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Abstract

Metatranscriptomics and metaproteomics make itiples® measure gene expression in microbial
communities. So far these approaches were mostly tasget a general overview of the dominant
metabolism and physiologies of community membeexdrtly, environmental microbiologists have
started using metatranscriptomics and metaprotentoimok at gene expression differences between
different environments or conditions. This has bewstly done by using makeshift adaptations of pure
culture focused differential transcriptomics andtpomics approaches. However, since meta-omics data
has many more variables attached to it as compganedre culture derived data, such makeshift
adaptations are problematic at best. One partichialtenge is posed by the data normalizationesjias
used to account for technical and biological vdeslin meta-omic data. Here | discuss the most comm
normalization strategy for transcriptomic and pootéc data and why it is not valid by itself for raet

omic data. | provide logical proof that variationdpecies abundances between samples is an adHition
variable that must be accounted for during normatibn of meta-omic data. Finally, | show how the
existing normalization methods for transcriptonid @roteomic data can be augmented to be applicable

to meta-omic data.
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Main Text

In the last decade technological advances in sequgtechnology and mass spectrometry have made it
possible to measure gene expression in microbrmhaanities on a large scale. The respective appezach
have been termed metatranscriptomics and metapnatel, 2]. Metatranscriptomics is an umbrella
term for methods that measure the transcriptioal$em microbial communities and metaproteomics is
the corresponding term for methods that measurprtitein abundances in microbial communities. The
outputs of both methods are tables which list geqpression values for individual genes (rows) acros
multiple samples (columns). See the first workslre#te supplemental table for a simulated example
(Supplementary Table S1). For metatranscriptontiesexpression values are usually based on the
counting of reads mapped to a set of referencesfiger@omes. For metaproteomics, the expressions/alue
are based on the number of spectra matching teerefe protein sequences (spectral counting based
methods) or on the chromatographic peak intensifigeptides that match to reference protein setpgen
[3]. These raw counts or intensities are usuallyveoted into proportional (relative) data that give
individual gene expression values as a fractioh. dtis conversion process is part of the data

normalization discussed below.

Initially metatranscriptomics and metaproteomicsenmostly used for discovery based studies that
addressed the question which genes are exprestesldommunity and which proteins are the most
important players [4, 5]. In more recent years aesgers have started to use these methods foreimor
depth investigation of how gene expression diffesveen different environmental sites, seasonsair r
or artificially induced changes (e.g. [6-8]). So are now entering an era in which we start applying
differential metatranscriptomics and metaproteonftesfar most differential meta-omics studies have
used makeshift adaptations of well-establisheadbfitial transcriptomics and proteomics methods tha

were developed for single-organism applications.

Metatranscriptomics and metaproteomics come wiir thwn specific set of methodological challenges
including, for example, sample extraction biasestaminants, the construction of suitable reference
databases and problems with database redundafbese challenges are or will be discussed elsewhere
[9-11].

Here | will discuss data normalization for diffeti@hgene expression analyses of metatranscript@ames
metaproteomes, which differs in part from the ndization steps required for differential transcoiptics
and proteomics. To make samples comparable oneaagession level for transcriptomics and
proteomics the necessity for two normalization stepvidely accepted [12-15]: (i) In the first
normalization step, the expression values are tegjusr the gene/protein sequence length, whichf@an
example be done by simple division of the expressaues by gene length. This normalization step is
3
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justified by the fact that both metatranscriptonacsl the metaproteomics will yield higher raw
expression values (read counts, spectral courgsromed peptide intensities) for larger
transcripts/proteins. (ii) In the second normalaastep, the expression values are adjusted faatians

in the sum of expression values for each samplertoy. After this normalization step the sum of
expression values for each sample should be idéstaross all samples (e.g. if you normalize tdieé,
sum of each column should be 100). This normabpasiep is justified and needed because of tedhnica
variations between sample runs. In nextSeq baséatnaescriptomics each sample will for exampledyiel
a different number of total reads, while in metapomics variation between runs can lead to diffeean
total spectral counts or peptide intensities. Thesenalization steps have been implemented in many
different forms for both transcriptomics and protecs and are reviewed elsewhere [12-14]. Suitable
implementations of this normalization scheme fangcriptomics are the transcripts per million (TPMs
metric [12] and for proteomics either normalizeédapal abundance factors (NSAFs) [14, 16] or for
peptide intensities MaxLFQ [17].

For metatranscriptomes and metaproteomes an awftlitevel of variation needs to be considered when
comparing expression differences between geneglofidual organisms. This additional level is
variation of organism abundances between sampke &h important differentiation has to be made, as

the kind of normalization required in meta-omesyvauch depends on the exact question asked:

(a) If your question is of the type: “Does the expressifgeneA contribute a higher number of
transcripts/protein mass @MMUNITY 1 as compared toOMMUNITY 2?” OR “Which genes
differ in contribution to total community transdripumber or protein mass betwesDMMUNITY 1
andCOMMUNITY 2?”, then the above described two-step normalizagtheme for transcriptomics
and proteomics is perfectly adequate. To givedamacrete example for such questions (1) “Is the
human structural protein collagen enriched in tiestinal microbiome samples cffSONL
versus BRSON2?” and (2) “Are Carbohydrate-Active Enzym&AZymes) overall more
abundantly expressed @OMMUNITY 1 as compared tDOMMUNITY 2

(b) If your question is of the type: “Is the expressidigeneA from SPECIESX higher in $ECIEX in
COMMUNITY 1 as compared toPECIESX in COMMUNITY 2?” OR“Which genes differ in expression
betweencOMMUNITY 1 andCOMMUNITY 2 on the species level*hen the above described two-
step normalization scheme for transcriptomics aatepmics by itself is not valid. As | will
prove here, an additional normalization step iddedeafter the two-step normalization to account

for variation in species/strain abundances betvgaamples.

Generally, there are at least two ways to providdemce or proof for this. First, one could generat

empirical data using two or more mock communitieglenwith the same species, but different species

4
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abundances. This data could then be used to validamalizations methods. Such mock community
studies have helped to validate other omics metfad=nvironmental microbiology in the past e.g.
methods for quantitative metagenomic sequencingl@B The second approach that one can usesn thi
case is to do a thought experiment to show thatoheparison of expression values is invalid if diaga is
not corrected for variation in species abundan@ach sample (and valid if the correction is dohejl|

use simulated datasets that represent two extrases dor this thought experiment.
Tore-iterate the assumptions:

(1) Gene expression is measured for a microbial commwiih >1 species.
(2) Gene expression values have been normalized tolgegia and the sum of expression values in
each sample (column).

(3) We ask a question of the type (b) above.
Proof:

In the first worksheet of the supplemental tabkgimplest case of a microbial community is shosvre
with only two community member species. To keegpritple, | assume that for each of the two species
gene expression was detected for 50 genes anthéhexpression of all genes is identical. To emizleas
the importance of replication for differential o®if20], | show 6 replicate columns; although fae th

purpose of this proof replication is not reallyenednt.

To show the effect of relative species abundantlearcommunity on gene expression data | have
simulated the gene expression data for two dis§peties abundance profiles. Samples 1 througimé co
from a community in which both species have theesabundance (1:1 abundance ratio). In samples 7 to
12 the same exact gene expression patterns arenshotexpression values have been adjusted to be
coming from a very different species abundanceilpr@8pecies ratio is 20:1). Without the need for
statistical tests, it becomes immediately clear tive expression of individual genes would be abersid

to be different between the two community typessTnoves that for type (b) questions two-step

normalized data is not sufficient.
How to normalize expression data for species abundances?

Now the question is of course how to actually ndizeathe data to species abundance. The simplagst wa
is to normalize the expression values for each aamd species to a constant value (i.e. the sum of
expression values for each species in each sammplgdsbe the same after normalization), which make
expression values comparable across samples affebeof different species abundance profiles is

removed. A simple implementation of this is showihie second worksheet of the supplemental talvie. A

5
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implementation of this procedure for spectral coghbased metaproteomics was published by Mueller e
al. [21] and has been used in many other metaprotscstudies [7, 22, 23]. One important thing teat
before normalizing to species/strains is that tlaeeeenough measurements (e.g. read counts, dpectra
counts) for the species/strain to be normalized'les is crucial to avoid skewing the data simpigéuse

there are only very few transcripts/proteins ta@bmrsidered for the respective species/strain.

Normalization to species could actually be abolisti@nly the reference genome/protein sequences of
the organism of interest were used for generatisgekpression profile data by read mapping or splect
counting. However, using only a subset of referesarpiences for the generation of expression data
carries the danger of reads or spectra falsely mgpp this reference due to the absence of the
potentially better matching reference sequencéseobther community members. For
metatranscriptomics this can be alleviated by usery strict read mapping criteria, i.e. only userts
from reads mapped with very high identity. For rpetéeomics, the strategy of only using the target
organism reference genome cannot be recommendealjseespectra that would match non-uniquely to
multiple sequences if the complete database we nsay match uniquely to a single protein sequénce

a limited set of sequences is used (for more detailthe so called protein inference problem sép.[2

There are several alternative approaches to daiasic normalization that could be used. First,
abundance profile data obtained with other metheds,16S rRNA amplicon sequencing or metagenomic
sequencing, could be used to correct expressiaesdbr each sample. However, this kind of datehinig
bring its own skews and biases into the normabraprocedure. Second, spiking in of known amouhts o
MRNA or protein into samples prior to extractioloaks estimating transcript or protein abundances in
relation to the standard. This spike in strategy mavide absolute per cell quantification if calimbers

are determined prior to extraction [10, 25].

A normalization of expression values to housekegpgemes, which is sometimes used for transcriptomic
and proteomic data [26] can currently not be usednietatranscriptomics and metaproteomic data. A
housekeeping gene based normalization requireshidiousekeeping gene in question is quantified as
function of cell number or cell mass for all coimtits that will be considered in a differential eaggion
experiment. In theory, such a correlation of celinber with housekeeping gene expression could be
measured for members of a microbial community lgygising a combination of mMRNA FISH with 16S
rRNA FISH, however, the effort required for thigses prohibitive, particularly since much simpler

methods are already available.

What comes after normalization?
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Of course, the normalization steps are only a spaatl of the workflow for looking at gene expressio
differences. After normalization of the data, siemphecks should be done to test the overall valafit

the data and to discover potential sample mixupisadike. This can, for example, be done by hiergath
clustering or principal component analysis of sasjlased on expression values. Here you shoukltl see
separation of samples based on the sampling sigsnditions used. If all seems in order, one can
proceed with statistical testing for differenti@ng expression. Statistical methods for differégene
expression analyses, which have to account fomthliéple testing problem, missing values and thet fa
that the normalized gene expression data represemfgositional data, are discussed elsewhere [A5, 2
29].
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