Probability that P-value Provides Misleading Evidence Cannot be Controlled by Sample Size

Marian Grendár* and George Judge**

Abstract
A measure of statistical evidence should permit sample size determination so that the probability M of obtaining (strong) misleading evidence can be held as low as desired. On this desideratum the p-value fails completely, as it leads either to an arbitrary sample size if $M \geq 0.01$ or no sample size at all, if $M < 0.01$.

Introduction
The p-value measures evidence that the data provides against a hypothesis. There are several arguments demonstrating that the p-value is not a good measure of evidence. The p-value is not coherent (cf. (Baird, 1983), (Baird, 1984), (Schervish, 1996), (Royall, 1997)), neither is it consistent (cf. (A. W. F. Edwards, 1992), (Royall, 1997), (Grendár, 2012)), and the α-postulate (cf. (Cornfield, 1966)) upon which its use rests, is uncertain to hold true (cf. (Cornfield, 1966), (Royall, 1986)). Moreover, the p-value depends on a stopping rule; cf. (W. Edwards, Lindman, & Savage, 1963), (Royall, 1997).

A measure of evidence is consistent, if it is asymptotically impossible to obtain evidence that is strongly against H, if H is true. Motivated by (Royall, 2000), we restate the desideratum in a form which could be more appealing to applied statisticians: A measure of statistical evidence should permit sample size determination so that the probability M of obtaining misleading evidence can be held as low as desired.

*Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia. Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.

**Graduate School, University of California, Berkeley, the USA.
There are three main measures of statistical evidence in use: the p-value, the Bayes Factor (BF) and the Ratio of Likelihoods (RL). Both BF and RL satisfy the desideratum. The p-value fails it.

Evidential sample size determination: Ratio of Likelihoods, Bayes Factor

The Ratio of Likelihoods (RL) measures evidence, or support, that data provide for a one point hypothesis relative to another one point hypothesis; cf. (Barnard, 1949; Hacking, 1965; A. W. F. Edwards, 1992; Royall, 1997). RL is coherent, consistent and an analogue of the α-postulate for RL does not contradict common sense. Recently, the Generalized Ratio of Likelihoods was proposed for the evidential ranking of interval hypotheses (cf. (Bickel, 2012), (Zhang, 2009)).

For a few basic models, the formulas for the evidential sample size determination in the RL framework has been developed* by (Strug, Rohde, & Corey, 2012); see also (Li, 2016).

Besides the data, bayesians consider also the prior information as the evidence and commonly measure support for a hypothesis relative to another hypothesis by the Bayes Factor (BF); cf. (Jeffreys, 1935; Kass & Raftery, 1995). BF, though consistent, is not a coherent measure of evidence; cf. (Lavine & Schervish, 1999).

For a simple models, a bayesian evidential sample size determination in the Bayes Factor framework was considered by (Katsis & Toman, 1999), (De Santis, 2004), among others.

Evidential sample size determination: P-value

There seems to be no work addressing evidential sample size determination, in the p-value framework. Let us fill the gap.

A researcher plans an experiment in order to assess a hypothesis H. She intends to use the p-value to measure evidence the data provides against H. Before performing the experiment, the researcher wants to ensure that the number of observations will be sufficient to guarantee that the probability of obtaining strong misleading evidence is at most $k \in (0, 1)$. According to the commonly used calibration, evidence against H is considered very strong if the p-value $p(X_1, \ldots, X_n)$ is smaller than 0.01 (cf. (Wasserman, 2013)).

*And contrasted with the Neyman-Pearsonian sample size determination for decision making.
Thus, the researcher wants to determine the size n of the sample X_1, \ldots, X_n, so that the probability

$$M \triangleq \Pr(p(X_1, \ldots, X_n) \leq 0.01; H),$$

that the p-value provides strong misleading evidence against H when H is true, is at most k.

Since the p-value is uniformly distributed under H, the probability M is 0.01, regardless of the sample size. Thus, if $k \geq 0.01$, the probability of obtaining misleading evidence is smaller than k for any sample size. One observation can do it; or ten thousands, as you wish. If $k < 0.01$, then however large the sample size it would not make the probability M smaller than k.

Consequently, the probability that the p-value provides misleading evidence cannot be controlled by sample size.

If the researcher desires to control the probability of obtaining weak evidence against H, i.e. $\Pr(p(X_1, \ldots, X_n) \in [0.05, 0.1]; H)$, she would end up in the same void.

Conclusion

The recent ASA statement (Wasserstein & Lazar, 2016) stresses that the p-value ‘does not provide a good measure of evidence regarding a model or hypothesis’. Among other flaws, the p-value does not permit setting sample size in such a way that the probability of obtaining misleading (or weak) evidence, can be as low as desired.

Acknowledgments

This work was supported by the project “Biomedical Center Martin” ITMS code: 26220220187, the project is co-financed from EU sources. Also supported by VEGA 2/0047/15 grant. Valuable feedback from Ján Strnádel is gratefully acknowledged.

References

