 otherwise.

1, is the parent’s bias for Recessive Inheritance Systems.
14 is the parent’s bias for Dominant Inheritance Systems.

Repeat for all unsure individuals.

Since I use similar concepts behind my numerical system as many other studies, I will keep this section
brief. I have attached a supplement for further reading into the rationale behind my methods. However, the
specifics of my numerical analysis are not the core of my argument.
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Autosomal Recessive

Assign a bias factor of +1 if the individual is affected. Assign a bias factor of -1 if the individual is
definitely unaffected or unknown. Assign a bias factor of 0 if the individual is a carrier. If the I generation
consists of two unaffected individuals, assign them both 0 unless otherwise specified. If two unaffected
individuals produce an unaffected individual, assign the individual a bias of -0.33. If two unaffected
individuals produce an affected individual, assign the individual a bias of +1 and assign the parents to
have a bias of 0. For every child, assign the biases based on the kinship Coefficient, where 9 is the sum of
the two parents’ biases.

Autosomal Dominant

Assign a bias factor of +2 if the individual is fully affected. Assign a bias factor of 0 if the individual is
unaffected. Assign a bias factor of +1 if the individual is unknown or a Heterozygote. If the I generation
consists of affected individuals, assign them all +1 unless otherwise specified. If two unaffected individuals
produce an unaffected individual, assign the individual a bias of -1. If the individuals produce an affected
individual, assign the individual a bias of +1.33.

X-Linked Recessive

Assign a bias factor of 41 if the individual is affected. Assign a bias factor of 0 if the individual is a female
carrier. Assign a bias factor of -1 if the individual is unaffected or unknown. Males will have their
mother’s bias, instead of calculating the Kinship Coefficient. If the I generation consists of affected
individuals, assign them all 1 unless otherwise specified. If two carrier individuals produce an unaffected
female, assign the female a bias of -0.5. If the individuals produce an affected female, assign the individual
a bias of +1.

X-Linked Dominant

Assign a bias factor of +2 if the individual is fully affected. Assign a bias factor of 1 if the individual is a
female heterozygote. Assign a bias factor of 0 if the individual is unaffected. Males will have their
mother’s bias, instead of calculating the Kinship Coefficient. If the I generation consists of affected
individuals, assign them all +1 unless otherwise specified. If two heterozygous individuals produce an
unaffected female, assign the female a bias of 0. If the individuals produce an affected female, assign the
individual a bias of +1.5.

Y-Linked

Assign a bias factor of +2 if the individual is male and affected. In the impossible case where a female is
affected or a carrier, assign it a bias of co. Assign a bias factor of 0 to unaffected males, and all other
females. Males will have their father’s bias. None of the individuals will follow the Kinship Coefficient
model in this inheritance scheme.

Using Models to Determine Inheritance System

The aforementioned models can be used to determine the inheritance type of an unknown pedigree. The
method for doing so is as follows:

1. Attempt to fit each model to the given tree. Most models will not fit. In that case find the model that
is the closest to the given tree. Closeness is defined as minimizing the difference between the
calculated bias and the observed bias.

2. Test the sum of the bias of individuals in a set of parents minus the expected bias as calculated from
the set of parents.

3. Sum the absolute value of these differences for every set of parents after the I generation.

4. If we happen to cross a set of parents where the expected bias of the parents conflicts with the one we
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observe, assign the observed bias instead of the calculated one.
5. Multiply this sum by the number of average children. This is our variance.

6. Test these variance values against a chi-square analysis. Our Degrees of Freedom will be the number
of individuals we examine minus 1.

7. If we are given information about heterozygotes, we assume unaffected and affected individuals to be
homozygotes. However, phenotypes are prioritized. For example, carriers will not be heterozygous in
a Autosomal Dominant scheme.

8. If the difference between the calculated bias and the observed bias is greater than 1, multiply it by
1.5, or the ’unlikely’ weight.

l l 7
1 .
(7220 201 2 U0k — o)
n=1 n=1 k=1
[ is the number of parents.
i is the number of individuals with parent [.
0 is the bias of individual k calculated from our model.
¢, is the bias of individual k calculated from its parents.

U is the unlikely function. If the difference exceeds 1, U will multiply the difference by 1.5.

Null hypothesis: There is no significant difference between the data observed and the data expected.
Therefore the proposed model is accurate with respect to our data. Assume p = 0.05 [5] for us to be able to
reject the null hypothesis.

The reasoning for this system is explained in the “Further Explanation of Variance”, on page 13. I will now
proceed to analyze a few pedigrees. For the sake of simplicity, the models will not have shading.

Reading the Figures: The figures represent the expected bias from the given inheritance system. In some
figures, there are numbers next to individuals. That number represents the calculated bias from its parents.
The number in the individual is the number we use to calculate the bias of the next level.

Further Explanation of Variance
The variance calculation is as follows:

Generate models for all 5 inheritance systems.

Find the difference between expected value and observed value for children.
Sum all the children from a set of parents.

Sum the absolute value of all the sets of children.

Multiply sum by the average number of children per parent.

Compare to p-value. Degrees of freedom is the number of individuals minus one.

NS ot W

If we are given information about heterozygotes, we assume unaffected and affected individuals to be
homozygotes. Phenotypes are considered before heterozygosity.

8. Multiply by 1.5 if the difference in biases exceeds 1.
Explanation:

1. We must generate models to obtain our variance. Different models will create different expected values
which will in turn create different variance.

2. In order to find our variance, we need to find the bias we expect minus the bias we are getting.

3. The variance is based on parent sets. Our calculation from two parents will give us the expected bias of
all the children. In order to find the variance of a parent set, we must sum the individual variances of the
children. If we only take the variance of one child without accounting for the other children, the variance
will not be accurate.
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We sum the absolute value of the variances generated from parents because the calculations of parents and
children are separate from one another. By doing the calculation in this manner, we avoid the mistake of
aggregating errors. For example, if a pedigree appears to be Autosomal Dominant for the first generation,
yet it is clear from the rest of the graph that the pedigree is Autosomal Recessive, calculating each set of
parents will give us the correct inheritance type.

4. We would like to find the aggregate of the variances.

5. The variance is not scaled correctly. Reoccurring variance in a large family with the same parents should
be weighted heavily. Reoccurring variance in a small family is more likely to be due to random chance.

6. The range of factors (individuals) increases as we increase our sample size. Therefore, our Degrees of
freedom will rise as we look at more individuals.

7. If we know all the heterozygotes, we do not need to self-correct. Phenotypes are prioritized because
heterozygotes take on different traits in different systems. If phenotypes for heterozygotes are ignored, then
Dominant and Recessive schemes will have the same variance.

8. If an individual violates the properties of our inheritance systems, it will be weighed against more heavily.

Results

Example 1 (Autosomal Recessive):

II:1 11:2 1I:3 1I:4 II:5

III:1 II1:2 III:3 7 1114

Autosomal Recessive Bias:

££££
$L

III:1 II1:2 II1:3 7 114

Expected Bias from I Parents to II children: % =0

Bias from II children (II-2, II-3, II-4, II-5): (0-0) + (0-0) 4+ (0-0) + (0-0) =0

Expected Bias from (II-1, I1-2) Parents to III children: %52 =0

Bias from 11 children (ITI-1, [T1-2, TI1-3, TT-4): (1-0) + (:0.33-0) + (-0.33-0) + (-0.33-0) = 0
Total Bias from all levels: |0] + |0] =0

Final Variance: 0 * 4 = 0
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Autosomal Dominant Bias:

u 1

MU A X
éé&&

III:1 I11:2 II1:3 7 114

Expected Bias from I Parents to II children: % =0.5

Bias from II children (I1-2, 11-3, I1-4, IL-5): (0-0.5) + (0-0.5) + (0-0.5) + (0-0.5) = -
Expected Bias from (II-1, II-2) Parents to III children: %2 =0

Bias from III children (ITI-1, II1-2, IIL-3, ITL-4): (1-0) + (0-0) + (0-0) + (0-0) = 1
Total Bias from all levels: | — 2| 4+ |1| = 3

Final Variance: 3 * 4 = 12

X-Linked Recessive Bias:

-1 1

N
I

III:1 III:2 II1:3 7 114

Expected Bias from I Parents to II children: o= 1, 9= = =0

Bias from II children (II-2, II-3, II-4, II-5): (0-0) + (0- 0) 1-1) + (1-1) =0

Expected Bias from (II-1, II 2) Parents to III children: =0, 9= %1 =-0.5

Bias from III children (ITI-1, I11-2, TI1-3, 111-4): (1-(-0.5))*1.5 + (0-0) + (0-0) + (0-0) = 2.25

Total Bias from all levels: |0] + |2.25] = 2.25
Final Variance: 2.25 * 4 =9

X-Linked Dominant Bias:

[-] O
I:1 L:2
II:1 11:2 II:3 1I:4 II:5
III:1 I11:2 I11:3 7 114
7
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Expected Bias from I Parents to II children: = 1, ¢= 2 =0.5

Bias from IT children (II-2, II-3, II-4, II-5): (0-0.5) + (0-0.5) + (0-1) 4+ (0-1) =-3
Expected Bias from (II-1, II-2) Parents to III children: o= 0, ¢= % =0

Bias from III children (ITI-1, I1I-2, TI1-3, I11-4): (1-0) + (0-0) + (0-0) + (0-0) =
Total Bias from all levels: | — 3| + |1] =4

Final Variance: 4 * 4 = 16

Y-Linked Bias:

0 oo

MR W R A
éé&&

III:1 II1:2 II1:3 7 114

Expected Bias from I Parents to II children: o'= 0, 9=

0
Bias from II children (II-2, II-3, II-4, II-5): (0-0) + (0-0) 4+ (0-0) + (0-0) =0
Expected Bias from (II-1, I1-2) Parents to III children: ¢= 0, 9= %2 =0
Bias from III children (III-1, ITI-2, I11-3, 111-4): (0c0-0) + (0-0) + (0-0) + (0-0) = oo

Total Bias from all levels: |0] + |oo| = o0
Final Variance: oo * 4 = o0

After our calculations, we have the corresponding values for Autosomal Recessive, Autosomal Dominant,
X-Linked Recessive, X-Linked Dominant, and Y-Linked: 0, 12, 9, 16, co. Now, let us apply these values to
a Chi-Square Distribution. Since we examined 8 individuals, (II-2, II-3, II-4, II-5, I1I-1, III-2, III-3, and
I11-4), our degree of freedom is 8-1 = 7.

Inheritance Pattern | X? Value | p-value | Probable?
Autosomal Recessive 0 1 yes
Autosomal Dominant 12 0.101 yes

X-Linked Recessive 9 0.253 yes
X-Linked Dominant 16 0.025 no

Y-Linked o0 0 no

From this distribution, we can see that Autosomal Recessive, X-Linked Recessive and Autosomal
Dominant are models that fail to reject the null hypothesis. However, Autosomal Recessive has a much
higher confidence when applied to this pedigree. Autosomal Dominant and X-Linked Recessive should, in
theory, be impossible. An affected female (III-2) cannot be born from an unaffected male (II-1) and
unaffected female (II-2), as the female will always get a working allele from their father. Likewise, two
unaffected parents (II-1, III-2) should not be able to produce an affected individual (III-1) under an
Autosomal Dominant scheme. However, this model accounts for error in results. Since this system is not
meant to give a binary answer to inheritance systems, some inheritance systems may remain probable but
extremely unlikely. Our rejection of the X-Linked Dominant inheritance scheme matches what the pedigree
shows us. It is impossible for an affected female (III-1) to be born from an unaffected father (II-1).
Additionally, Y-linked traits cannot be expressed by females, yet affected females are present in this
pedigree. Therefore, this pedigree does not follow Y-Linked inheritance. My chi-squared test confirms this.

Another reason why impossible systems are still included is due to the small sample size. If we were to have
more individuals, then our system will deduce with more certainty if a model fits. [5]
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Example 2 (Y-Linked, Chance of Autosomal):

Now, I will use a simpler example to prove that this method is accurate. Assume we know nothing but the
phenotypes.

[] O

I:.1 1.2

II:1 I1:2 II:3

7111

Autosomal Recessive Bias:

= ®

I:1 1:2

@ +1] 405 0.9

II:1 II:2 II:3

o]

7 11

Expected Bias from I Parents to II children: 152 = 0.5
Bias from II children (II-2, II-3): (1-0.5) + (0-0.5) =0
Expected Bias from II Parents to III children: % =0.5
Bias from III children (III-1): (0-1.5) = -0.5

Total Bias from all levels: [0] + | — 0.5] = 0.5

Final Variance: 0.5 * 1.5 = 0.75
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Autosomal Dominant Bias:

@ +1]+05 ©.9

II:1 11:2 11:3

711

Expected Bias from I Parents to II children: % =0.5
Bias from IT children (II-2, 1I-3): (1-0.5) + (0-0.5) = 0
Expected Bias from IT Parents to III children: % =0.5
Bias from IIT children (I1I-1): (1-0.5) = -0.5

Total Bias from all levels: [0] + | — 0.75] = 0.75

Final Variance: 0.5 * 1.5 = 0.75

X-Linked Recessive Bias:

0 ®

I:1 1:2

@ +1]1 0

II:1 II:2 II:3

7 11

Expected Bias from I Parents to II children: "= 0, ¢= 0%1 =0.5
Bias from II children (II-2, II-3): (1-0) + (0-0) =1

Expected Bias from IT Parents to III children: o= 0, 9= % =0.5
Bias from IIT children (ITI-1): (1-0) = 1

Total Bias from all levels: |1] + |1] = 2

Final Variance: 2 * 1.5 = 3

10
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X-Linked Dominant Bias:

= ®

I:1 1:2

0, 2] 0

II:1 11:2 11:3

711

Expected Bias from I Parents to II children: 0= 0, 9= % =1
Bias from IT children (II-2, II-3): (2-0)*1.5 + (0-1) = 3

Expected Bias from II Parents to III children: = 0, 9= % =1
Bias from III children (ITI-1): (2-0)*1.5 + (0-1) = 3

Total Bias from all levels: |3| + |3| = 6

Final Variance: 6 * 1.5 =9

Y-Linked Bias:

(] ©

I:1 1:2

® E

II:1 II:2 II:3

7 11

Expected Bias from I Parents to II children: o= 2, =0
Bias from II children (II-2, I1-3): (2-2) + (0-0) =0
Expected Bias from II Parents to III children: o= 2, 9= 0
Bias from IIT children (ITI-1): (2-2) = 0

Total Bias from all levels: |0] + |0] = 0

Final Variance: 0 * 1.5 = 0

After our calculations, we have the corresponding values for Autosomal Recessive, Autosomal Dominant,
X-Linked Recessive, X-Linked Dominant, and Y-Linked: 6, 1.5, 12, 6, 0. Now, apply these values to a
Chi-Square Distribution. Since we examined 3 individuals, (II-2, 1I-3 and III-T), our degree of freedom is
3-1=2.

11
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Inheritance Pattern | X? Value | p-value | Probable?
Autosomal Recessive 0.75 0.687 yes
Autosomal Dominant 0.75 0.687 yes

X-Linked Recessive 3 0.223 yes
X-Linked Dominant 9 0.011 no

Y-Linked 0 1 yes

Our results say Y-Linked, Autosomal Dominant, Autosomal Recessive and X-Linked Recessive inheritance
systems are probable, with Y-Linked and Autosomal systems being much more likely. This pedigree is very
ambiguous, as I have provided no information about heterozygosity. Though it may seem counter-intuitive,
I did an ambiguous example to illustrate a point. When we generate models for this system, the
self-correcting property allowed us to generate accurate models for Autosomal Systems in addition to the
Y-Linked system. By allowing our algorithm to strategically assign heterozygotes, we were able to
maximize the probability that a model might fit. For an unknown pedigree, this property is very important
for generating a “Best Fit” model.

However, Y-Linked is more probable because the Autosomal and X-Linked systems depend on chance to
achieve the pedigree above. For example, in the Autosomal Dominant inheritance scheme, it is possible for
I-1 to pass it’s dominant allele to I1-2, then II-2 to pass that dominant allele to III-1. However, this is much
less likely since there is a chance that the male may inherit the unaffected allele from their mother. Since
this must happen twice (I generation and II generation), those inheritance systems are less likely.

Example 3 (X-Linked Recessive):

Finally, I will use a complicated example utilizing the history of Hemophilia in the royal family[6]. The
data I am using is pulled from Hugo Iltis’ paper, “Hemophilia, ‘The Royal Disease’. This data is
inherently flawed. However, I seek to show that my model is still finds the best fit.

Mg © s

L L, L

—0
Fomamcr x| Worsmn hucs | et TX Lioggpo e Fomar
e | e i Hesex O Huncur Maw  MBNY e 8 sy
B Heromeuc Mas
’. O Himauy wores
@ CrERitR Worian®
4 S [T
- ] Wciemn [ E.= Y [T NEP Crn, [ J=5 )
r;. E :__m &H::_ c-..-tn Py QE-"F I:l-llg!
! i Ttereny
CLARSWITCH Los> TREMUTON Bo  Ganss
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Let:

a be Autosomal Recessive

8 be X-Linked Recessive

v be Autosomal Dominant

6 be X-Linked Dominant

€ be Y-Linked

A to be § — ¢y, the difference between expected and observed for an individual.
Best for Individual - Smallest variance for individual.

Best So Far - Smallest total variance up to the individual.

Individual | Aa | A | Ay | Aé | Ae | Best for Individual | Best So Far
I1/12
11-2 0 0 1 1 0 a& g a&
I1-3 0 3 1 3 0 a & e @
1I-4 -1 -1 -1 | -1 | oo a& B&y&S a &y
11-6 -1 0 -1 0 | -3 B&§ 07
11-8 -1 -1 | -1 | -1 | o a& B&v&S 8 & v
I11/112
I11-1 0.5 1 0 0 0 v& 6 & € vy
115 /114
-2 0 0 | 1 | 1o a&p B &~
111-3 -1 0 -1 0 -3 B & o ¥
-4 I [ 1] 1 |o0] akB&y&s ~
111-6 0 0 1 1 0 a& p&y&d B &~
116,117
111-8 -1 -1 -1 ] -1 | o© a& p&vy&d B &~
119/118
I11I-10 -1 0 -1 0 -3 B & o I}
I1I-11 -1 0 -1 -3 B &d 8
I11-12 0 0 1 1 o0 a& 8
I111 /1112
V-1 -2.25 | -1 -3 -3 | -3 B I}
Iv-2 225 | -1 | -3 | -3 | -3 B B
1117 /1116
Iv-3 225 | -1 | -3 | -3 | -3 Ié] B
IT19/1118
V-4 1 0 | -1|-1]o0 3 3
1113 /11112
V-5 -2.25 | -1 -3 -3 | -3 B8 8
IV-6 225 | -1 | -3 | -3 | -3 Ié] B
Sum 18.75 9 21 | 23 | o© 8

Degrees of Freedom = 20-1 = 19

S
Average Family Size = &5 = 2.22

Inheritance Pattern | X? Value | p-value | Probable?
Autosomal Recessive 41.625 0.002 no
X-Linked Recessive 19.98 0.396 yes
Autosomal Dominant 46.62 0 no
X-Linked Dominant 51.06 0 no
Y-Linked 00 0 no
13
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Analysis:

We can say with 39.6% certainty that this pedigree is X-Linked Recessive. Autosomal Recessive,
Autosomal Dominant, X-Linked Dominant, and Y-Linked are not probable.

From our “Best so Far” column, we can track how each inheritance system rates as we add more data.
Generation IT has many problems. Since the inhertiance for Hemophilia is X-Linked Recessive, a cross
between an affected female and unaffected male should produce all carrier females and all affected males.
However, we can already see this break down in generation II. For example II-4 or II-8 are affected females
which must have received two copies of the affected allele. [6] However, since the father is unaffected, he
cannot possibly pass a affected allele to his daughters. Therefore, Autosomal Dominant becomes more
probable for a brief moment. If the system were Autosomal Dominant, the mother has a chance of passing
the affected allele to her daughters, causing them to be affected.

However, as we continue to add more data, it is clear that X-Linked Recessive is more accurate. Generation
II does not seem to be X-Linked Recessive, and as such, Autosomal Dominant garnered the least variance.
Though most of Generation II is ambiguous, the later generations favor X-Linked Recessive heavily. For
example, the family produced from II-9 and II-9 fits X-Linked Recessive inheritance perfectly. This is
reflected in our scoring matrix, as X-Linked Recessive is the only system to score zero variance for this
family (III-10, I1I-11, ITI-12). Additionally, we can see that this algorithm was able to correctly identify
generation IV to be X-Linked Recessive. The X-Linked Recessive system scored less variance than all other
systems for Generation IV, therefore X-Linked Recessive is the most accurate system for Generation IV.
This can be confirmed by a manual analysis. Many of the affected males in Generation IV have a carrier
mother and an unaffected father (ITI-1/III-2, I11-6/111-7, I11-12/I11-13). This does not fit Dominant
inheritance schemes, as both parents are unaffected. An affected child cannot have two unaffected parents.
These results also do not fit Autosomal Recessive inheritance. A carrier mother and unaffected father
should always produce unaffected progeny, as the child will always inherit a working allele. Finally, the
affected sons in Generation IV could not inherit an affected allele from an unaffected father, so Y-Linked is
also inaccurate.

I have compiled and attached two matrices that represent expected and observed biases.

Discussion

Benefits

As a numerical system, this implementation offers many of the same benefits that others of the same
category do. For example, finding the probability for individuals to be affected can be made much quicker
than a standard pedigree because the calculation only need the biases of the parents, and, if self-correcting
is needed, the biases of the siblings. This drastically improves running time in large pedigrees. For example,
let us have a pedigree of depth D with N individuals in the last generation. Let search refer to finding the
chance of an individual being affected, and insert be the probability of an individual having an affected
child (genotype of mate is known).

Run time Costs:

Worst Case Search

Best Case Search

Worst Case Insert

Best Case Insert

Standard Pedigree

0(D)

0()

0(D)

0()

Improved Pedigree

o)

o)

o)

0(1)

This improved system also considers information that is not present but can be inferred. For example,
suppose we have an Autosomal Recessive disease, with one grandparent who is affected and one who is not.
Suppose that we know the mother of an individual is an outsider who mates with a son of the grandparents.
However, we have no information about the father or others in his generation. Under this system, we would
still know that the father is definitely a carrier, as his bias will be 0. Though this example may seem trivial,
consider the case where we do not know generation 4 of a 16 generation pedigree. This implementation will
still track the contribution of generation 4 to their descendants, which is incredibly useful.
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Finally, this model allows us to calculate the probability that certain inheritance systems are present. This
model is flexible, and allows us to know if there is a possibility of multiple inheritance systems instead of
trying to pick one. It also accounts for ambiguity in heterozygotes and factors this into its calculations for
inheritance systems. Accounting for ambiguity is incredibly useful if we are only given phenotypic data.

Limitations
As I developed these algorithms theoretically, they have many foreseeable limitations.

First and foremost are the assumptions I make. There is no guarantee that outsiders will be what I assume
them to be (Unaffected are Homozygous Dominant in Autosomal Recessive scheme, Affected are
Heterozygous in Autosomal Dominant scheme, etc...). Every time that the assumption is wrong, the
algorithm must back track and rectify the mistake (Self-Correcting property). Secondly, there is no
distinction between having two Heterozygotes as parents versus a Homozygous Dominant and Homozygous
Recessive. Though the allelic frequencies are equal, the two sets of parents have different effects.If a disease
is Autosomal Recessive, and two carriers have a child, there is a 25% chance the child being affected. If a
Homozygous Dominant and Homozygous Recessive couple have a child, it will always be unaffected. My
system does not account for this. Additionally, my models do not account for Non-Mendelian traits, nor
traits that are linked to other traits. Using these models to determine inheritance is also inefficient. I have
not implemented a threshold to stop tracking inheritance systems, but that is a possible improvement. For
example, if an affected female is present in our pedigree, Y-Linked inheritance will be ruled out and we will
no longer keep track of that inheritance scheme.
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