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Abstract 19 

Metatranscriptomics and metaproteomics make it possible to measure gene expression in microbial 20 

communities. So far these approaches were mostly used to get a general overview of the dominant 21 

metabolism and physiologies of community members. Recently, environmental microbiologists have 22 

started using metatranscriptomics and metaproteomics to look at gene expression differences between 23 

different environments or conditions. This has been mostly done by using makeshift adaptations of pure 24 

culture focused differential transcriptomics and proteomics approaches. However, since meta-omics data 25 

has many more variables attached to it as compared to pure culture derived data, such makeshift 26 

adaptations are problematic at best. One particular challenge is posed by the data normalization strategies 27 

used to account for technical and biological variables in meta-omic data. Here I discuss the most common 28 

normalization strategy for transcriptomic and proteomic data and why it is not valid by itself for meta-29 

omic data. I provide logical proof that variation in species abundances between samples is an additional 30 

variable that must be accounted for during normalization of meta-omic data. Finally, I show how the 31 

existing normalization methods for transcriptomic and proteomic data can be augmented to be applicable 32 

to meta-omic data. 33 
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Main Text 34 

In the last decade technological advances in sequencing technology and mass spectrometry have made it 35 

possible to measure gene expression in microbial communities on a large scale. The respective approaches 36 

have been termed metatranscriptomics and metaproteomics [1, 2]. Metatranscriptomics is an umbrella 37 

term for methods that measure the transcription levels in microbial communities and metaproteomics is 38 

the corresponding term for methods that measure the protein abundances in microbial communities. The 39 

outputs of both methods are tables which list gene expression values for individual genes (rows) across 40 

multiple samples (columns). See the first worksheet in the supplemental table for a simulated example 41 

(Supplementary Table S1). For metatranscriptomics, the expression values are usually based on the 42 

counting of reads mapped to a set of reference genes/genomes. For metaproteomics, the expression values 43 

are based on the number of spectra matching to reference protein sequences (spectral counting based 44 

methods) or on the chromatographic peak intensities of peptides that match to reference protein sequences 45 

[3]. These raw counts or intensities are usually converted into proportional (relative) data that gives 46 

individual gene expression values as a fraction of 1. This conversion process is part of the data 47 

normalization discussed below. 48 

Initially metatranscriptomics and metaproteomics were mostly used for discovery based studies that 49 

addressed the question which genes are expressed in the community and which proteins are the most 50 

important players [4, 5]. In more recent years researchers have started to use these methods for a more in 51 

depth investigation of how gene expression differs between different environmental sites, seasons or real 52 

or artificially induced changes (e.g. [6-8]). So we are now entering an era in which we start applying 53 

differential metatranscriptomics and metaproteomics. So far most differential meta-omics studies have 54 

used makeshift adaptations of well-established differential transcriptomics and proteomics methods that 55 

were developed for single-organism applications. 56 

Metatranscriptomics and metaproteomics come with their own specific set of methodological challenges 57 

including, for example, sample extraction biases, contaminants, the construction of suitable reference 58 

databases and problems with database redundancies. These challenges are or will be discussed elsewhere 59 

[9-11]. 60 

Here I will discuss data normalization for differential gene expression analyses of metatranscriptomes and 61 

metaproteomes, which differs in part from the normalization steps required for differential transcriptomics 62 

and proteomics. To make samples comparable on a gene expression level for transcriptomics and 63 

proteomics the necessity for two normalization steps is widely accepted [12-15]: (i) In the first 64 

normalization step, the expression values are adjusted for the gene/protein sequence length, which can for 65 

example be done by simple division of the expression values by gene length. This normalization step is 66 
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justified by the fact that both metatranscriptomics and the metaproteomics will yield higher raw 67 

expression values (read counts, spectral counts or summed peptide intensities) for larger 68 

transcripts/proteins. (ii) In the second normalization step, the expression values are adjusted for variations 69 

in the sum of expression values for each sample (column). After this normalization step the sum of 70 

expression values for each sample should be identical across all samples (e.g. if you normalize to %, the 71 

sum of each column should be 100). This normalization step is justified and needed because of technical 72 

variations between sample runs. In nextSeq based metatranscriptomics each sample will for example yield 73 

a different number of total reads, while in metaproteomics variation between runs can lead to difference in 74 

total spectral counts or peptide intensities. These normalization steps have been implemented in many 75 

different forms for both transcriptomics and proteomics and are reviewed elsewhere [12-14]. Suitable 76 

implementations of this normalization scheme for transcriptomics are the transcripts per million (TPMs) 77 

metric [12] and for proteomics either normalized spectral abundance factors (NSAFs) [14, 16] or for 78 

peptide intensities MaxLFQ [17]. 79 

For metatranscriptomes and metaproteomes an additional level of variation needs to be considered when 80 

comparing expression differences between genes of individual organisms. This additional level is 81 

variation of organism abundances between samples. Here an important differentiation has to be made, as 82 

the kind of normalization required in meta-omes very much depends on the exact question asked: 83 

(a) If your question is of the type: “Does the expression of geneA contribute a higher number of 84 

transcripts/protein mass to COMMUNITY1 as compared to COMMUNITY2?” OR “Which genes 85 

differ in contribution to total community transcript number or protein mass between COMMUNITY1 86 

and COMMUNITY2?”, then the above described two-step normalization scheme for transcriptomics 87 

and proteomics is perfectly adequate.  To give two concrete example for such questions (1) “Is the 88 

human structural protein collagen enriched in the intestinal microbiome samples of PERSON1 89 

versus PERSON2?” and (2) “Are Carbohydrate-Active Enzymes (CAZymes) overall more 90 

abundantly expressed in COMMUNITY1 as compared to COMMUNITY2 91 

(b) If your question is of the type: “Is the expression of geneA from SPECIESX higher in SPECIESX in 92 

COMMUNITY1 as compared to SPECIESX in COMMUNITY2?” OR “Which genes differ in expression 93 

between COMMUNITY1 and COMMUNITY2 on the species level?”, then the above described two-94 

step normalization scheme for transcriptomics and proteomics by itself is not valid. As I will 95 

prove here, an additional normalization step is needed after the two-step normalization to account 96 

for variation in species/strain abundances between samples. 97 

Generally, there are at least two ways to provide evidence or proof for this. First, one could generate 98 

empirical data using two or more mock communities made with the same species, but different species 99 
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abundances. This data could then be used to validate normalizations methods. Such mock community 100 

studies have helped to validate other omics methods for environmental microbiology in the past e.g. 101 

methods for quantitative metagenomic sequencing [18, 19].  The second approach that one can use in this 102 

case is to do a thought experiment to show that the comparison of expression values is invalid if the data is 103 

not corrected for variation in species abundance in each sample (and valid if the correction is done). I will 104 

use simulated datasets that represent two extreme cases for this thought experiment. 105 

To re-iterate the assumptions: 106 

(1) Gene expression is measured for a microbial community with >1 species. 107 

(2) Gene expression values have been normalized to gene length and the sum of expression values in 108 

each sample (column). 109 

(3) We ask a question of the type (b) above. 110 

Proof: 111 

In the first worksheet of the supplemental table the simplest case of a microbial community is shown: one 112 

with only two community member species. To keep it simple, I assume that for each of the two species 113 

gene expression was detected for 50 genes and that the expression of all genes is identical. To emphasize 114 

the importance of replication for differential omics [20], I show 6 replicate columns; although for the 115 

purpose of this proof replication is not really relevant.  116 

To show the effect of relative species abundance in the community on gene expression data I have 117 

simulated the gene expression data for two distinct species abundance profiles. Samples 1 through 6 come 118 

from a community in which both species have the same abundance (1:1 abundance ratio). In samples 7 to 119 

12 the same exact gene expression patterns are shown, but expression values have been adjusted to be 120 

coming from a very different species abundance profile (species ratio is 20:1). Without the need for 121 

statistical tests, it becomes immediately clear that the expression of individual genes would be considered 122 

to be different between the two community types. This proves that for type (b) questions two-step 123 

normalized data is not sufficient. 124 

How to normalize expression data for species abundances? 125 

Now the question is of course how to actually normalize the data to species abundance. The simplest way 126 

is to normalize the expression values for each sample and species to a constant value (i.e. the sum of 127 

expression values for each species in each sample should be the same after normalization), which make 128 

expression values comparable across samples as the effect of different species abundance profiles is 129 

removed. A simple implementation of this is shown in the second worksheet of the supplemental table. An 130 
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implementation of this procedure for spectral counting based metaproteomics was published by Mueller et 131 

al. [21] and has been used in many other metaproteomics studies [7, 22, 23]. One important thing to check 132 

before normalizing to species/strains is that there are enough measurements (e.g. read counts, spectral 133 

counts) for the species/strain to be normalized to. This is crucial to avoid skewing the data simply because 134 

there are only very few transcripts/proteins to be considered for the respective species/strain.  135 

Normalization to species could actually be abolished if only the reference genome/protein sequences of 136 

the organism of interest were used for generating the expression profile data by read mapping or spectral 137 

counting. However, using only a subset of reference sequences for the generation of expression data 138 

carries the danger of reads or spectra falsely mapping to this reference due to the absence of the 139 

potentially better matching reference sequences of the other community members. For 140 

metatranscriptomics this can be alleviated by using very strict read mapping criteria, i.e. only use counts 141 

from reads mapped with very high identity. For metaproteomics, the strategy of only using the target 142 

organism reference genome cannot be recommended, because spectra that would match non-uniquely to 143 

multiple sequences if the complete database were used, may match uniquely to a single protein sequence if 144 

a limited set of sequences is used (for more details on the so called protein inference problem see [24]). 145 

There are several alternative approaches to data intrinsic normalization that could be used. First, 146 

abundance profile data obtained with other methods, e.g. 16S rRNA amplicon sequencing or metagenomic 147 

sequencing, could be used to correct expression values for each sample. However, this kind of data might 148 

bring its own skews and biases into the normalization procedure. Second, spiking in of known amounts of 149 

mRNA or protein into samples prior to extraction allows estimating transcript or protein abundances in 150 

relation to the standard. This spike in strategy can provide absolute per cell quantification if cell numbers 151 

are determined prior to extraction [10, 25]. 152 

A normalization of expression values to housekeeping genes, which is sometimes used for transcriptomic 153 

and proteomic data [26] can currently not be used for metatranscriptomics and metaproteomic data. A 154 

housekeeping gene based normalization requires that the housekeeping gene in question is quantified as a 155 

function of cell number or cell mass for all conditions that will be considered in a differential expression 156 

experiment. In theory, such a correlation of cell number with housekeeping gene expression could be 157 

measured for members of a microbial community e.g. by using a combination of mRNA FISH with 16S 158 

rRNA FISH, however, the effort required for this seems prohibitive, particularly since much simpler 159 

methods are already available. 160 

What comes after normalization? 161 
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Of course, the normalization steps are only a small part of the workflow for looking at gene expression 162 

differences. After normalization of the data, simple checks should be done to test the overall validity of 163 

the data and to discover potential sample mixups and alike. This can, for example, be done by hierarchical 164 

clustering or principal component analysis of samples based on expression values. Here you should see a 165 

separation of samples based on the sampling sites or conditions used. If all seems in order, one can 166 

proceed with statistical testing for differential gene expression. Statistical methods for differential gene 167 

expression analyses, which have to account for the multiple testing problem, missing values and the fact 168 

that the normalized gene expression data represents compositional data, are discussed elsewhere [15, 27-169 

29].  170 
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