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Mutualistic communities play an important role in biodiversity preservation. They are

modeled as bipartite networks and measurements of centrality and degree help to order

species and their relative importance for network robustness. Identifying the most

endangered ones or those more prone to trigger cascade extinctions is essential to define

conservation policies. In this work, we explain how a classical graph analysis tool, the k-

core decomposition, provides new ranking magnitudes that reach outstanding

performance for these purposes.
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ABSTRACT14

Mutualistic communities play an important role in biodiversity preservation. They are modeled as

bipartite networks and measurements of centrality and degree help to order species and their relative

importance for network robustness. Identifying the most endangered ones or those more prone to trigger

cascade extinctions is essential to define conservation policies. In this work, we explain how a classical

graph analysis tool, the k-core decomposition, provides new ranking magnitudes that reach outstanding

performance for these purposes.
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INTRODUCTION21

Biotic interaction networks play an essential role in the stability of ecosystems (Tylianakis et al., 2010),22

as well as in the maintenance of biodiversity (Bascompte et al., 2006). Because community dynamics23

greatly depend on the way species interact, these networks have been described as the “biodiversity24

architecture” (Bascompte and Jordano, 2007). Network analysis has become an important approach25

to provide information on community organization and to predict dynamics and species extinctions in26

response to ecosystem disturbance (Tylianakis et al., 2010; Thébault and Fontaine, 2010; Traveset and27

Richardson, 2014). Among other assessments, these studies can point out key species, whose stability28

would prevent cascading extinctions, and the consequent loss of biodiversity (Sole and Montoya, 2001;29

Suweis et al., 2013; Dakos et al., 2014; Santamarı́a et al., 2015). Research on cascading species extinctions30

as a result of perturbations in biotic interactions has tackled two main issues: the different ways to rank a31

hypothetical extinction sequence and the robustness and fragility measures (Pocock et al., 2012). There32

are different strategies both to sort species according to their importance and to measure their influence33

on extinction. For instance, in early studies on the resilience of food webs Dunne et al. ranked species by34

degree (i.e., the number of interactions) using three different scenarios of removal: a) from the species35

with the highest degree to the species with the lowest degree; b) from the lowest to the highest; c) species36

selected in a random way(Dunne et al., 2002). Memmott et al. worked the same idea to assess the37

robustness of mutualistic communities, removing active species and measuring the fraction of remaining38

passive species (Memmott et al., 2004).39

An observed property of mutualistic interactions is the existence of generalists, highly interconnected,40

and specialists, with few interactions linked to the generalists, but rarely among them. The nucleus41

of interactions among generalists seems to be the foundation of resilience. This property has been42

traditionally identified with nestedness (Bascompte et al., 2003), although there are new approaches to43

describe it in a more general way as a core-periphery organization (Csermely et al., 2013; Rombach et al.,44
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2014).45

Identification of key nodes for community preservation is another active field of research. Besides46

classical measures of centrality, new rankings are available and provide efficient ways to find out them in47

bipartite networks (Tacchella et al., 2012; Domı́nguez-Garcı́a and Muñoz, 2015).48

In this paper, we aim to explain how the k-core decomposition, sheds light on the understanding49

of robustness in mutualism. The tool classifies the nodes of the network in shells, as in an onion-like50

structure with the most connected nodes in its center. Taking into account just the very basic topological51

properties, the decomposition helps to assess in detail the structure of mutualism and enlightens on the52

processes of species extinction cascades. Derived from the k-core decomposition we introduce three53

new magnitudes, hereafter called k-magnitudes, that describe network compactness (k-radius), combined54

quantity and quality of interactions (k-degree) and species vulnerability to trigger extinction cascades55

(k-risk). We assess the best criteria for identifying the species for which the networks are most vulnerable56

to cascade extinctions by comparing k-degree and k-risk ranking criteria with ranking by well-known57

indexes and applying them in two network destruction procedures. To conduct the test, we use one of the58

most complete available data sets (Fortuna et al., 2014).59

MATERIALS AND METHODS60

Data61

We have analyzed the Web of life collection (Fortuna et al., 2014), comprised by 89 mutualistic networks,62

with 59 communities of plants and pollinators and 30 of seed dispersers (http://www.web-of-life.63

es/). There are 57 communities with binary adjacency matrix (i.e., the interaction between the two64

species is recorded but not its strength), and 32 with weighted matrix, where the strength is accounted for.65

Network sizes range from 6 to 997 species, the minimum number of links is 6 and the maximum is 2933.66

Decomposition and k-magnitudes67

The idea of core decomposition was first described by Seidman to measure local density and cohesion68

in social graphs (Seidman, 1983). It has been successfully applied to visualize large systems and69

networks (Alvarez-Hamelin et al., 2005; Kitsak et al., 2010; Zhang et al., 2010; Barberá et al., 2015).70

The k-core of a network is a maximal connected sub-network of degree greater or equal than k. That71

means that each node is tied to at least k other nodes in the same sub-network.72

A simple algorithm to perform the k-core decomposition prunes links of nodes of degree equal or less73

than k (Batagelj and Zaversnik, 2003). The process starts removing links with one of their edges in a74

node of degree 1. This procedure is recursive and ends when all the remaining nodes have at least two75

links. The isolated nodes are the 1-shell. Then it continues with k = 2, and so on. After performing the76

k-decomposition, each species belongs to one of the k-shells (Fig. 1). The m-core includes all nodes of77

m-shell, m+1-shell...78

Figure 1. k-core decomposition of a fictional network. Green links are pruned during the first iteration,

orange during the second and blue during the last one.
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Mutualistic networks are bipartite, with two guilds of species (plant-pollinator or plant-seed disperser79

in the studied collection). Links among nodes of the same class are forbidden. We will call these guilds A80

and B.81

Based on the k-core decomposition, we define three k-magnitudes. In order to quantify the distance82

from a node to the innermost shell of the partner guild, we define kradius. The kradius of node m of guild A83

is the average distance to all species of the innermost shell of guild B. We call this set NB.84

kA
radius(m) =

1

| NB | ∑
j∈NB

distm j m ∈ A (1)

where distm j is the shortest path from species m to each of the j species that belong to NB. The minimum85

possible kradius value is 1 for one node of the innermost shell directly linked to each one of the innermost86

shell set of the opposite guild.87

To obtain a measure of centrality in this k-shell based decomposition, we define kdegree as88

kA
degree (m) = ∑

j

am j

kB
radius ( j)

m ∈ A,∀ j ∈ B (2)

where am j is the element of the interaction matrix that represents the link, considered as binary. If the89

network is weighted, am j will count as 1 for this purpose if there is interaction, 0 otherwise. kdegree(m) is90

a weighted degree where each node i linked to node m adds the inverse of its kradius(i). Generalists score91

high kdegree, whereas specialists, which have only one or two links, with similar kradius, score lower kdegree.92

This magnitude reminds the definition of the Harary index (Plavšić et al., 1993) but only considering93

paths from the nodes tied from m to the nodes of the innermost shell.94

Figure 2 shows how kdegree works for one particular network. There are many nodes with the same95

degree value, such as specialists with just one or two links, that from a ranking point of view are equivalent.96

On the contrary kdegree, maps the degree distribution onto a more continuous one, because of the weight97

of the inverse of kradius. In Fig. 2C the cumulative distributions of both indexes are overimposed over the98

degree scale.99

Figure 2. (A)- Degree, (B)- kdegree and (C) combined degree and kdegree distributions of a big plant

pollinator community in Central Los Andes, Chile Arroyo et al. (1982).

Finally, we introduce krisk as a way to measure how vulnerable is a network to the loss of a particular100

species:101

kA
risk (m) = ∑

i

ami

(

kA
shell (m)− kB

shell (i)
)

+ εkA
shell (m) m ∈ A,∀i in B, kB

shell (i)< kA
shell (m) (3)

The krisk of one species is the sum of the nodes of lower k-shells that are tied to it. Each one is102

weighted by the difference of the k indexes. The second element of equation 3 is meant to solve ties103

among species when they belong to different k-shells, and is a very small quantity (in our implementation104

we use 0.01, two orders of magnitude lesser than the sum).105
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In an intuitive way, if we remove one node strongly connected to others of lower k-shells, these species106

are in high risk of being dragged by the primary extinction. On the other hand, the extinction is much less107

dangerous for the species of higher k-shells linked to the same node, because they enjoy more redundant108

paths towards the network nucleus.109

Applying the k-magnitudes to a network110

Fig. 3 is an small seed disperser network with five species of plants, four species of thrushes and111

eleven links. We call, by convention, guild A the set of plants, and guild B the set of birds. The k-core112

decomposition was performed with the R igraph package (Csardi and Nepusz, 2006) . The maximum113

k index is 2. The four bird species belong to 2-shell; there are three plant species in 1-shell and two in114

2-shell. In this example each species of 2-shell is directly tied to all species of the opposite guild 2-shell,115

but this is not a general rule.116

Figure 3. Computation of the k-magnitudes. Seed disperser network in Santa Bárbara, Sierra de Baza

(Spain) (Jordano, 1993). A: Decomposed network. B: Computing kB
radius(4).

The shortest path from plant species 2 to each of the four bird species of 2-shell is 1, because of the117

direct links. So, kA
radius(2) is 1. The same reasoning is valid for plant species 1. The reader may check that118

the kradius of bird species of 2-shell is 1 as well, measuring their shortest paths to plants species 1 and 2.119

Computation of this magnitude is simple although a bit more laborious for 1-shell plant species. We120

work plant species 4 as an example. First, we find the shortest paths to each bird species of 2-shell.121

Shortest paths are depicted with different colors. Plant species 4 is tied to seed disperser species 1, so122

distance is 1. On the other hand, there is no direct link with bird species 2. Shortest path is pl4-disp1-123

pl2-disp2, and distance is 3. It is easy to check that distances from plant species 4 to bird species 3 and 4124

are also 3. Once we have found the four distances, we compute kB
radius (4) as the average of 1, 3, 3 and 3,125

that is 2.5.126

The values of kdegree are straightforward to compute. For instance, the kdegree of disperser species 1 is:127

kB
degree (1) =

1

kA
radius (1)

+
1

kA
radius (2)

+
1

kA
radius (4)

+
1

kA
radius (5)

= 2.8 (4)

The last k-magnitude we defined was krisk. We use again the disperser species 1 as example. Links to

species of the same or upper k-shells are irrelevant to compute krisk, so only bird species 4 and 5 are taken

into account.

kB
risk (1) = kB

shell (1)−kA
shell (4)+kB

shell (1)−kA
shell (5)+εkB

shell (1) = (2−1)+(2−1)+0.01x2= 2.02 (5)

This magnitude may seem counter-intuitive, because the krisk of a highly connected species like plant128

1 is 0.02, almost the same of that of peripheral plant 3. This is because plant 1 has no ties with lower129

k-shell animal species. The krisk ranks species to assess resilience, it has not an absolute meaning. It just130

tells us that it is more dangerous for the network to remove the disperser 1 than plant 1, and plant 1 than131

plant 3.132

The k-magnitudes of the example network are shown in table 1.133
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Species kshell kradius kdegree krisk

pl1 2 1 4 0.02

pl2 2 1 4 0.02

pl3 1 2.5 1 0.01

pl4 1 2.5 1 0.01

pl5 1 2.5 1 0.01

disp1 2 1 2.8 2.02

disp2 2 1 2.4 1.02

disp3 2 1 2 0.02

disp4 2 1 2 0.02

Table 1. K-magnitudes of the network of Fig. 3.

Extinction procedures134

We carried out two static extinction procedures. Static assumption implies that there is not rewiring (e.g.,135

plants that have lost their pollinators are not pollinated by other insects) , despite this kind of network136

reorganization is observed in nature (Ramos-Jiliberto et al., 2012; Goldstein and Zych, 2016; Timóteo137

et al., 2016). Nodes are ranked once, before the procedure starts.138

In the first method, one species is removed each step, in decreasing order according to the chosen139

index, no matter to which guild it belongs. Four ranking indexes are compared: krisk, kdegree, degree140

and eigenvector centrality. The k indexes were computed with the R package kcorebip; degree and141

eigenvector centrality with the degree and evcent functions of the igraph package.142

To estimate the damage caused to the network, the fraction of remaining giant component (i.e., the143

highest connected component of a given network) was used. The procedure stops when this ratio is equal144

or less than 0.5. To break ties, we ran 100 experiments for each network and index, shuffling species with145

the same ranking value. The percentage of removed species needed to get to 0.5 of the remaining giant146

component is used to measure the performance of the ranking. The lower the percentage of removed147

species, the more efficient the ranking is in destroying the network. The top performer scores the least148

average removal percentage. (Fig. 4).149

Figure 4. First extinction procedure. Performance of the four ranking indexes for a pollinator

community described by Elberling and Olesen in Zackenberg Station (Greenland, unpublished).

Individual dots are the results of each experiment while black dots are the average values

.

The second extinction procedure that we followed is more common in the literature. Only animal150

species are actively removed (primary extinctions); secondary extinctions happen when nodes become151

isolated (Memmott et al., 2004).152

The fraction of surviving plant species is measured as a function of the removed fraction of animal153

species (Fig. 5A,C) and the area under the curve is the value to compare performance. We averaged the154
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results of 100 repetitions.155

In this case, in addition to the four indexes of the first experiment, we include MusRank a non-linear156

ranking algorithm for bipartite networks (Tacchella et al., 2012), inspired by PageRank (Allesina and157

Pascual, 2009). This algorithm is not valid for the first extinction method. Domı́nguez-Garcı́a and Muñoz158

showed that MusRank achieves excellent performance for this extinction procedure (Domı́nguez-Garcı́a159

and Muñoz, 2015).160

In the second extinction procedure, we also measured the fraction of remaining giant component (Fig.161

5B,D) . Extinction sequences are identical, the only difference is that both magnitudes are measured for162

each step.163

Figure 5. Extinction curves of the second algorithm for a pollination network in Suffolk, UK (Dicks

et al., 2002). A,C: Percentage of surviving giant component and percentage of surviving plant species

removing animal specied ranked by MusRank. B,D: Percentage of surviving giant component and

percentage of surviving plant species removing animal specied ranked by kdegree.

RESULTS164

First extinction method165

krisk was the ranking method with the lowest average species removal percentage to destroy half of166

the Giant Component in most of the networks (67 out of 89 networks) (Table 2). Figure 6 shows the167

performance comparison of the four ranking criteria. There are some ties, more frequent when networks168

are small. Network size is the key factor to explain why the performance range is so wide.169

As size increases, the removal percentage to break the giant component decreases. When the network170

is big, the primary extinction of key nodes triggers an important amount of secondary ones. If the171
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community has 100 or more species, krisk is even a better predictor of the most damaging extinction172

sequence and outperforms the other indexes for 28 out of 32 networks.173

Table 2. Average number of removed species to destroy half the Giant Component, according to the

different indexes: krisk is the top performer for 67 networks, degree for 48, kdegree for 39 and eigenvector

centrality for 28 networks.

Network GCsize krisk degree kdegree eigen Network GCsize krisk degree kdegree eigen

PL 001 177 21.73 22.13 22 23 PL 046 60 11 11.94 13 14
PL 002 103 14.46 12.51 13 15 PL 047 205 4 4 4 4
PL 003 61 5 5.35 6 6 PL 048 266 10 10 9 12
PL 004 112 3 3 3 3 PL 049 262 11 13 15 16
PL 005 361 25 30.73 36 42 PL 050 49 6 6.36 7 7
PL 006 78 3 3 3 3 PL 051 104 3 3 3 3
PL 007 50 5 4 4 4 PL 052 52 6 6 6 7
PL 008 49 6 7 7 11 PL 053 364 19 22.49 23 34
PL 009 142 7 7.52 8 12 PL 054 414 23 25.23 27 30
PL 010 107 23.46 29 29 32 PL 055 253 16.40 17 19
PL 011 27 4 5.04 6 6 PL 056 456 22 28.71 33 43
PL 012 84 7 7 7 7 PL 057 997 17 17 20 36
PL 013 65 4 4 4 5 PL 058 111 14 17.55 19 20
PL 014 108 6 5 5 6 PL 059 26 6 5 5 5
PL 015 793 48 56 60 87 SD 001 28 3 3 3 5
PL 016 205 9 9 10 17 SD 002 40 5 5 5 5
PL 017 104 9 10.52 11 11 SD 003 41 4 4 4 4
PL 018 144 18 19 23 24 SD 004 52 4 4 4 4
PL 019 123 14 15.37 16 18 SD 005 34 3 3 3 3
PL 020 109 3 3 3 3 SD 006 34 4 4.31 5 5
PL 021 766 12 12 12 38 SD 007 79 3 3 3 3
PL 022 66 4 4 4 4 SD 008 26 9.83 8.45 8 11
PL 023 90 3 3 3 3 SD 009 25 3 4 4 5
PL 024 22 4 3.55 3 3.0 SD 010 64 8 8 9 13
PL 025 57 6 6 6 10 SD 011 25 6 5.33 5 6
PL 026 150 2 2 2 2 SD 012 64 12.71 12.53 12 14
PL 027 75 8.54 8 9 11 SD 013 55 11 8 19 14
PL 028 180 13 14 16 24 SD 014 33 9 10 10 10
PL 029 167 17 16.97 17 19 SD 015 32 4 4 4 4
PL 030 70 10.23 6.65 7 13 SD 016 85 17 18 20 23
PL 031 91 9.53 7.92 13 17 SD 017 24 7.28 6.62 10 10
PL 032 40 2 2 2 2 SD 018 53 5 5 5 5
PL 033 47 8.65 8 10 12 SD 019 209 13 16.48 20 21
PL 034 151 6 7.54 8 9 SD 020 58 7.65 9.22 10 10
PL 035 97 6 7.54 8 9 SD 021 46 9 10 10 10
PL 036 22 3.68 2 2 2 SD 022 317 39 50.43 53 60
PL 037 50 5 5 5 7 SD 023 23 4 4 4 4
PL 038 50 4 4 4 7 SD 024 19 6 6 7 8
PL 039 68 6 6.68 9 10 SD 025 13 4.38 4.16 4.16 4
PL 040 70 8.56 7 9 10 SD 026 6 2 2 2 2
PL 041 70 10 10 11 12 SD 027 16 3 3 3 3
PL 042 16 2 2 2 2 SD 028 13 3 3 3 3
PL 043 110 12 14 14 19 SD 029 9 2 2 2 2
PL 044 712 21 23 25 49 SD 030 9 2 2.65 2 2
PL 045 41 6 5.45 7 8
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Figure 6. First extinction method. The average percentage of removed species to destroy the Giant

Component is depicted for each network and ranking index. Under the X axis, the name of each network

as coded in the web of life database. The overall top performer is krisk (see Table 2). Species are ordered

by the percentage of primary extinctions, ranked by krisk . The red line joins the krisk destruction

percentage values as a visual reference to compare them with those of the other indexes.
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Second extinction method174

MusRank ranking method had the lowest area under the extinction curve for 85 of the 89 studied networks175

(Figure 7), and in the other 4 the difference is so small that may be just an effect of the averaging procedure.176

So, MusRank is the optimal ranking index to destroy the network following this algorithm.177

Figure 7. Second extinction procedure, measuring the surviving plant species fraction. The Area Under

the extinction Curve is depicted for each network and index. The overall top performer is MusRank (see

Table 3). The solid line joins the MusRank values. Species are ordered by the percentage of primary

extinctions, ranked by MusRank.

On the contrary, when the efficiency of the network destruction was measured through the area under178

the curve of the surviving Giant Component fraction the MusRank index had the highest values, placing it179

as the least efficient ranking method according to this criterion (Figure 8). In this case, kdegree is the most180

efficient index for 42 out of 89 networks. We must underline that the extinction sequences are the same,181

the only difference is the measured output.182

Figure 8. Second extinction procedure, measuring the surviving Giant Component fraction. The Area

Under the extinction Curve is depicted for each network and index. The overall top performer is kdegree

(see Table 4). The solid line joins the kdegree values. Species are ordered by the percentage of primary

extinctions, ranked by kdegree.

Fig. 5 is an example of this counterintuitive response. On the upper row (subplots A and B), the183
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difference for both ranking indexes when measuring the giant component. While this magnitude decreases184

at a constant pace for MusRank, there is a sharp reduction of the component size when one third of animal185

species are removed following the kdegree ranking. On the lower row (subplots C and D), opposite results186

are obtained when accounting for the fraction of surviving plant species.187

Figure 9. Pollinator network 007 (Dicks et al., 2002). A: Original configuration; B: Structure after the

removal of the 13 top MusRank-ranked animal species. C: Structure after the removal of the 13 top

kdegree-ranked animal species

The destruction of this pollinator network sheds light on the root cause of the difference. The network188

has 36 pollinator and 16 plant species (Fig.9A), 2 of them are outside the giant component. When the 13189

top animal species ranked by MusRank are removed (pollinators 3,1,7,15,32,6,14,33,13,31,8,16,10),190

the community reaches the degraded structure of Fig.9B. The size of the giant component is 27 (54% of191

the original), and there are 23 pollinator and 6 plant species.192

If we remove the 13 top animal species ranked by kdegree (pollinators 1,3,7,13,15,2,11,20,12,8,6,5,10)193

instead, the community structure is that of Fig.9C. Now, the size of the giant component is 19 (38% of the194

original), and there are 23 pollinator and 9 plant species. MusRank has killed more plant species, but the195

giant component is clearly smaller ranking by kdegree.196
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PL 008 0.5251 0.7287 0.7093 0.7117 0.7213 PL 053 0.2510 0.5253 0.4590 0.5081 0.5058
PL 009 0.3583 0.6689 0.6315 0.6473 0.6857 PL 054 0.2568 0.5035 0.5136 0.4885 0.5835
PL 010 0.6004 0.6948 0.7044 0.7003 0.7150 PL 055 0.2929 0.5548 0.5795 0.5633 0.6378
PL 011 0.3876 0.4272 0.3994 0.3999 0.4290 PL 056 0.2696 0.5717 0.5545 0.5605 0.5885
PL 012 0.2716 0.3860 0.3417 0.3494 0.3604 PL 057 0.2019 0.5392 0.5217 0.5261 0.5576
PL 013 0.4353 0.8088 0.7716 0.7606 0.7212 PL 058 0.4168 0.5507 0.5585 0.5683 0.5773
PL 014 0.2726 0.4935 0.5617 0.4840 0.6980 PL 059 0.3639 0.3587 0.3649 0.3631 0.3757
PL 015 0.3792 0.6637 0.6579 0.6633 0.6859 SD 001 0.4592 0.5459 0.5141 0.5229 0.5068
PL 016 0.3641 0.7275 0.6973 0.6719 0.7108 SD 002 0.5000 0.4911 0.5000 0.4919 0.5000
PL 017 0.3703 0.4895 0.5187 0.4886 0.5532 SD 003 0.3051 0.3281 0.3166 0.3059 0.3166
PL 018 0.4451 0.6194 0.6249 0.6259 0.6504 SD 004 0.2121 0.2351 0.2389 0.2350 0.2476
PL 019 0.3474 0.5391 0.5373 0.5320 0.5658 SD 005 0.2656 0.3587 0.3546 0.2718 0.3974
PL 020 0.2674 0.5480 0.5427 0.5199 0.6005 SD 006 0.3078 0.3515 0.3471 0.3444 0.3588
PL 021 0.1761 0.5147 0.5092 0.4985 0.6207 SD 007 0.2528 0.2528 0.2528 0.2528 0.2528
PL 022 0.2511 0.5003 0.5019 0.4304 0.7444 SD 008 0.6875 0.6861 0.7125 0.7108 0.7188
PL 023 0.2285 0.4959 0.7041 0.4517 0.8068 SD 009 0.4167 0.5395 0.5033 0.5453 0.6389
PL 024 0.4111 0.5650 0.5449 0.5283 0.5444 SD 010 0.4929 0.4986 0.5271 0.5129 0.5314
PL 025 0.4344 0.5956 0.6641 0.6030 0.6792 SD 011 0.5286 0.5927 0.5422 0.5623 0.5422
PL 026 0.2138 0.3362 0.3811 0.2874 0.4052 SD 012 0.3912 0.4140 0.4321 0.4316 0.4332
PL 027 0.4466 0.6711 0.6179 0.6728 0.6185 SD 013 0.4835 0.5629 0.6754 0.5885 0.6462
PL 028 0.3266 0.5613 0.6178 0.5754 0.6621 SD 014 0.5221 0.5504 0.5415 0.5441 0.5404
PL 029 0.3107 0.5061 0.4865 0.4919 0.6198 SD 015 0.7444 0.8602 0.8633 0.8607 0.8556
PL 030 0.3949 0.6113 0.6054 0.5870 0.6329 SD 016 0.6318 0.6812 0.6830 0.6816 0.6872
PL 031 0.3314 0.4078 0.3857 0.3926 0.4128 SD 017 0.6406 0.6719 0.6875 0.6639 0.6875
PL 032 0.3889 0.5157 0.6312 0.4995 0.6255 SD 018 0.3413 0.5645 0.4809 0.4596 0.5361
PL 033 0.6640 0.6732 0.6753 0.6832 0.6799 SD 019 0.3185 0.3444 0.3602 0.3535 0.3849
PL 034 0.2497 0.4697 0.4383 0.4563 0.5204 SD 020 0.3155 0.3459 0.3608 0.3485 0.3722
PL 035 0.3121 0.3648 0.3886 0.3633 0.4085 SD 021 0.4254 0.4579 0.4682 0.4567 0.4737
PL 036 0.4306 0.4677 0.4667 0.4560 0.4750 SD 022 0.3517 0.3720 0.3886 0.3820 0.4284
PL 037 0.5153 0.7303 0.6521 0.6924 0.6400 SD 023 0.3875 0.4000 0.3875 0.3875 0.3875
PL 038 0.4702 0.7328 0.6948 0.7310 0.7411 SD 024 0.5130 0.5542 0.5357 0.5114 0.5357
PL 039 0.3454 0.5556 0.4979 0.5425 0.5046 SD 025 0.4722 0.5692 0.5556 0.5156 0.5556
PL 040 0.2940 0.4478 0.4696 0.4153 0.6227 SD 026 0.3333 0.3333 0.3333 0.3333 0.3333
PL 041 0.3978 0.5253 0.5562 0.5238 0.5566 SD 027 0.4750 0.4750 0.4750 0.4750 0.4750
PL 042 0.3452 0.3621 0.3690 0.3621 0.3690 SD 028 0.4429 0.4429 0.4429 0.4429 0.4429
PL 043 0.4414 0.6364 0.6113 0.6183 0.6430 SD 029 0.5000 0.5000 0.5000 0.5000 0.5000
PL 044 0.2401 0.5932 0.5701 0.5723 0.6721 SD 030 0.4583 0.4583 0.4583 0.4583 0.4583
PL 045 0.3324 0.4052 0.4047 0.4116 0.40631
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Network MusRank krisk kdegree degree eigenv Network MusRank krisk kdegree degree eigenv

PL 001 0.3158 0.2410 0.2212 0.2224 0.2546 PL 046 0.5060 0.4975 0.5013 0.5008 0.4987
PL 002 0.4337 0.3441 0.3244 0.3237 0.3198 PL 047 0.4626 0.3694 0.3686 0.3694 0.3622
PL 003 0.2176 0.2607 0.2093 0.2056 0.2145 PL 048 0.4715 0.3895 0.3920 0.3909 0.3998
PL 004 0.4661 0.3700 0.3744 0.3697 0.3843 PL 049 0.4662 0.3350 0.3286 0.3372 0.3960
PL 005 0.4380 0.2954 0.2935 0.2968 0.3482 PL 050 0.4068 0.3641 0.3285 0.3387 0.3214
PL 006 0.4374 0.4044 0.3929 0.4038 0.3932 PL 051 0.4380 0.3428 0.3322 0.3384 0.3762
PL 007 0.4465 0.3539 0.3233 0.3310 0.3513 PL 052 0.4502 0.3228 0.3029 0.3227 0.3381
PL 008 0.4786 0.4363 0.4370 0.4344 0.4386 PL 053 0.4046 0.2018 0.2045 0.1980 0.2153
PL 009 0.4331 0.2613 0.2703 0.2617 0.3195 PL 054 0.4337 0.2427 0.2273 0.2481 0.3287
PL 010 0.5086 0.4789 0.4783 0.4802 0.4974 PL 055 0.4443 0.2602 0.2449 0.2443 0.3557
PL 011 0.4169 0.3994 0.4108 0.3874 0.3985 PL 056 0.4142 0.2451 0.2364 0.2460 0.3498
PL 012 0.3451 0.2859 0.3030 0.2768 0.3173 PL 057 0.4597 0.2378 0.2498 0.2377 0.3355
PL 013 0.4718 0.3548 0.3302 0.3527 0.3828 PL 058 0.4301 0.3578 0.3694 0.3622 0.3840
PL 014 0.4378 0.3928 0.3697 0.3965 0.4679 PL 059 0.4077 0.3916 0.3944 0.3934 0.3954
PL 015 0.4780 0.4030 0.3991 0.4025 0.4177 SD 001 0.4489 0.3792 0.3871 0.3732 0.3854
PL 016 0.4689 0.3781 0.3221 0.3743 0.3946 SD 002 0.4905 0.4849 0.4905 0.4847 0.4905
PL 017 0.4579 0.4240 0.4190 0.4257 0.4234 SD 003 0.3333 0.3222 0.2829 0.2999 0.2829
PL 018 0.4498 0.3419 0.3421 0.3432 0.3585 SD 004 0.2510 0.2286 0.2298 0.2288 0.2448
PL 019 0.4441 0.3138 0.3083 0.3118 0.3265 SD 005 0.3646 0.2592 0.2640 0.2762 0.2569
PL 020 0.4433 0.3688 0.3426 0.3674 0.3894 SD 006 0.3444 0.3072 0.3049 0.3088 0.3025
PL 021 0.4563 0.2512 0.2136 0.2510 0.4071 SD 007 0.2433 0.2433 0.2433 0.2433 0.2433
PL 022 0.4184 0.3475 0.2828 0.3068 0.3858 SD 008 0.6060 0.6056 0.6220 0.6221 0.6260
PL 023 0.4327 0.3187 0.2840 0.3185 0.2901 SD 009 0.3935 0.3280 0.3415 0.3296 0.3009
PL 024 0.5028 0.3380 0.3406 0.3135 0.3389 SD 010 0.4881 0.4926 0.5153 0.5040 0.5187
PL 025 0.4529 0.4451 0.4521 0.4472 0.4582 SD 011 0.4736 0.4678 0.4405 0.4452 0.4405
PL 026 0.3245 0.2316 0.2153 0.2300 0.1976 SD 012 0.3603 0.3291 0.3575 0.3429 0.3609
PL 027 0.4590 0.2669 0.2676 0.2698 0.2912 SD 013 0.4772 0.5185 0.6053 0.5466 0.5897
PL 028 0.4445 0.3505 0.3444 0.3483 0.3743 SD 014 0.4982 0.5117 0.5081 0.5092 0.5074
PL 029 0.4270 0.3084 0.3024 0.3040 0.3272 SD 015 0.5251 0.5392 0.5288 0.5397 0.5299
PL 030 0.4658 0.3410 0.2504 0.2685 0.3469 SD 016 0.4949 0.4832 0.4849 0.4833 0.4852
PL 031 0.3190 0.2263 0.2603 0.2178 0.2866 SD 017 0.5842 0.5734 0.5842 0.5832 0.5842
PL 032 0.4322 0.3853 0.3810 0.3831 0.3951 SD 018 0.4112 0.2159 0.1678 0.1806 0.2231
PL 033 0.5326 0.4953 0.4910 0.4914 0.5160 SD 019 0.3528 0.3729 0.3861 0.3807 0.4058
PL 034 0.4489 0.3585 0.3596 0.3497 0.3664 SD 020 0.4135 0.4156 0.4236 0.4169 0.4229
PL 035 0.3636 0.3488 0.3498 0.3259 0.3595 SD 021 0.4594 0.4617 0.4627 0.4610 0.4627
PL 036 0.3708 0.3377 0.2785 0.2859 0.2917 SD 022 0.3681 0.3525 0.3508 0.3522 0.3814
PL 037 0.4010 0.2716 0.2652 0.2585 0.2997 SD 023 0.3860 0.3934 0.3860 0.3860 0.3860
PL 038 0.4366 0.3665 0.3767 0.3605 0.4366 SD 024 0.4916 0.5098 0.5079 0.4931 0.5079
PL 039 0.4274 0.3036 0.3042 0.3080 0.3083 SD 025 0.4621 0.4702 0.4621 0.4732 0.4621
PL 040 0.4042 0.3454 0.3037 0.3096 0.4164 SD 026 0.4167 0.4167 0.4167 0.4167 0.4167
PL 041 0.4394 0.3216 0.3344 0.3205 0.3550 SD 027 0.4712 0.4712 0.4712 0.4712 0.4712
PL 042 0.3833 0.3227 0.3167 0.3218 0.3167 SD 028 0.4455 0.4455 0.4455 0.4455 0.4455
PL 043 0.4577 0.3634 0.3558 0.3616 0.3959 SD 029 0.4667 0.4667 0.4667 0.4667 0.4667
PL 044 0.4410 0.2286 0.2058 0.2255 0.3669 SD 030 0.4583 0.4583 0.4583 0.4583 0.4583
PL 045 0.4246 0.3052 0.3544 0.3066 0.34961
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DISCUSSION197

The k-core decomposition offers a new topological view of the structure of mutualistic networks. We have198

defined three new magnitudes to take advantage of their properties. Network compactness is described199

by kradius, a measure of average proximity to top generalists of the partner guild. Second, kdegree maps200

each node’s degree onto a finer grain distribution. It has not only information on the number of neighbors201

but also on how they are connected to the innermost shell. Finally, krisk is set to identify species whose202

disappearance poses a greater risk to the entire network.203

Comparing the k-magnitudes based extinction indexes (kdegree and krisk) with those routinely used204

when extinctions take place in both guilds, krisk is the best rank if the goal is to identify the key species to205

preserve most of the giant component. krisk identifies species linked to a high number of nodes of lower206

k-shells. These species provide vulnerability to the network because their extinction may drag many of207

the species with lower k-shells they are linked to, to extinction as well, as they do not enjoy redundant208

paths to the innermost shell.209

Applying the well-known method of removing species of the primary class and measuring the210

extinctions in secondary class, the most effective extinction sequence, if the goal is to identify the key211

species to preserve most of the giant component, is kdegree. However, if the goal is to identify the key212

species to preserve the greatest species richness in the second class (e.g., plants in a plant-pollinator213

mutualistic network), the best criterion is MusRank as Fig. 7 makes clear . These results confirm those214

obtained by Domı́nguez-Garcı́a and Muñoz (2015), over a larger network collection (89 in this work vs.215

67 in the original paper).216

The most striking result of the second method is how different performance is for a same ranking217

index, depending on the magnitude we measure. The root cause lies on the definitions of the indexes218

themselves. MusRank is optimal to destroy the plant guild. It identifies the most important active nodes of219

the bipartite network because of how they are linked to the most vulnerable passive ones. It was designed220

to excel with this extinction sequence and works with local properties. On the other hand, kdegree is an221

excellent performer to destroy the giant component. It contains information on how nodes are connected222

to the innermost shell, and ranks higher those nodes strongly tied to that stable nucleus.223

In summary, in this study, we show that the new k-core decomposition derived indexes, krisk and224

kdegree provide a new insight into the structure of mutualistic networks. This insight is particularly useful225

because these indexes fair much better than other traditionally used ranking indexes, when the aim is to226

identify the species that are key to preserving the interactions and the functionality of the community.227

As complex network studies on mutualistic interactions are already being used to suggest conservation228

policies, it is of utmost importance to have a clear framework of what the conservation practitioners look229

for when implementing conservation and restoration plans. The static view of considering biodiversity230

conservation as the mere conservation of a list of species has long been substituted by a new paradigm231

which looks at conservation from a dynamic viewpoint in which species interactions and the functionality232

of the ecosystems play a major role (Heywood and Iriondo, 2003).233
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Code246

The R code for k-core decomposition and plotting has been published as a package at https://www.247

github.com/jgalgarra/kcorebip.248

The rest of software is available at https://github.com/jgalgarra/kcore_robustness249

Reproducibility instructions are detailed in the README.md file250
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