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Abstract

A measure of statistical evidence should permit sample size deter-
mination so that the probability M of obtaining (strong) misleading
evidence can be held as low as desired. On this desideratum the p-
value fails completely, as it leads either to an arbitrary sample size if
M > 0.01 or no sample size at all, if M < 0.01.

Introduction

The p-value measures evidence that the data provides against a hypothe-
sis. There are several arguments demonstrating that the p-value is not a
good measure of evidence. The p-value is not coherent (cf. (Baird, 1983),
(Baird, 1984), (Schervish, 1996), (Royall, 1997)), neither is it consistent
(cf. (A. W. F. Edwards, 1992), (Royall, 1997), (Grendar, 2012)), and the
a-postulate (cf. (Cornfield, 1966)) upon which its use rests, is uncertain
to hold true (cf. (Cornfield, 1966), (Royall, 1986)). Moreover, the p-value
depends on a stopping rule; cf. (W. Edwards, Lindman, & Savage, 1963),
(Royall, 1997).

A measure of evidence is consistent, if it is asymptotically impossible to
obtain evidence that is strongly against H, if H is true. Motivated by (Royall,
2000), we restate the desideratum in a form which could be more appealing to
applied statisticians: A measure of statistical evidence should permit sample
size determination so that the probability M of obtaining misleading evidence
can be held as low as desired.
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There are three main measures of statistical evidence in use: the p-value,
the Bayes Factor (BF) and the Ratio of Likelihoods (RL). Both BF and RL
satisfy the desideratum. The p-value fails it.

Evidential sample size determination: Ratio of
Likelihoods, Bayes Factor

The Ratio of Likelihoods (RL) measures evidence, or support, that data
provide for a one point hypothesis relative to another one point hypothesis;
cf. (Barnard, 1949; Hacking, 1965; A. W. F. Edwards, 1992; Royall, 1997).
RL is coherent, consistent and an analogue of the a-postulate for RL does
not contradict common sense. Recently, the Generalized Ratio of Likelihoods
was proposed for the evidential ranking of interval hypotheses (cf. (Bickel,
2012), (Zhang, 2009)).

For a few basic models, the formulas for the evidential sample size de-
termination in the RL framework has been developed* by (Strug, Rohde, &
Corey, 2012); see also (Li, 2016).

Besides the data, bayesians consider also the prior information as the evi-
dence and commonly measure support for a hypothesis relative to another hy-
pothesis by the Bayes Factor (BF); cf. (Jeffreys, 1935; Kass & Raftery, 1995).
BF, though consistent, is not a coherent measure of evidence; cf. (Lavine &
Schervish, 1999).

For a simple models, a bayesian evidential sample size determination in
the Bayes Factor framework was considered by (Katsis & Toman, 1999),
(De Santis, 2004), among others.

Evidential sample size determination: P-value

There seems to be no work addressing evidential sample size determination,
in the p-value framework. Let us fill the gap.

A researcher plans an experiment in order to assess a hypothesis H. She
intends to use the p-value to measure evidence the data provides against H.
Before performing the experiment, the researcher wants to ensure that the
number of observations will be sufficient to guarantee that the probability
of obtaining strong misleading evidence is at most k € (0,1). According to
the commonly used calibration, evidence against H is considered very strong
if the p-value p(X7,...,X,) is smaller than 0.01 (cf. (Wasserman, 2013)).

*And contrasted with the Neyman-Pearsonian sample size determination for decision
making.
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Thus, the researcher wants to determine the size n of the sample X, ..., X,
so that the probability

M = Pr(p(Xy,...,X,) <0.01; H),

that the p-value provides strong misleading evidence against H when H is
true, is at most k.

Since the p-value is uniformly distributed under H, the probability M
is 0.01, regardless of the sample size. Thus, if & > 0.01, the probability of
obtaining misleading evidence is smaller than k& for any sample size. One
observation can do it; or ten thousands, as you wish. If & < 0.01, then
however large the sample size it would not make the probability M smaller
than k.

Consequently, the probability that the p-value provides misleading evi-
dence cannot be controlled by sample size.

If the researcher desires to control the probability of obtaining weak ev-
idence against H, i.e. Pr(p(Xy,...,X,) € [0.05,0.1]; H), she would end up
in the same void.

Conclusion

The recent ASA statement (Wasserstein & Lazar, 2016) stresses that the
p-value ’does not provide a good measure of evidence regarding a model or
hypothesis’. Among other flaws, the p-value does not permit setting sample
size in such a way that the probability of obtaining misleading (or weak)
evidence, can be as low as desired.
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