
Modeling Covalent-Modifier Drugs

Ernest Awoonor-Williams, Andrew G. Walsh, and Christopher N. Rowley

Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada

Abstract

In this review, we present a summary of how computer modeling has been
used in the development of covalent modifier drugs. Covalent modifier drugs
bind by forming a chemical bond with their target. This covalent binding
can improve the selectivity of the drug for a target with complementary re-
activity and result in increased binding affinities due to the strength of the
covalent bond formed. In some cases, this results in irreversible inhibition
of the target, but some targeted covalent inhibitor (TCI) drugs bind cova-
lently but reversibly. Computer modeling is widely used in drug discovery,
but different computational methods must be used to model covalent mod-
ifiers because of the chemical bonds formed. Structural and bioinformatic
analysis has identified sites of modification that could yield selectivity for a
chosen target. Docking methods, which are used to rank binding poses of
large sets of inhibitors, have been augmented to support the formation of
protein–ligand bonds and are now capable of predicting the binding pose of
covalent modifiers accurately. The pKa’s of amino acids can be calculated
in order to assess their reactivity towards electrophiles. QM/MM methods
have been used to model the reaction mechanisms of covalent modification.
The continued development of these tools will allow computation to aid in
the development of new covalent modifier drugs.

Keywords: review, covalent modifiers, irreversible inhibition, computer
modeling, docking, QM/MM, bioinformatics, pKa, cysteine, Michael
addition, kinase

1. Introduction1

The general mechanism for the inhibition of an enzyme or receptor by2

a small molecule drug is for the drug to bind to the protein, attenuating3
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its activity. The canonical mode by which a drug will bind to its target is4

through non-covalent interactions, such as hydrogen bonding, dipole–dipole5

interactions, and London dispersion interactions. Kollman and coworkers6

estimated that small molecules that bind to proteins through non-covalent7

interactions have a maximum binding affinity of 6.3 kJ/mol per non-hydrogen8

atom [1], so these binding energies are generally sufficiently weak for the9

binding to be reversible. This establishes a measurable equilibrium between10

the bound and unbound states.11

A sizable class of drugs bind to their targets by an additional mode; a co-12

valent bond is formed between the ligand and its target. These drugs contain13

a moiety that can undergo a chemical reaction with an amino acid side chain14

of the target protein, covalently modifying the protein. Dissociating this co-15

valent modifier from the target requires these protein–ligand bonds to be bro-16

ken. In the cases where the dissociation is strongly exergonic, the equilibrium17

will lie so far towards the bound state that the inhibition is effectively irre-18

versible. Some covalent protein–ligand reactions are only weakly exergonic,19

so covalent modification can be reversible in some instances [2]. These ligands20

also interact with the protein through conventional non-covalent intermolec-21

ular forces, so the total binding energy in the covalently-bound state results22

from both covalent and non-covalent interactions. Refs. [3, 4, 5, 6, 7, 8] are23

recent reviews on covalent-modifier drugs.24

The covalent modification of proteins can involve many types of chemical25

motifs in the inhibitor and involve a variety of amino acids. Catalytic residues26

in the active site often have depressed pKa’s, so they are more likely to27

occupy the deprotonated state that is reactive towards electrophiles. Serine28

residues that serve as a Brønsted acid in an enzymatic catalytic cycle have29

been a popular target. Two of the most famous covalent modifier drugs30

(Figure 1) act by acylating this type of active-site serine residue; aspirin31

targets Ser530 of cyclooxygenase and penicillin targets DD-transpeptidase.32

Catalytic serines, threonine, and cysteine residues have all been targeted by33

covalent modifiers [9].34

In recent years, there have been extensive efforts to develop covalent35

modifier drugs that undergo reactions with the thiol group of non-catalytic36

cysteine residues. Cysteines are relatively rare amino acids, comprising only37

2.3% of the residues in the human proteome [10]. This limits the number of38

off-target reactions that are possible. These non-catalytic residues are less39

likely to be conserved within a family of proteins, which creates opportunities40

to select for a specific target in a large family of proteins. Although this type41
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Figure 1: Aspirin and penicillin are early examples of covalent modifier drugs. These
drugs bind to their target by acetylating a catalytic serine residue. The reactive moiety is
drawn in red.

of covalent modification does not inactivate the catalytic residues directly, the42

covalent linker serves to anchor the drug binding site and achieve a stronger43

binding affinity. Large-scale screens have shown that reactive fragments have44

unexpectedly high specificity for individual proteins, suggesting that covalent45

modifiers have a lower risk of promiscuity than had been assumed [11, 12, 13].46

These advantages must be balanced against the drawbacks associated47

with covalent protein–ligand binding. Covalent protein–ligand adducts are48

believed to trigger immune responses in some cases [14]. Further, the in-49

hibitor must be carefully tuned so that it will only bind irreversibly to its50

target because irreversible inhibition of an off-target receptor could result51

in adverse drug reactions. The chemical reactivity of the warhead also cre-52

ates the potential that the inhibitor will be chemically degraded in an inac-53

tive form through metabolism or other types of chemical reactions before it54

reaches the target. This constrains the reactivity of the warhead.55

To develop drugs of practical use that have the advantages of covalent56

modification but avoid the disadvantages, researchers have developed tar-57

geted covalent inhibitors (TCIs). Typically, these compounds have a non-58

covalently binding framework that is highly selective for the target. For ex-59

ample, covalent modifier ibrutinib (Figure 2) shares the diaminopyrimidine60

scaffold that has been successfully employed in the development of Bruton’s61

tyrosine kinase-selective non-covalent inhibitors. The reactive warhead is62

an acrylamide, which is a moderately-reactive electrophile. Thio-Michael63
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additions are generally only weakly exergonic, so these additions are often64

reversible [15]. This allows the inhibitor to dissociate if it reacts with a thiol65

of a protein other than its target. High selectivity is achieved by the com-66

bination of selective non-covalent interactions and the additional strength of67

the covalent interaction between the warhead and a complementary reactive68

amino acid.69

O
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Figure 2: Ibrutinib is an example of a targeted covalent inhibitor. The reactive acrylamide
warhead is indicated in red.

1.1. Physical Parameters of Covalent Modification70

The strength of the binding of a non-covalent inhibitor to its target can be71

quantified by the equilibrium constant, KI , for the association of the ligand72

(inhibitor, I) and its target (enzyme, E) to form a protein–ligand complex73

(E·I). This association can also be defined in terms of the Gibbs energy of74

binding through the relation ∆Gnon−covalent = −RT lnKIC
◦, where C◦ is the75

standard state concentration [16]. The binding of a covalent modifier involves76

additional steps. The protein–ligand complex (E·I) undergoes reaction to77

form the covalent adduct (I–E). The rate of this process is characterized by78

its rate constant, kinact.. In some cases, this reaction is reversible and the79

covalent adduct can revert to the non-covalent protein–ligand complex with80

the rate constant k−inact.. If the reaction is strongly exergonic, kinact. will81

be much larger than k−inact., so the binding will effectively be irreversible.82

The total binding energy of the ligand results from both the covalent and83

non-covalent protein–ligand interactions (∆Gnon−covalent).84

The rate at which an inhibitor reacts with the target (kinact.) can be85

calculated using transition state theory. Conventional transition state theory86

is the simplest and most widely used theory, which relates the rate of reaction87
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to the Gibbs energy profile along the reaction coordinate1. Using transition88

state theory, the rate of reaction can be calculated by the Gibbs energy of89

activation (∆G‡ of the rate limiting step [18]),90

kTST =
kBT

h
exp

(
−∆G‡

kBT

)
. (1)

The mechanism of covalent modification can be complex and involve mul-91

tiple reaction steps. For example, the mechanism of covalent modification of92

a cysteine by a Michael acceptor involves the deprotonation of the thiol to93

form a thiolate, formation of an enolate intermediate, and protonation of the94

enolate to form the thioether product (Figure 4). A comprehensive model for95

covalent modification would require calculation of ∆Gnon−covalent, ∆Gcovalent,96

as well as the rate-limiting barriers of the chemical reaction (∆G‡). The97

rates binding, unbinding, inactivation, and activation govern the drug resi-98

dence time, which has been proposed to be a better determinant of in vivo99

pharmacological activity than the binding affinity [19, 20, 21].100

1.2. Computer Modeling in Drug Discovery101

Computer modeling is used extensively in the pharmaceutical industry102

to aid in the development of new drugs. The membrane permeability of103

a drug can be estimated by empirical computational methods or molecular104

simulation [22, 23, 24]. Docking algorithms are used to rapidly screen large105

databases of compounds for their ability to bind a protein or nucleic acid106

that is targeted for inhibition [25, 26, 27]. Other methods, such as free en-107

ergy perturbation (FEP), are used to calculate the binding affinities of a drug108

to a protein (∆Gnon−covalent) [28, 29, 30, 31]. These methods are generally109

based on molecular mechanical force fields or other simplified representations110

of the protein and ligand, which typically only describe the intermolecular111

component of protein–ligand binding. Covalent modification inherently in-112

volves the making and breaking of chemical bonds, so these methods must be113

1A discussion of the limitations of this model in enzymatic reactions is available in Ref.
17.
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Figure 3: Schematic binding profile for the formation of a covalent protein–ligand complex.
In this example, afatinib binds non-covalently to the active site of EGFR (I·S), then
undergoes a chemical reaction with the thiol group of Cys-797 to form a covalent thioether
adduct (I–S).

adapted to describe this mode of binding. In this review, we present methods114

for modeling covalent-modifier drugs. Another recent review is available in115

Ref. [32].116

2. Structural Analysis117

The Protein Data Bank (PDB) now contains over 100,000 biological118

macromolecular structures [33]. These data have been invaluable for the119

development of covalent-modifier drugs. Cocrystals showing covalent bond120

formation between covalent-modifier drugs have helped confirm these drugs121

act as covalent modifiers and unambiguously indicate the site of modification.122

For example, Figure 5 shows the covalent binding of ibrutinib to Toxoplasma123

gondii calcium-dependent protein kinase 1 (TgCDPK1). The availability124
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Figure 4: The mechanism of the addition of an acrylamide warhead to a cysteine thiol.

of these structures has enabled structure-based design of covalent modifiers125

through docking and mechanistic modeling.126

This structural data is particularly valuable for designing drugs that are127

selective for one member of a family of structurally similar targets. The128

protein kinase family is a prototypical example of this. This family contains129

hundreds of members with a large degree of structural similarity in their130

kinase domains. Due to their roles in cell signaling and division, individ-131

ual members of this family are drug targets, but there is a significant risk132

of adverse drug reactions due to inhibition of other kinase proteins with a133

structurally-similar active-site [34]. Several kinase-targeting covalent modi-134

fiers have been developed, which have the potential for higher affinity and135

selectivity [35, 36]. Structural analysis of the available kinase structures has136

been essential for identifying poorly-conserved druggable residues within the137

active site of the target, which allows a covalent-modifier to be designed with138

a warhead in a complementary position.139

Cohen et al. reported an early structural study where a covalent-modifier140

drug was designed to selectively inhibit the RSK1 and RSK2 protein kinases141

[37]. Proteins in the kinase family have been selectively targeted by non-142

covalent inhibitors because a residue, known as the gatekeeper, can block143

binding of the ligand to a hydrophobic pocket in the active site. Inhibitors144

with a hydrophobic group that binds to this pocket will be selective for145
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Figure 5: Ibrutinib bound to TgCDPK1 (PDB ID: 4IFG). The acrylamide warhead has
undergone a Michael addition with the thiol group of Cys-797, forming a covalent thio-
ether adduct between the protein and the ligand. Non-covalent interactions also stabilize
the protein–ligand complex.

these kinases. The RSK1, RSK2, and Src kinase all have a small threonine146

gatekeeper, so they all bind inhibitors of this class with similar affinity. A147

non-conserved cysteine is present in the glycine-rich loop on the N-terminal148

lobe adjacent to the binding site in RSK1 and RSK2, which is absent in149

Src. A pyrrolopyrimidine ligand with a fluoromethylketone warhead was150

synthesized, where the non-covalent interactions are optimal for a threonine-151

gatekeeper binding site and the warhead is situated such that it will react152

with the loop cysteine residue of RSK1 and RSK2. This molecule was found153

to selectively inhibit RSK1 and RSK2 by covalent modification, but had a154

lower affinity for other Src kinase proteins that lacked a cysteine residue at155

the targeted position. This is illustrated by docked structures in Figure 6.156

Zhang et al. performed a more extensive bioinformatic analysis of the hu-157

man kinase family and found that approximately 200 members of the family158
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Figure 6: Docked structures of the pyrrolopyrimidine fluoromethylketone ligand (fmk) of
Cohen et al. [37] bound to RSK2 (red, PDB ID: 2QR8) and c-Src kinase (blue, PDB ID:
3F6X). Both proteins have a threonine in the gatekeeper position, limiting the selectivity
that can be achieved by existing non-covalent inhibitors. Fmk binds selectively to RSK2
by forming a covalent bond to with a non-conserved cysteine residue (Cys-436). A valine
residue (Val-281) holds this position in c-Src.

had a cysteine residue in the vicinity of the binding site [38]. These proteins159

were divided into 4 groups based on the general areas of the binding site160

where the cysteine is located. These residues are not highly conserved across161

the family, so covalent modification that targets one of these residues will be162

selective for a small subset of the kinase family.163

A structural analysis by Leproult et al. of the active sites of kinase pro-164

teins also showed that there was significant variation in the location of active165

site cysteine residues [39]. The available crystal structures of human kinases166

were grouped into three conformational classifications: active, inactive C-167

helix-out, and inactive DFG-out. This analysis showed that there is a large168

number of targetable cysteines in the kinase family, so the strategy of de-169

signing a targeted covalent inhibitor could have wide application for these170

drug targets. Non-covalent inhibitor imatinib binds to the DFG-out confor-171

mation of ABL1, KIT, and PDGFRα kinases, but has the highest affinity172

for KIT kinase. The authors synthesized variants of imatinib with different173

electrophilic warheads. These inhibitors had a lower affinity for ABL1, but174

had a higher affinity for KIT and PDGFRα. The new inhibitors were shown175

to bind non-covalently to these proteins.176
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These structural studies of the kinase family highlight the potential of177

TCIs. The catalytic-domain binding sites of the human protein kinase fam-178

ily has limited structural variation, so it is difficult to design a selective179

inhibitor. Targeted covalent modifiers can be designed by adding an elec-180

trophilic warhead to existing non-covalent drug scaffolds. This warhead can181

only form a covalent linkage with a cysteine residue at a complementary po-182

sition. Only a small number of proteins in the kinase family have a cysteine183

residue at this position, so binding to this site by a covalent addition is selec-184

tive for a small number of kinases. This design principle may also be effective185

to achieve selectivity for a target in a family of similar proteins.186

Wu et al. generalized this type of analysis by constructing a web-based187

database of known covalently-bound structures collected from structural and188

literature databases[40]. At the time of its public release, the database con-189

tained 462 protein structures and 1217 inhibitors. This searchable database190

hyperlinks to entries in the PDB for the protein–ligand complex and to chem-191

ical database entries (e.g., UniPROT) of the ligands. For each druggable192

cysteine, the solvent-accessible surface area (SASA) and conservation within193

its family are also reported. The calculated pKa of the residue is also re-194

ported, although these calculations were performed using the PROPKA3.1195

package, which has poor accuracy for cysteine residues [41]. The database is196

accessible through the URL: http://www.cysteinome.org/.197

Most recently, Bourne and coworkers applied the functional-site inter-198

action fingerprint (Fs-IFP) method to classify the binding modes of known199

kinase inhibitors. The Fs-IFP method analyzes the crystallographic structure200

of a protein–ligand complex into a bit-string, allowing diverse protein–ligand201

complexes to be classified systematically [42]. The researchers analyzed 2774202

structures of protein–ligand complexes of kinases [43]. 1599 structures were203

found to have one or more cysteine residues in the binding site, which cor-204

responded to 169 different kinases that could, in principle, be targeted by205

a covalent modifier. 17 cysteine residues were found to be in close contact206

with an inhibitor in the published structures. Based on this analysis, cys-207

teine residues on the P-loop, catalytic group, DFG loop, roof, and front of208

the kinase binding sites were identified as being accessible for covalent modi-209

fication. Conversely, cysteine residues on the hinge region were concluded to210

have a poor orientation or to be too inaccessible to be suitable targets.211
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3. Docking Algorithms212

There are many established codes that can screen databases of small213

molecules for the ability to bind to a protein. For large numbers of com-214

pounds to be screened in a tractable period of time, these methods use highly215

efficient algorithms to estimate if a molecule has the appropriate geometry to216

bind to the target site. These docking algorithms also assign “scores” to the217

various binding poses based on estimates of the intermolecular interactions218

in the bound state. To allow high throughput screens of a large databases of219

compounds, these models are generally highly simplified, so the calculated220

interaction scores serve to rank the poses approximately and are not rigorous221

Gibbs energies of binding.222

Conventional docking methods were developed to describe non-covalent223

protein–ligand interactions, so the stabilization that occurs through the cova-224

lent bond formation is not included by these algorithms. Moreover, covalent225

linkage places the ligand at a short distance from the covalently-modified226

residue, which is strongly disfavored by the standard steric repulsion terms227

in non-covalent docking algorithms. The covalent linkage also imposes addi-228

tional constraints on the pose due to the geometry of warhead-residue bond.229

To address these issues, new methods have been developed to model the230

covalent docking of a ligand with the protein (Table 1).231

Table 1: Algorithms for predicting covalent-binding poses and the programs they are
implemented in.

Algorithm Program Reference
MacDOCK DOCK/MIMIC 44
FITTED FORECASTER 45
DOCKovalent DOCK Blaster (web) 46
CovDock Glide/Prime 47
CovDock-VS Glide 48
Two-point attractor / flexible side chain AutoDock 49
DOCKTITE MOE 50

Support for covalent docking has been implemented into the FITTED232

modeling suite [51, 52, 45]. Compounds containing appropriate reactive war-233

heads are identified from the ligand database. Poses where the warhead is234

in close proximity to a reactive amino acid are automatically identified and235

used to construct a covalently-bound adduct. This approach uniquely allows236
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both covalent and non-covalent binding models to be identified simultane-237

ously and automatically. The binding poses are ranked by the RankScore238

and MatchScore algorithms. This methodology was used to identify novel239

covalent inhibitors of prolyl oligopeptidase that exhibited high selectivity240

and affinity to Ser554 [53, 54, 55].241

Del Rio et al. developed a computational workflow for evaluating the242

binding of a covalent modifier to a protein [56]. A database of kinase pro-243

teins with non-covalently-bound structures was constructed from the Protein244

Data Bank. From these structures, inhibitors bound near cysteine residues245

that had strong non-covalent binding energies were selected. These structures246

were used as scaffolds for the design of new inhibitors with electrophilic war-247

heads that bind near cysteine residues. The covalently-bound protein–ligand248

complexes for these compounds were constructed and simulated using molec-249

ular dynamics. Inhibitors which required a large distortion in the protein250

structure in order to form the covalent ligand were rejected.251

Ouyang et al. developed CovalentDock by modifying AutoDock5.2 [57].252

This method is distinct from some other codes because ligand–protein inter-253

action potential explicitly includes the energy of the covalent linkage. This254

linkage is described using a Morse potential, where the potential energy mini-255

mum forms a covalent bond but the bond can form or dissociate dynamically.256

This program is also available through a web-based interface, CovalentDock257

Cloud [58].258

London et al. developed the DOCKovalent docking algorithm for covalent259

docking using the web-based docking server DOCK Blaster [46]. This server260

uses a library of electrophile-containing ligands, including α, β-unsaturated261

carbonyls, aldehydes, boronic acids, cyanoacrylamides, alkyl halides, carba-262

mates, α-ketoamides, and epoxides. These ligands were modified to assume263

the geometry they will hold when covalently bound to the target. A set of264

likely rotamers is generated for each compound. To search for stable bind-265

ing poses, protein–ligand complexes are generated where the protein–ligand266

linkage is constrained to its ideal geometry. The DOCK3.6 scoring algorithm267

is used to rank the ligands. This method was successfully applied to a novel268

inhibitor of AmpC β-lactamase, where a covalent bond is formed between a269

boronic acid warhead and the catalytic serine residue. It was also effective at270

finding drugs capable of binding to kinase proteins RSK2, MSK1, and JAK3271

through reaction of ligands containing a cyanoacrylamide warhead with non-272

catalytic cysteine residues in or near the active site (Cys436 in RSK2, Cys440273

in MSK1, and Cys909 in JAK3).274
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Bianoco et al. recently implemented two covalent docking algorithms275

into AutoDock4, a widely-used docking program [59]. The first algorithm is276

the two-point attractor method, where an artificial potential is defined that277

favors overlap between two artificial sites attached to the warhead of covalent278

modifiers to the Cβ–O sites of a target serine or the Cβ–S sites of a target279

cysteine. This allows the drug to move freely in the active site, while favoring280

conformations where the ligand is in a covalently-bound pose. The second281

algorithm treats the ligand as a flexible side chain of the protein. The flexible282

side chain method predicted the RMSD of bound poses in better agreement283

with the experimental structures than the two site model.284

N

HN

O

NCl

CN

O

HN

O

N

S

Cys797

Figure 7: Binding of neratinib (HKI-272) to EGFR modeled using CovalentDock. The
RMSD of the non-hydrogen atoms of the ligand are 2.14 Å with respect to the experimental
crystallographic structure (PDB ID: 2JIV). The experimental and predicted ligand poses
are colored in red and blue, respectively.

The Glide docking program developed by Schrödinger Inc. has also been285

modified to support modeling covalent binding ligands [47]. This algorithm286

mutates the target residue into an alanine residue and performs a conven-287

tional docking simulation to generate a library of hundreds of poses. These288

poses are filtered to select those where the warhead is within 5 Å of the289

target residue based on a rotamer library. Covalently-bound structures are290

generated from these bound poses. Further optimization and clustering is291

performed on these poses using the Prime refinement program [60, 61], which292

are ranked to yield a final optimal binding pose. Ligands can be screened293

by calculating an apparent affinity, which is estimated from the average of294

the scores for the covalently-bound and non-covalently-bound poses. On a295
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test set of 38 covalently-bound protein–ligand complexes, this method was296

able to predict the binding pose with an RMSD of 1.52 Å from the exper-297

imental crystallographic structure. An example of the predicted pose of a298

covalently-bound inhibitor using this method is presented in Figure 7.299

Warshaviak modified the CovDock workflow to enable fast structure-300

based virtual screening of covalent modifiers [48]. In the CovDock-VS work-301

flow, the target residue is also mutated into an alanine, but a restraint is302

imposed so that the warhead remains within 5 Å of the target residue during303

the conformational search. This restricts the initial search so that only poses304

where covalent bond formation is possible are identified. Covalently-bound305

structures are generated from these poses, energy-minimized, then clustered306

to identify unique poses. These poses are directly scored using the GlideScore307

algorithm, omitting the additional structural refinement stage in CovDock.308

This simplified workflow had a throughput that was 10–40 times faster than309

CovDock but the mean RMSD of predicted binding poses for the test set of310

21 structures only increased to 1.87 Å from the 1.52 Å RMSD of the original311

CovDock workflow.312

Ai et al. presented a technique steric-clashes alleviating receptor (SCAR)313

[62], where the covalently-binding residue is mutated into a sterically smaller314

residue, such as serine or glycine. This allows the ligand to dock in poses315

similar to the covalently-modified mode without experiencing a steric clash.316

These poses are ranked according to their non-covalent binding score. This317

procedure was evaluated by comparing the predicted pose to the experimen-318

tal crystallographic structures of covalently-inhibited AdoMetDC. This tech-319

nique predicted the binding pose with an RMSD of 3.0 Å, which is comparable320

to other covalent docking methods. In their complete workflow, the ensemble321

of docked poses was filtered to select those where the warhead was within 1 Å322

of the targeted residue. The mean RMSD of the top-ranked structures after323

imposing this constraint was reduced to 1.9 Å. This procedure was success-324

fully applied to discover novel covalent inhibitors of S-adenosylmethionine325

decarboxylase.326

Scholz et al. presented the implementation of DOCKTITE [50], a cova-327

lent docking method into the Molecular Operating Environment (MOE [63])328

modeling suite. This method searches a database of potential ligands for329

molecules possessing one of 21 electrophilic warhead motifs. The structure330

of the ligand is adjusted to reflect its structure when covalently-bound. Con-331

straints are imposed to force the ligand to occupy a geometry consistent with332

a covalent linkage and a conformational search is performed to identify the333
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low-energy poses of the ligand in the receptor. Of the 76 covalent-modifier334

test set developed by Oyang et al., the top-ranked pose predicted by DOCK-335

TITE was 2.4 Å, comparable to other covalent-docking methods. A recent336

application of DOCKTITE was reported by Schirmeister et al., who found337

that the relative affinities of covalently-binding dipeptide nitriles inhibitors338

of rhodesain were correctly predicted by the calculated affinity scores [64].339

These implementations have made the docking of covalent-modifiers drugs340

practical and accessible, although further development of these methods is341

still needed. Databases containing drugs with warheads must be developed342

and the codes must be able to identify the potential modes of modification.343

In some of these codes, the user is required to provide the site of covalent344

modification, so the screening performed by this code is not yet fully auto-345

matic. The energy associated with covalent bond formation (i.e., ∆Gcovalent)346

is not immediately available in conventional scoring algorithms, so the abso-347

lute strength of binding cannot be realistically estimated by these algorithms348

either.349

4. Calculation of the pKa’s of Targeted Residues350
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Figure 8: Deprotonation reactions involving cysteine, lysine, and serine. Covalent mod-
ification of these residues typically involves reaction in their deprotonated, nucleophilic
states.

15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2857v2 | CC BY 4.0 Open Access | rec: 12 May 2017, publ: 12 May 2017



Generally, the first step in the mechanism for covalent modification of351

cysteines, lysines, and serines is their deprotonation to yield their more reac-352

tive form (Figure 8). In the case of the modification of a cysteine residue by353

an electrophile, the thiol group of the amino acid side-chain must be deproto-354

nated to form the reactive thiolate nucleophile. The stability of the thiolate355

is thus a significant parameter for the inhibition of a target site by a drug356

molecule.357

The equilibrium between the thiol and thiolate states of a cysteine residue358

in a protein is defined by its pKa. Cysteines with low pKa’s are more likely359

to exist in their reactive thiolate state, so they will be more susceptible360

to covalent modification by electrophilic inhibitors. The standard pKa of a361

cysteine residue is 8.6 [65], but pKa’s of cysteines have been reported to range362

from 2.9 to 9.8. This broad range results from the intermolecular interactions363

that the thiol and thiolate states of the cysteine experience inside the protein.364

Catalytic cysteines in enzymes like cysteine proteases tend to have nearby365

cationic residues, like histidine or asparagine, which lowers their pKa’s by366

stabilizing the thiolate state of the cysteine [66]. Conversely, the thiolate367

state of the cysteine residue will experience repulsive interactions with nearby368

anionic residues, raising the pKa. Amino acids buried in hydrophobic pockets369

of the protein can also have elevated pKa’s because they do not experience370

stabilizing interactions with water molecules.371

Calculating the pKa of an amino acid side chain in a protein is a long-372

standing challenge in computational biophysics. Traditionally, the pKa of373

an amino acid side chain is estimated based on the relative stability of the374

charged and neutral states. Continuum electrostatic models were among the375

earliest methods used [67], although the approximations incorporated in their376

methodology limit their accuracy. Since this time, these models have been377

continually improved, and some methods that make use of an explicit solvent378

representation perform well for predicting the pKa’s of aspartic and glutamic379

acid residues [68, 69].380

The methods for the prediction of the pKa of cysteine residues are less381

established. In a recent paper, methods for calculating the pKa’s of cysteine382

residues in proteins were evaluated for a test set of 18 cysteine pKa’s in 12383

proteins [41]. Three methods that use an implicit solvent representation were384

tested, namely: PROPKA, H++, and MCCE. The root-mean-square devi-385

ation (RMSD) of the calculated pKa’s with respect to experimental values386

were large, with some methods having essentially no predictive power. H++387

was the most accurate of the three implicit methods, although the RMSD388
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was still 3.4. A method using an all-atom explicit-solvent model with replica389

exchange molecular dynamics thermodynamic integration (REMD-TI) was390

more accurate. When used with the CHARMM36 force field, this method was391

able to predict the pKa’s of cysteine residues in the test set with an RMSD392

of 2.4. Plots illustrating the correlation between predicted and experimental393

values for these two methods are presented in Figure 9.394
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Figure 9: Predictions of cysteine pKa’s using implicit-solvent H++ method and an explicit-
solvent replica-exchange molecular dynamics free energy calculation method using the
CHARMM force field. Adapted from Ref. [41].

Although REMD-TI gives reasonably accurate cysteine pKa’s, new meth-395

ods for calculating the pKa’s of cysteines will be needed to allow the reac-396

tivity of a cysteine residue to be predicted quantitatively. Improved force397

fields and the use of algorithms capable of describing variable protonation398

states of other residues within the protein may improve the accuracy of these399

methods. Additionally, experimental measurement of more cysteine pKa’s in400
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proteins will allow for a more thorough and comprehensive evaluation of ex-401

isting pKa methods. Of particular importance are the pKa’s of noncatalytic402

residues in protein active sites, which are typically the target of TCIs.403

5. Quantum Chemical Methodology404

The docking and free energy calculation methods described thus far rely405

on molecular mechanical methods to describe the protein and inhibitor. Typ-406

ically, these methods do not describe the interactions associated with chemi-407

cal bonding, so terms like ∆Gcovalent and ∆G‡ cannot be calculated by these408

methods. This has led researchers to employ quantum chemistry to model the409

mechanisms, kinetics, and structures involved in covalent modification. Den-410

sity functional theory (DFT) is widely used for modeling biological systems411

because of its ability to describe large chemical systems with quantitatively412

accurate energies and structures.413

Early models of electrophilic thiol additions were unable to identify the414

enolate/carbanion intermediates that occur in the canonical mechanism for415

a thiol-Michael addition. The failure of conventional DFT methods to de-416

scribe these reactions stems from an issue in contemporary DFT known as417

delocalization error [70, 71, 72, 73]. DFT calculates inter-electron repulsion418

in a way that erroneously includes repulsion between an electron and itself,419

which must be corrected for in an approximate way through the exchange-420

correlation functional. The result of this effect is a spurious delocalization of421

electrons to reduce their self-interaction.422

Delocalization error is an issue when DFT is used to model thiol addi-423

tions. The thiolate intermediate features a diffuse, sulfur-centered anion.424

When some popular DFT functionals are used (e.g., B3LYP or PBE), self-425

interaction error causes the energy level of the highest occupied molecular or-426

bital (HOMO) to be positive, making the anionic electron formally unbound.427

When the thiolate is complexed with a Michael acceptor, delocalization error428

spuriously stabilizes a non-bonded state where electron density is transferred429

from the HOMO of the thiolate to orbitals of the Michael acceptor. For some430

electrophiles, this complex is the most stable form and these methods predict431

that there is no enolate/carbanion intermediate.432

One popular method to define the exchange functional in density func-433

tional theory calculates the Hartree–Fock exchange energy using the DFT434

Kohn–Sham orbitals, a technique known as exact exchange. Hybrid DFT435
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S

O

Figure 10: The charge transfer between a thiolate and Michael acceptor calculated using
ωB97X-D/aug-cc-pVTZ. Charge is transferred from methylthiolate (top) to the acrolein
Michael acceptor (bottom). Areas in blue indicate an increase in charge density while
areas in green correspond to a decrease in charge density when the two fragments interact.
Charge is lost from the thiolate anion and gained in the space between the S–Cα sigma
bond, the π molecular orbital of the Cα–C bond, and the pz orbital of the O atom,
corresponding to an oxygen-centered anion.

functionals have been developed where part of the exchange energy is cal-436

culated by exact exchange. These functionals generally outperform “pure”437

functionals that do include an exact exchange component.438

Issues with delocalization error have led to the development of range-439

separated DFT functionals, where the exchange-correlation functional uses440

a large component of exact exchange for long-range inter-electron exchange-441

correlation. Smith et al. showed that range separated DFT functionals such442

as ωB97X-D predicted a stable thiocarboanion intermediate, while popular443

methods like B3LYP predicted that this intermediate could not exist as a444

distinct species (Figure 11). This result was corroborated by highly accurate445

CCSD(T) calculations [74]. Some hybrid functionals that have a high com-446

ponent of exact exchange globally, such as PBE0 or M06-2X, also predicted447

a stable carbanion intermediate.448

The reaction energies of thiol additions are also sensitive to the DFT449

functional used. Krenske et al. studied the addition of methyl thiol to α, β-450

unsaturated ketones [75]. The calculated reaction energies were sensitive to451

the quantum chemical method used, but the M06-2X and B2PLYP func-452
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Figure 11: The potential energy surfaces for the addition of methylthiolate to methyl vinyl
ketone, calculated using DFT and ab initio methods. The PES for the B3LYP and PBE
functionals fail to predict a stable enolate intermediate. High-level ab initio (CCSD(T)),
range-separated functions (e.g., ωB97X-D) and hybrid functionals (e.g., PBE0) predict a
moderately-stable enolate intermediate with a minimum near Cβ–S = 1.9 Å.

tionals provided results in close agreement with high-level ab initio results453

(CBS-QB3). Smith et al. showed that the ωB97X-D and PBE0 functionals454

also provide accurate thiol-addition reaction energies [74].455

6. Warhead Design456

An additional factor in the design of covalent modifiers is the selection457

of an appropriate functional group for reaction with the target residue of458

the protein. This warhead is typically an electrophilic group. The type of459

amino acid undergoing modification is the first design criteria. Covalent mod-460

ifiers of cysteine residues often feature acrylamides or other electron-deficient461

alkenes, which can undergo Michael additions to the cysteine residues to form462

thioether adducts.463

Quantum chemistry has been used to model the reaction mechanisms of464

covalent modification, providing information about the reaction kinetics and465

thermodynamics for various warheads. For Michael additions to cysteines,466

a model thiol (e.g., methylthiol) has commonly been used to represent the467

cysteine residue. The transition state and carbanion intermediate stability468

can theoretically be used to estimate the rates of reaction (kinact.). The Gibbs469

energy for the net reaction determines whether the addition is spontaneous470

or non-spontaneous and the degree to which it is reversible.471
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Taunton and coworkers have pursued a line of development of cysteine-472

targeting covalent inhibitors with acrylonitrile warheads with electron donat-473

ing aryl or heteroaryl groups at both the α and β positions [76]. The most474

effective electrophiles formed a carbanion intermediate with a high proton475

affinity. This warhead was successfully applied to develop a high-affinity476

1,2,4-triazole-activated acrylonitrile covalent modifier that was selective for477

RSK2 kinase.478

Smith and Rowley implemented an automated workflow to assess the sta-479

bility of the carbanion intermediate and thioether product for the addition480

of a model thiol (methylthiol) to a large set of substituted olefins [77]. All481

combinations of –H, –CH3, –C(––O)NH(CH3), –CN, and –C(––O)OCH3482

substituents on an ethene scaffold were evaluated. The lowest energy confor-483

mations of each species were identified by a replica exchange molecular dy-484

namics method [78]. Generally, it was found that substitution of the alkene485

core has a large effect both on the stability of the intermediate and prod-486

ucts, but conventional warheads fell into a narrow range where the addition487

was weakly spontaneous and went through a moderately stable intermediate488

(e.g., 120–160 kJ/mol). This is illustrated in Figure 12, with the approximate489

range of appropriate warheads highlighted in red. Dimethyl fumarate and490

N-methylacrylamide, which are established covalent warheads, are indicated.491

The complete set of calculated reaction energies and intermediate stabilities492

for the full set of warheads are available in the supporting information of493

Ref. 77.494
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R MeS
RS RS
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intermediate thioetherwarhead

Figure 12: The calculated stability of the carbanion intermediate vs. the stability of the
thioether product for the full data set of model thiol additions from Smith and Rowley [77].
The region of potential TCI warheads is highlighted, where the thiol undergoes a weakly
exergonic addition (∆Gthioether < 0) through a moderately-stable carbanion intermediate
(130 kJ/mol < ∆Gintermediate < 180 kJ/mol).
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The calculated reaction energies of warheads used in successful TCIs are495

weakly exergonic, which makes these reactions reversible. This allows them to496

dissociate from non-targeted thiols should they react with an off-target thiol497

in the cell prior to reaching their target. This is consistent with an emerging498

principle of TCI design, which is that the warhead should only be moderately499

reactive in order to avoid promiscuous modification [79, 80, 20]. Because500

thiol additions to warheads like acrylamides are reversible, modification of501

an off-target protein can be reversed. The moderate rate of reaction due to a502

moderately stable enolate intermediate favors the formation of the covalent503

bond only after the inhibitor has complexed to its target through selective504

non-covalent interactions. Of the hundreds of putative warheads evaluated in505

this study, only a small number have the appropriate thiol-addition kinetics506

and thermochemistry to serve as a therapeutic TCI.507

Krenske et al. studied the addition of methyl thiol to α, β- unsaturated508

ketones [75]. α-methyl, β-methyl, and α-phenyl ketones were found be more509

readily reversible than the unsubstituted vinyl ketone. A subsequent study by510

Krenske et al. used DFT calculations to study the Michael acceptor warheads511

with aryl groups at the α-position and electron withdrawing groups at the512

β-position [81]. These calculations were consistent with the experimental513

observation by Taunton et al., who observed that electrophiles with two514

electron withdrawing groups at the α-position (e.g., amide and cyano) and an515

aryl at the β-position yielded a warhead that reacted covalently but reversibly516

with thiols [20].517

Zhao and coworkers calculated the potential energy surfaces for the addi-518

tion of a model thiol to an α, β-unsaturated aldehyde in a range of dielectric519

environments [43]. The barrier to a direct 1,2 addition and ammonia-assisted520

addition was higher in low-dielectric environments, suggesting that the rates521

of covalent modification through these mechanisms will be lower in cysteine522

residues buried in hydrophobic binding pockets. It should be noted these523

mechanisms are distinct from the canonical Michael addition mechanism,524

where the reaction proceeds through a thiolate and carbanion intermediate.525

These calculations used the B3LYP exchange-correlation functional, which526

tends to underestimate the stability of carbanion intermediates and thioether527

products [74].528
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7. QM/MM Models of Covalent Modification529

Studies of covalent modification using model reactants in the gas phase530

or using a continuum solvent model do not provide a rigorous description of531

how the protein environment affects the reaction between the protein and532

the inhibitor. Paasche et al. found that continuum solvent models provided533

limited success in describing the cysteine–histidine proton transfer reactions534

associated with cysteine protease functoin [82]. Describing the full enzyme,535

inhibitor, and solvent using a quantum mechanical model would be pro-536

hibitively computationally demanding, so it is not practical to apply these537

methods naively to model the covalent modification of a protein.538
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N
CN

N
N

N

N
H2N
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S

OH

Figure 13: An example QM/MM model of Bruton’s tyrosine kinase in complex with a
covalent modifier (Ref. 20, PDB ID: 4YHF). The covalently-modified Cys481 residue and
the cyanoacrylamide warhead define the QM region. The calculated electron density of
the QM region is represented by the blue mesh. The remainder of the protein (gray) and
inhibitor comprise the MM region.

Quantum mechanics/molecular mechanics (QM/MM) methods allow for539

a critical component of a chemical system to be described using a quantum540

mechanical model, while the rest of the system is represented using a molec-541

ular mechanical model (Figure 13). As the size of the QM region is reduced542
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to a relatively small size, the computational expense of these QM/MM cal-543

culations is tractable. This is well-suited for modeling chemical reactions544

involving proteins, like enzymatic reaction mechanisms, where the chemical545

reaction only directly involves a small number of atoms, but the rest of system546

provides an essential environment. Analogously, the covalent modification of547

proteins can also be described using a QM/MM model, where the reactive548

warhead of the inhibitor and the residue being modified are described using549

QM, while the balance of the system, such as the solvent and the rest of550

the protein are described using an MM model. If needed, additional sections551

of the inhibitor and protein can be included in the QM region. QM/MM552

methods are now available in codes such as Gaussian [83], CHARMM [84],553

Amber [85], NAMD [86], and ChemShell [87, 88].554

One example of QM/MM modeling of covalent modification probed the555

mechanisms involved in the covalent modification of Ser530 of cyclooxyge-556

nase by aspirin. Tosco and Lazzarato [89] constructed a QM/MM model557

where an aspirin molecule and the nearby amino acid residues in the enzyme558

active site (e.g., Ser530, Tyr348, and Tyr385) were modeled using semiem-559

pirical SCC-DFTB QM method and the balance of the system was modeled560

using the CHARMM force field. The aim was to propose a putative reaction561

mechanism for the irreversible inactivation of cyclooxygenase by aspirin. The562

results obtained suggests that acetylation of Ser530 in cyclooxygenase by as-563

pirin occurs under intramolecular general base catalysis conditions, where564

the vicinal carboxylate group of aspirin abstracts a proton from the hydroxy565

group of Ser530 in cyclooxygenase, followed by a nucleophilic attack by the566

Oγ of Ser530 on the acetyl carbonyl carbon of aspirin. This forms an anionic567

tetrahedral intermediate, which is stabilized by Tyr385.568

Tóth et al. [90] also reported a QM/MM study of the reaction mechanism,569

transition state, and potential energy surface of the inhibition reaction of cy-570

clooxygenase by aspirin. In their approach, static ONIOM-type QM/MM571

methods were used, where the HF, B3LYP, MP2, and B97-D methods were572

used to describe the QM region, which was comprised of the aspirin molecule573

and surrounding amino acids. The authors concluded that the transesteri-574

fication reaction of aspirin and cyclooxygenase occurs through a concerted575

mechanism.576

QM/MM methods have also been employed in studying the mechanism577

of enzyme inhibition in peptide cleaving enzymes, such as cysteine proteases578

[91, 92]. A wide range of warheads will react readily with the acidic catalytic579

cysteine, so covalent-modifiers have frequently been used to inhibit these580
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targets. QM/MM studies have examined the inhibition of cysteine proteases581

by epoxides [93], aziridines [94], peptidyl aldehydes [95], vinyl sulfones [96],582

and nitroalkene-based inhibitors [97] of cysteine proteases, among others. It583

should be noted that some of these studies used DFT methods (e.g., B3LYP)584

that underestimate the stability of the enolate intermediate [77].585

Engels and coworkers have published a series of computational studies586

[92, 94, 98, 99, 100] that explore the factors governing the kinetics, re-587

giospecificity and stereoselectivity of epoxide- and aziridine-based inhibitors588

of cysteine proteases. QM/MM and molecular dynamics (MD) methods were589

used to investigate basic mechanistic principles and inhibition processes of590

these enzymatic reactions. Hydrogen bonds between the inhibitor and other591

residues in the active site were found to affect the reaction mechanism sig-592

nificantly, demonstrating that the explicit representation of the active site593

was necessary to describe the reaction mechanism. These studies aided the594

design and synthesis of new, potent inhibitors of this family of enzymes595

[94, 101, 102].596

Schirmeister et al. [103] developed QM/MM-based workflow for the devel-597

opment of covalent inhibitors. Using an existing protein-inhibitor structure,598

the substituents on the warhead are systematically varied. A QM/MM model599

of the protein-inhibitor complex is used to calculate the potential energy sur-600

face of the covalent modification, which provided the activation energy and601

reaction energy. The docking programs FlexX and DOCKTITE were used602

to identify variants on the drug scaffold that would improve the non-covalent603

component of the binding energy. The covalent competence of this new war-604

head were tested by a second round of QM/MM calculations. This workflow605

was used to develop novel covalent vinyl sulfone-based inhibitors of rhode-606

sian, a parasite protease belonging to the papain family of cysteine proteases.607

The halogenated warhead designed by this procedure was predicted to be a608

reversible covalent modifier, which was confirmed experimentally.609

Another QM/MM workflow for the design of covalent inhibitors was re-610

ported by Fanfrlik et al. [96], which uses a QM-based scoring function based611

on a hybrid QM/semi-empirical QM model to describe the process of covalent612

binding in protein–ligand complexes. The performance of the algorithm was613

evaluated on a series of vinyl sulfone-based inhibitors of S. mansoni cathep-614

sin B1. The calculated Gibbs energy difference between the non-covalently-615

bound state and the covalently-bound state was found to correlate to the log616

of the experimental IC50 with a coefficient of determination of 0.69.617

QM/MM modeling has the potential to play a significant role in under-618
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standing and predicting the mechanisms, kinetics, and thermodynamics of619

covalent modification. More accurate QM methods, improved algorithms620

to interface the QM and MM regions, and more extensive configurational621

sampling will be needed to make these methods quantitatively accurate. In622

combination with other simulation methods to calculate the non-covalent623

binding and deprotonation steps, QM/MM methods can be used to calculate624

the kinetic and thermodynamics terms of covalent modification rigorously.625

Ultimately, the integration of these methods will make it possible to model626

the action of covalent modifier drugs in a comprehensive way through the627

calculation of ∆Gnon−covalent and ∆G‡.628

8. Conclusions629

Computational methods for modeling the covalent modification of pro-630

teins have developed rapidly over the last 10 years. Docking programs such631

as AutoDock, Glide, and MOE now include functionality to find poses of632

docked covalent modifiers. The design of reactive warheads has been aided633

by quantum chemical modeling of model reactions. One of the most promis-634

ing areas of this field is the use of computer modeling to examine the reaction635

mechanisms of covalent modification; pKa calculations can be used to deter-636

mine the reactivity of targeted residues and QM/MM models can be used637

to elucidate the reaction mechanism, activation energy, and covalent binding638

energy. With further developments in computing power and more accurate639

computational methods, these methods may eventually allow the estimation640

of rates of inactivation and the covalent component of the binding energy.641

The maturation of these methods will allow computer modeling to contribute642

to the development of covalent-modifier drugs to the same degree that they643

have contributed to the development of non-covalent drugs.644
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