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Objects of more than three dimensions can be used to model geographic phenomena that

occur in space, time and scale. For instance, a single 4D object can be used to represent

the changes in a 3D object's shape across time or all its optimal representations at various

levels of detail. In this paper, we look at how such higher-dimensional space-time and

space-scale objects can be visualised as projections from \(\mathbb{R}^4\) to

\(\mathbb{R}^3\). We present three projections that we believe are particularly intuitive

for this purpose: (i) a simple `long axis' projection that puts 3D objects side by side; (ii) the

well-known orthographic and perspective projections; and (iii) a projection to a 3-sphere

(\(S^3\)) followed by a stereographic projection to \(\mathbb{R}^3\), which results in an

inwards-outwards fourth axis. Our focus is in using these projections from

\(\mathbb{R}^4\) to \(\mathbb{R}^3\), but they are formulated from \(\mathbb{R}^n\) to

\(\mathbb{R}^{n-1}\) so as to be easily extensible and to incorporate other non-spatial

characteristics. We present a prototype interactive visualiser that applies these projections

from 4D to 3D in real-time using the programmable pipeline and compute shaders of the

Metal graphics API.
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ABSTRACT9

Objects of more than three dimensions can be used to model geographic phenomena that occur in space,

time and scale. For instance, a single 4D object can be used to represent the changes in a 3D object’s

shape across time or all its optimal representations at various levels of detail. In this paper, we look

at how such higher-dimensional space-time and space-scale objects can be visualised as projections

from R
4 to R

3. We present three projections that we believe are particularly intuitive for this purpose: (i)

a simple ‘long axis’ projection that puts 3D objects side by side; (ii) the well-known orthographic and

perspective projections; and (iii) a projection to a 3-sphere (S3) followed by a stereographic projection

to R
3, which results in an inwards-outwards fourth axis. Our focus is in using these projections from R

4

to R
3, but they are formulated from R

n to R
n21 so as to be easily extensible and to incorporate other

non-spatial characteristics. We present a prototype interactive visualiser that applies these projections

from 4D to 3D in real-time using the programmable pipeline and compute shaders of the Metal graphics

API.
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BACKGROUND22

Projecting the 3D nature of the world down to two dimensions is one of the most common problems at23

the juncture of geographic information and computer graphics, whether as the map projections in both24

paper and digital maps (Snyder, 1987; Grafarend and You, 2014) or as part of an interactive visualisation25

of a 3D city model on a computer screen (Foley and Nielson, 1992; Shreiner et al., 2013). However,26

geographic information is not inherently limited to objects of three dimensions. Non-spatial characteristics27

such as time (Hägerstrand, 1970; Güting et al., 2000; Hornsby and Egenhofer, 2002; Kraak, 2003) and28

scale (Meijers, 2011a) are often conceived and modelled as additional dimensions, and objects of three or29

more dimensions can be used to model objects in 2D or 3D space that also have changing geometries30

along these non-spatial characteristics (van Oosterom and Stoter, 2010; Arroyo Ohori, 2016). For example,31

a single 4D object can be used to represent the changes in a 3D object’s shape across time or all the best32

representations of a 3D object at various levels of detail (van Oosterom and Meijers, 2014; Arroyo Ohori33

et al., 2015a,c).34

Objects of more than three dimensions can be however unintuitive (Noll, 1967; Frank, 2014), and35

visualising them is a challenge. While some operations on a higher-dimensional object can be achieved by36

running automated methods (e.g. certain validation tests or area/volume computations) or by visualising37

only a chosen 2D or 3D subset (e.g. some of its bounding faces or a cross-section), sometimes there is38

no substitute for being able to view a complete nD object—much like viewing floor or façade plans is39

often no substitute for interactively viewing the complete 3D model of a building. By viewing a complete40

model, one can see at once the 3D objects embedded in the model at every point in time or scale as well41

as the equivalences and topological relationships between their constituting elements. More directly, it42

also makes it possible to get an intuitive understanding of the complexity of a given 4D model.43

For instance, in Fig. 1 we show an example of a 4D model representing a house at two different levels44

of detail and all the equivalences its composing elements. It forms a valid manifold 4-cell (Arroyo Ohori45
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(a) (b)

(c) (d)

Figure 1. A 4D model of a house at two levels of detail and all the equivalences its composing elements

is a polychoron bounded by: (a) volumes representing the house at the two levels of detail, (b) a

pyramidal volume representing the window at the higher LOD collapsing to a vertex at the lower LOD, (c)

a pyramidal volume representing the door at the higher LOD collapsing to a vertex at the lower LOD, and

a roof volume bounded by (a) the roof faces of the two LODs, (b) the ridges at the lower LOD collapsing

to the tip at the higher LOD and (c) the hips at the higher LOD collapsing to the vertex below them at the

lower LOD. (d) A 3D cross-section of the model obtained at the middle point along the LOD axis.

et al., 2014), allowing it to be represented using data structures such as a 4D generalised or combinatorial46

map.47

This paper thus looks at a key aspect that allows higher-dimensional objects to be visualised inter-48

actively, namely how to project higher-dimensional objects down to fewer dimensions. While there is49

previous research on the visualisation of higher-dimensional objects, we aim to do so in a manner that is50

reasonably intuitive, implementable and fast. We therefore discuss some relevant practical concerns, such51

as how to also display edges and vertices and how to use compute shaders to achieve good framerates in52

practice.53

In order to do this, we first briefly review the most well-known transformations (translation, rotation54

and scale) and the cross-product in nD, which we use as fundamental operations in order to project55

objects and to move around the viewer in an nD scene. Afterwards, we show how to apply three different56

projections from R
n to R

n21 and argue why we believe they are intuitive enough for real-world use. These57

can be used to project objects from R
4 to R

3, and if necessary, they can be used iteratively in order to58

bring objects of any dimension down to 3D or 2D. We thus present: (i) a simple ‘long axis’ projection59

that stretches objects along one custom axis while preserving all other coordinates, resulting in 3D objects60

that are presented side by side; (ii) the orthographic and perspective projections, which are analogous to61

those used from 3D to 2D; and (iii) an inwards/outwards projection to an (n21)-sphere followed by an62

stereographic projection to R
n21, which results in a new inwards-outwards axis.63

We present a prototype that applies these projections from 4D to 3D and then applies a standard64

perspective projection down to 2D. We also show that with the help of low-level graphics APIs, all the65

required operations can be applied at interactive framerates for the 4D to 3D case. We finish with a66

discussion of the advantages and disadvantages of this approach.67
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Higher-dimensional modelling of space, time and scale68

There are a great number of models of geographic information, but most consider space, time and scale69

separately. For instance, space can be modelled using primitive instancing (Foley et al., 1995; Kada,70

2007), constructive solid geometry (Requicha and Voelcker, 1977) or various boundary representation71

approaches (Muller and Preparata, 1978; Guibas and Stolfi, 1985; Lienhardt, 1994), among others.72

Time can be modelled on the basis of snapshots (Armstrong, 1988; Hamre et al., 1997), space-time73

composites (Peucker and Chrisman, 1975; Chrisman, 1983), events (Worboys, 1992; Peuquet, 1994;74

Peuquet and Duan, 1995), or a combination of all of these (Abiteboul and Hull, 1987; Worboys et al.,75

1990; Worboys, 1994; Wachowicz and Healy, 1994). Scale is usually modelled based on independent76

datasets at each scale (Buttenfield and DeLotto, 1989; Friis-Christensen and Jensen, 2003; Meijers, 2011b),77

although approaches to combine them into single datasets (Gröger et al., 2012) or to create progressive78

and continuous representations also exist (Ballard, 1981; Jones and Abraham, 1986; Günther, 1988; van79

Oosterom, 1990; Filho et al., 1995; Rigaux and Scholl, 1995; Plümer and Gröger, 1997; van Oosterom,80

2005).81

As an alternative to the all these methods, it is possible to represent any number of parametrisable82

characteristics (e.g. two or three spatial dimensions, time and scale) as additional dimensions in a83

geometric sense, modelling them as orthogonal axes such that real-world 0D–3D entities are modelled as84

higher-dimensional objects embedded in higher-dimensional space. These objects can be consequently85

stored using higher-dimensional data structures and representation schemes Čomić and de Floriani (2012);86

Arroyo Ohori et al. (2015b). Possible approaches include incidence graphs Rossignac and O’Connor87

(1989); Masuda (1993); Sohanpanah (1989); Hansen and Christensen (1993), Nef polyhedra Bieri and88

Nef (1988), and ordered topological models Brisson (1993); Lienhardt (1994). This is consistent with the89

basic tenets of n-dimensional geometry (Descartes, 1637; Riemann, 1868) and topology (Poincaré, 1895),90

which means that it is possible to apply a wide variety of computational geometry and topology methods91

to these objects.92

In a practical sense, 4D topological relationships between 4D objects provide insights that 3D93

topological relationships cannot (Arroyo Ohori et al., 2013). Also, McKenzie et al. (2001) contends that94

weather and groundwater phenomena cannot be adequately studied in less than four dimensions, and95

van Oosterom and Stoter (2010) argue that the integration of space, time and scale into a 5D model for96

GIS can be used to ease data maintenance and improve consistency, as algorithms could detect if the 5D97

representation of an object is self-consistent and does not conflict with other objects.98

Basic transformations and the cross-product in nD99

The basic transformations (translation, scale and rotation) have a straightforward definition in n dimensions,100

which can be used to move and zoom around a scene composed of nD objects. In addition, the n-101

dimensional cross-product can be used to obtain a new vector that is orthogonal to a set of other n21102

vectors in R
n. We use these operations as a base for nD visualisation and are thus described briefly below.103

The translation of a set of points in R
n can be easily expressed as a sum with a vector t = [t0, . . . , tn],104

or alternatively as a multiplication with a matrix using homogeneous coordinates, which is defined as:105

T =

þ

ÿ

ÿ

ÿ

ÿ

ÿ

ø

1 0 · · · 0 t0
0 1 · · · 0 t1
...

...
. . .

...
...

0 0 · · · 1 tn
0 0 · · · 0 1

ù

ú

ú

ú

ú

ú

û

Scaling is similarly simple. Given a vector s = [s0,s1, . . . ,sn] that defines a scale factor per axis (which106

in the simplest case can be the same for all axes), it is possible to define a matrix to scale an object as:107

S =

þ

ÿ

ÿ

ÿ

ø

s0 0 · · · 0

0 s1 · · · 0
...

...
. . .

...

0 0 · · · sn

ù

ú

ú

ú

û
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Rotation is somewhat more complex. Rotations in 3D are often conceptualised intuitively as rotations108

around the x, y and z axes. However, this view of the matter is only valid in 3D. In higher dimensions, it109

is necessary to consider instead rotations parallel to a given plane (Hollasch, 1991), such that a point that110

is continuously rotated (without changing the rotation direction) will form a circle that is parallel to that111

plane. This view is valid in 2D (where there is only one such plane), in 3D (where a plane is orthogonal to112

the usually defined axis of rotation) and in any higher dimension. Incidentally, this shows that the degree113

of rotational freedom in nD is given by the number of possible combinations of two axes (which define a114

plane) on that dimension (Hanson, 1994), i.e.
�

n
2

�

.115

Thus, in a 4D coordinate system defined by the axes x, y, z and w, it is possible to define six 4D116

rotation matrices, which correspond to the six rotational degrees of freedom in 4D (Hanson, 1994). These117

respectively rotate points in R
4 parallel to the xy, xz, xw, yz, yw and zw planes:118

Rxy =

þ

ÿ

ÿ

ø

cosθ 2sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1

ù

ú

ú

û

Rxz =

þ

ÿ

ÿ

ø

cosθ 0 2sinθ 0

0 1 0 0

sinθ 0 cosθ 0

0 0 0 1

ù

ú

ú

û

Rxw =

þ

ÿ

ÿ

ø

cosθ 0 0 2sinθ

0 1 0 0

0 0 1 0

sinθ 0 0 cosθ

ù

ú

ú

û

Ryz =

þ

ÿ

ÿ

ø

1 0 0 0

0 cosθ 2sinθ 0

0 sinθ cosθ 0

0 0 0 1

ù

ú

ú

û

Ryw =

þ

ÿ

ÿ

ø

1 0 0 0

0 cosθ 0 2sinθ

0 0 1 0

0 sinθ 0 cosθ

ù

ú

ú

û

Rzw =

þ

ÿ

ÿ

ø

1 0 0 0

0 1 0 0

0 0 cosθ 2sinθ

0 0 sinθ cosθ

ù

ú

ú

û

The n-dimensional cross-product is easy to understand by first considering the lower-dimensional119

cases. In 2D, it is possible to obtain a normal vector to a 1D line as defined by two (different) points p0
120

and p1, or equivalently a normal vector to a vector from p0 to p1. In 3D, it is possible to obtain a normal121

vector to a 2D plane as defined by three (non-collinear) points p0, p1 and p2, or equivalently a normal122

vector to a pair of vectors from p0 to p1 and from p0 to p2. Similarly, in nD it is possible to obtain a123

normal vector to a (n21)D subspace—probably easier to picture as an (n21)-simplex—as defined by n124

linearly independent points p0, p1, . . . , pn21, or equivalently a normal vector to a set of n21 vectors from125

p0 to every other point (i.e. p1, p2, . . . , pn21) (Massey, 1983; Elduque, 2004).126

Hanson (1994) follows the latter explanation using a set of n2 1 vectors all starting from the first127

point to give an intuitive definition of the n-dimensional cross-product. Assuming that a point pi in R
n is128

defined by a tuple of coordinates denoted as (pi
0, pi

1, . . . , pi
n21) and a unit vector along the i-th dimension129

is denoted as x̂i, the n-dimensional cross-product �N of a set of points p0, p1, . . . , pn21 can be expressed130

compactly as the cofactors of the last column in the following determinant:131

�N =

�

�

�

�

�

�

�

�

�

(p1
0 2 p0

0) (p2
0 2 p0

0) · · · (pn21
0 ) x̂0

(p1
1 2 p0

1) (p2
1 2 p0

1) · · · (pn21
1 ) x̂1

...
...

. . .
...

...

(p1
n21 2 p0

n21) (p2
n21 2 p0

n21) · · · (pn21
n21) x̂n21

�

�

�

�

�

�

�

�

�

The components of the normal vector �N are thus given by the minors of the unit vectors x̂0, x̂1, . . . , x̂n21.132

This vector �N—like all other vectors—can be normalised into a unit vector by dividing it by its norm133
�

��N
�

�.134

Previous work on the visualisation of higher-dimensional objects135

There is a reasonably extensive body of work on the visualisation of 4D and nD objects, although it is136

still more often used for its creative possibilities (e.g. making nice-looking graphics) than for practical137

applications. In literature, visual metaphors of 4D space were already described in the 1880s in Flatland:138

4/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2844v1 | CC BY 4.0 Open Access | rec: 2 Mar 2017, publ: 2 Mar 2017



A Romance of Many Dimensions (Abbott, 1884) and A New Era of Thought (Hinton, 1888). Other books139

that treat the topic intuitively include Beyond the Third Dimension: Geometry, Computer Graphics, and140

Higher Dimensions (Banchoff, 1996) and The Visual Guide To Extra Dimensions: Visualizing The Fourth141

Dimension, Higher-Dimensional Polytopes, And Curved Hypersurfaces (McMullen, 2008).142

In a more concrete computer graphics context, already in the 1960s, Noll (1967) described a computer143

implementations of the 4D to 3D perspective projection and its application in art (Noll, 1968).144

Beshers and Feiner (1988) describe a system that displays animating (i.e. continuously transformed)145

4D objects that are rendered in real-time and use colour intensity to provide a visual cue for the 4D depth.146

It is extended to n dimensions by Feiner and Beshers (1990).147

Banks (1992) describes a system that manipulates surfaces in 4D space. It describes interaction148

techniques and methods to deal with intersections, transparency and the silhouettes of every surface.149

Hanson and Cross (1993) describes a high-speed method to render surfaces in 4D space with shading150

using a 4D light and occlusion, while Hanson (1994) describes much of the mathematics that are necessary151

for nD visualisation. A more practical implementation is described in Hanson et al. (1999).152

Chu et al. (2009) describe a system to visualise 2-manifolds and 3-manifolds embedded in 4D space153

and illuminated by 4D light sources. Notably, it uses a custom rendering pipeline that projects tetrahedra154

in 4D to volumetric images in 3D—analogous to how triangles in 3D that are usually projected to 2D155

images.156

A different possible approach lies in using meaningful 3D cross-sections of a 4D dataset. For instance,157

Kageyama (2016) describes how to visualise 4D objects as a set of hyperplane slices. Bhaniramka et al.158

(2000) describe how to compute isosurfaces in dimensions higher than three using an algorithm similar to159

marching cubes. D’Zmura et al. (2000) describe a system that displays 3D cross-sections of a 4D virtual160

world one at a time.161

Similar to the methods described above, Hollasch (1991) gives a simple formulation to describe the 4D162

to 3D projections, which is itself based on the 3D to 2D orthographic and perspective projection methods163

described by Foley and Nielson (1992). This is the method that we extend to define n-dimensional164

versions of these projections and is thus explained in greater detail below. The mathematical notation is165

however changed slightly so as to have a cleaner extension to higher dimensions.166

In order to apply the required transformations, Hollasch (1991) first defines a point f rom * R
4 where167

the viewer (or camera) is located, a point to * R
4 that the viewer directly points towards, and a set of168

two vectors 2³up and 22³over. Based on these variables, he defines a set of four unit vectors â, b̂, ĉ and d̂ that169

define the axes of a 4D coordinate system centred at the f rom point. These are ensured to be orthogonal170

by using the 4D cross-product to compute them, such that:171

d̂ =
to2 f rom

�

�to2 f rom
�

�

â =
up×over× d̂

�

�up×over× d̂
�

�

b̂ =
over× d̂ × â

�

�over× d̂ × â
�

�

ĉ = d̂ × â× b̂

Note two aspects in the equations above: (i) that the input vectors 2³up and 22³over are left unchanged (i.e.172

b̂ =2³up and ĉ =22³over) if they are already orthogonal to each other and orthogonal to the vector from f rom173

to to (i.e. to2 f rom), and (ii) that the last vector ĉ does not need to be normalised since the cross-product174

already returns a unit vector. These new unit vectors can then be used to define a transformation matrix to175

transform the 4D coordinates into a new set of points E (as in eye coordinates) with a coordinate system176

with the viewer at its centre and oriented according to the unit vectors. The points are given by:177

E =
�

P2 f rom
��

â b̂ ĉ d̂
�

For an orthographic projection given E = [ e0 e1e2 e3 ], the first three columns e0, e1 and e2 can be178

used as-is, while the fourth column e3 defines the orthogonal distance to the viewer (i.e. the depth).179
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Figure 2. The geometry of a 4D perspective projection along the x axis for a point p. By analysing the

depth along the depth axis given by e3, it is possible to see that the coordinates of the point along the x

axis, given by e0, are scaled inwards in order to obtain e20 based on the viewing angle ϑ . Note that x̂n21 is

an arbitrary viewing hyperplane and another value can be used just as well.

Finally, in order to obtain a perspective projection, he scales the points inwards in direct proportion to180

their depth. Starting from E, he computes E 2 = [ e20 e21e22 e23 ] as:181

e20 =
e0

e3 tanϑ/2

e21 =
e1

e3 tanϑ/2

e22 =
e2

e3 tanϑ/2

e23 = e3

Where ϑ is the viewing angle between x and the line between the f rom point and every point as182

shown in Fig. 2. A similar computation is done for y and z. In E 2, the first three columns (i.e. e20, e21 and183

e22) similarly give the 3D coordinates for a perspective projection of the 4D points while the fourth column184

is also the depth of the point.185

METHODOLOGY186

We present here three different projections from R
n to R

n21 which can be applied iteratively to bring187

objects of any dimension down to 3D for display. We three projections that are reasonably intuitive in188

4D to 3D: a ‘long axis’ projection that puts 3D objects side by side, the orthographic and perspective189

projections that work in the same way as their 3D to 2D analogues, and a projection to an (n21)-sphere190

followed by a stereographic projection to R
n21.191

‘Long axis’ projection192

First we aim to replicate the idea behind the example previously shown in Fig. 1—a series of 3D objects193

that are shown next to each other, seemingly projected separately with the correspondences across194

scale or time shown as long edges (as in Fig. 1) or faces connecting the 3D objects. Edges would join195

correspondences between vertices across the models, while faces would join correspondences between196

elements of dimension up to one (e.g. a pair of edges, or an edge and a vertex). Since every 3D object is197

apparently projected separately using a perspective projection to 2D, it is thus shown in the same intuitive198

way in which a single 3D object is projected down to 2D. The result of this projection is shown in Fig. 3a.199

Although to the best of our knowledge this projection does not have a well-known name, it is widely200

used in explanations of 4D and nD geometry—especially when drawn by hand or when the intent is201

to focus on the connectivity between different elements. For instance, it is usually used in the typical202

explanation for how to construct a tesseract, i.e. a 4-cube or the 4D analogue of a 2D square or 3D cube,203

which is based on drawing two cubes and connecting the corresponding vertices between the two (Fig. 4).204

Among other examples in the scientific literature, this kind of projection can be seen in Figure 2 in Yau205

and Srihari (1983), Figure 3.4 in Hollasch (1991), Figure 3 in Blanchoff and Cervone (1992), Figures 1–4206
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(a)

(b) (c)

Figure 3. A model of a 4D house similar to the example shown previously in Fig. 1, here including also

a window and a door that are collapsed to a vertex in the 3D object at the lower level of detail. (a) shows

the two 3D objects positioned as in Fig. 1, (b) rotates these models 90ç so that the front of the house is on

the right, and (c) orients the two 3D objects front to back. Many more interesting views are possible, but

these show the correspondences particularly clearly. Unlike the other model, this one was generated with

4D coordinates and projected using our prototype that applies the projection described in this section.

Figure 4. The typical explanation for how to draw the vertices and edges in an i-cube. Starting from a

single vertex representing a point (i.e. a 0-cube), an (i+1)-cube can be created by drawing two i-cubes

and connecting the corresponding vertices of the two. Image credit: Wikimedia Commons.
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(a) (b)

(c) (d)

Figure 5. The 4D house model projected down to 3D using an orthographic projection. The different

views are obtained by applying different rotations in 4D. The less and more detailed 3D models can be

found by looking at where the door and window are collapsed.

in Arenas and Pérez-Aguila (2006), Figure 6 in Grasset-Simon et al. (2006), Figure 1 in Paul (2012) and207

Figure 16 in van Oosterom and Meijers (2014).208

Conceptually, describing this projection from n to n21 dimensions, which we hereafter refer to as209

a ‘long axis’ projection, is very simple. Considering a set of points P in R
n, the projected set of points210

P2 in R
n21 is given by taking the coordinates of P for the first n2 1 axes and adding to them the last211

coordinate of P which is spread over all coordinates according to weights specified in a customisable212

vector x̂n. For instance, Fig. 3 uses x̂n = [2 0 0 ], resulting in 3D models that are 2 units displaced for every213

unit in which they are apart along the n-th axis. In matrix form, this kind of projection can then be applied214

as P2 = P[ I x̂n ].215

Orthographic and perspective projections216

Another reasonably intuitive pair of projections are the orthographic and perspective projections from217

nD to (n21)D. These treat all axes similarly and thus make it more difficult to see the different (n21)-218

dimensional models along the n-th axis, but they result in models that are much less deformed. Also,219

as shown in the 4D example in Fig. 5, it is easy to rotate models in such a way that the corresponding220

features are easily seen.221

Based on the description of 4D-to-3D orthographic and perspective projection described from Hollasch222

(1991), we here extend the method in order to describe the n-dimensional to (n21)-dimensional case,223

changing some aspects to give a clearer geometric meaning for each vector.224

Similarly, we start with a point f rom *R
n where the viewer is located, a point to *R

n that the viewer225

directly points towards (which can be easily set to the centre or centroid of the dataset), and a set of n22226

initial vectors 2³v 1, . . . ,
2³v n22 in R

n that are not all necessarily orthogonal but nevertheless are linearly227

independent from each other and from the vector to2 f rom. In this setup, the 2³v i vectors serve as a228

base to define the orientation of the system, much like the traditional 2³up vector that is used in 3D to 2D229
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projections and the 22³over vector described previously. From the above mentioned variables and using the230

nD cross-product, it is possible to define a new set of orthogonal unit vectors x̂0, . . . , x̂n21 that define the231

axes x0, . . . ,xn21 of a coordinate system in R
n as:232

x̂n21 =
to2 f rom

�

�to2 f rom
�

�

x̂0 =
2³v 1 ×·· ·×2³v n22 × x̂n21

�

�

2³v 1 ×·· ·×2³v n22 × x̂n21

�

�

x̂i =
2³v i+1 ×·· ·×2³v n22 × x̂n21 × x̂0 ×·· ·× x̂i21

�

�

2³v i+1 ×·· ·×2³v n22 × x̂n21 × x̂0 ×·· ·× x̂i21

�

�

x̂n22 = x̂n21 × x̂0 ×·· ·× x̂n22

The vector x̂n21 is the first that needs to be computed and is oriented along the line from the viewer233

( f rom) to the point that it is oriented towards (to). Afterwards, the vectors are computed in order from x̂0234

to x̂n22 as normalised n-dimensional cross products of n21 vectors. These contain a mixture of the input235

vectors 2³v 1, . . . ,
2³v n22 and the computed unit vectors x̂0, . . . , x̂n21, starting from n22 input vectors and236

one unit vector for x̂0, and removing one input vector and adding the previously computed unit vector for237

the next x̂i vector. Note that if 2³v 1, . . . ,
2³v n22 and x̂n21 are all orthogonal to each other, "0 < i < n21, x̂i238

is simply a normalised 2³v i.239

Like in the previous case, the vectors x̂0, . . . , x̂n21 can then be used to transform an m×n matrix of m240

nD points in world coordinates P into an m×n matrix of m nD points in eye coordinates E by applying241

the following transformation:242

E =
�

P2 f rom
��

x̂0 · · · x̂n21

�

As before, if E has rows of the form [ e0 ··· en21 ] representing points, e0, . . . ,en22 are directly usable as243

the coordinates in R
n21 of the projected point in an n-dimensional to (n21)-dimensional orthographic244

projection, while en21 represents the depth, i.e. the distance between the point and the projection245

(n2 1)-dimensional subspace, which can be used for visual cues1. The coordinates along e0, . . . ,en22246

could be made to fit within a certain bounding box by computing their extent along each axis, then247

scaling appropriately using the extent that is largest in proportion to the extent of the bounding box’s248

corresponding axis.249

For an n-dimensional to (n21)-dimensional perspective projection, it is only necessary to compute250

the distance between a point and the viewer along every axis by taking into account the viewing angle ϑ251

between x̂n21 and the line between the to point and every point. Intuitively, this means that if an object is252

n times farther than another identical object, it is depicted n times smaller, or 1
n

of its size. This situation253

is shown in Fig. 6 and results in new e20, . . . ,e
2
n22 coordinates that are shifted inwards. The coordinates254

are computed as:255

e2i =
ei

en21 tanϑ/2
, for 0 f i f n22

The (n2 1)-dimensional coordinates generated by this process can then be recursively projected256

down to progressively lower dimensions using this method. The objects represented by these coordinates257

can also be discretised into images of any dimension. For instance, Hanson (1994) describes how to258

perform many of the operations that would be required, such as dimension-independent clipping tests and259

ray-tracing methods.260

Stereographic projection261

A final projection possibility is to apply a stereographic projection from R
n to R

n21, which for us was262

partly inspired by Jenn 3D2 (Fig. 7). This program visualises polyhedra and polychora embedded in263

1Visual cues can still be useful in higher dimensions. See http://eusebeia.dyndns.org/4d/vis/08-hsr.
2http://www.math.cmu.edu/˜fho/jenn/
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Figure 6. The geometry of an nD perspective projection for a point p. By analysing each axis x̂i

("0 f i < n21) independently together with the final axis x̂n21, it is possible to see that the coordinates

of the point along that axis, given by ei, are scaled inwards based on the viewing angle ϑ .

(a) (b)

Figure 7. A polyhedron and a polychoron in Jenn 3D: (a) a cube and (b) a 24-cell.

R
4 by first projecting them inwards/outwards to the volume of a 3-sphere3 and then projecting them264

stereographically to R
3, resulting in curved edges, faces and volumes.265

In a dimension-independent form, this type of projection can be easily done by considering the angles266

ϑ0, . . . ,ϑn22 in an n-dimensional spherical coordinate system. Steeb (2011, §12.2) formulates such a267

system as:268

r =
�

x2
0 + · · ·+ x2

n21

ϑi = cos21

û

ý

xi
�

r2 2∑
i21
j=0 x2

j

þ

ø , for 0 f i < n22

ϑn22 = tan21

�

xn21

xn22

�

It is worth to note that the radius r of such a coordinate system is a measure of the depth with respect269

to the projection (n21)-sphere Sn21 and can be used similarly to the previous projection examples. The270

points can then be converted back into points on the surface of an (n21)-sphere of radius 1 by making271

r = 1 and applying the inverse transformation. Steeb (2011, §12.2) formulates it as:272

3Intuitively, an unbounded volume that wraps around itself, much like a 2-sphere can be seen as an unbounded surface that wraps
around itself.
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Figure 8. The most common use of the stereographic projection is to map the surface of the Earth to the

plane. Here, every point p on the sphere is projected to the intersection of the plane with a line passing

through the North pole and p. Image credit: screen capture from Leys et al. (2008).

xi = r cosϑi

i21

∏
j=0

sinϑ j, for 0 f i < n22

xn21 = r
n22

∏
j=0

sinϑ j

The next step, a stereographic projection (Fig. 8), is also easy to apply in higher dimensions,273

mapping an (n+ 1)-dimensional point x = (x0, . . . ,xn) on an n-sphere Sn to an n-dimensional point274

x2 = (x0, . . . ,xn21) in the n-dimensional Euclidean space R
n. Chisholm (2000) formulates this projection275

as:276

x2i =
xi

xn 21
, for 0 f i < n

The stereographic projection from nD to (n21)D is particularly intuitive because it results in the n-th277

axis being converted into an inwards-outwards axis. As shown in Fig. 9, when it is applied to scale, this278

results in models that decrease or increase in detail as one moves inwards or outwards. The case with279

time is similar: as one moves inwards/outwards, it is easy to see the state of a model at a time before/after.280

RESULTS281

We have implemented a small prototype for an interactive viewer of arbitrary 4D objects that performs the282

three projections previously described. It was used to generate Figures 3, 5 and 9, which were obtained by283

moving around the scene, zooming in/out and capturing screenshots using the software.284

The prototype was implemented using part of the codebase of azul4 and is written in a combination of285

Swift 3 and C++11 using Metal (a low-level and low-overhead graphics API) under macOS 10.125. Its286

source code is available under the GPLv3 licence at https://github.com/kenohori/azul4d.287

For this prototype, we only consider the vertices, edges and faces of the 4D objects, as the higher-288

dimensional 3D and 4D primitives—whose 0D, 1D and 2D boundaries are however shown—would289

readily obscure each other in any sort of 2D or 3D visualisation (Banks, 1992). Every face of an object290

is thus stored as a sequence of vertices with coordinates in R
4 and is appended with an RGBA colour291

attribute with possible transparency. The alpha value of each face is used see all faces at once, as they292

would otherwise overlap with each other on the screen.293

4https://github.com/tudelft3d/azul
5https://developer.apple.com/metal/
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Figure 9. The 4D house model projected first inwards/outwards to the closest point on the 3-sphere S3

and then stereographically to R
3. The round surfaces are obtained by first refining every face in the 4D

model.

The 4D models were manually constructed based on defining their vertices with 4D coordinates and294

their faces as successions of vertices. In addition to the 4D house previously shown, we built a simpler295

tesseract for testing (Fig. 10). As built, the tesseract consists of 16 vertices and 24 vertices, while the 4D296

house consists of 24 vertices and 43 faces. However, we used the face refining process described below297

to test our prototype with models with up to a few thousand faces. Once created, the models were still298

displayed and manipulated smoothly.299

To start, we preprocess a 4D model by triangulating and possibly refining each face, which makes it300

possible to display concave faces and to properly see the curved shapes that are caused by the stereographic301

projection previously described. For this, we first compute the plane passing through the first three points302

of each face6 and project each point from R
4 to a new coordinate system in R

2 on the plane. We then303

triangulate and refine separately each face in R
2 with the help of a few packages of the Computational304

Geometry Algorithms Library (CGAL)7, and then we reproject the results back to the previously computed305

plane in R
4.306

We then use a Metal Shading Language compute shader—a technique to perform general-purpose307

computing on graphics processing units (GPGPU)—in order to apply the desired projection from R
4 to308

R
3. The three different projections presented previously are each implemented as a compute shader. This309

is necessary because we want to extract the projected R
3 vertex coordinates of every face and use them to310

generate separate representations of their bounding edges and vertices8. Using their projected coordinates311

in R
3, the edges and vertices surrounding each face are thus displayed respectively as possibly refined312

line segments and as icosahedral approximations of spheres (icospheres).313

Finally, we use a standard perspective projection in a Metal vertex shader to display the projected314

model with all its faces, edges and vertices. We use a couple of tricks in order to keep the process fast315

and as parallel as possible: separate threads for each CPU process (the generation of the vertex and316

edge geometries and the modification of the projection matrices according to user interaction) and GPU317

process (4D-to-3D projection and 3D-to-2D projection for display), and blending with order-independent318

transparency without depth checks. For complex models, this results in a small lag where the vertices and319

6This is sufficient for our purposes, but other applications would need to find three linearly-independent points or to use a more
computationally expensive method that finds the best fitting plane for the face.

7http://www.cgal.org
8An alternative would be to embed these in 4D from the beginning, but it would result in distorted shapes depending on their

position and orientation due to the extra degrees of rotational freedom in R
4.
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Figure 10. A tesseract visualised using the R
4 to S3 to R

3 projection.

Figure 11. The Equirectangular projection directly maps angles to coordinates. A 360ç view is here

mapped into a rectangular 180ç×360ç image. Rendered from a viewpoint inside the IfcOpenHouse

dataset9.

edges move slightly after the faces.320

DISCUSSION AND CONCLUSIONS321

Visualising complete 4D and nD objects projected to 3D and displayed in 2D is often unintuitive, but it322

enables analysing higher-dimensional objects in a thorough manner that cross-sections do not. The three323

projections we have shown here are nevertheless reasonably intuitive due to their similarity to common324

projections from 3D to 2D, the relatively small distortions in the models and the existence of a clear fourth325

axis. They also have a dimension-independent formulation.326

There are however many other types of interesting projections that can be defined in any dimension,327

such as the equirectangular projection shown in Fig. 11 where evenly spaced angles along a rotation plane328

can be directly converted into evenly spaced coordinates—in this case covering 180ç vertically and 360ç329

horizontally. Extending such a projection to nD would result in an n-orthotope, such as a (filled) rectangle330

in 2D or a cuboid (i.e. a box) in 3D.331

By applying the projections shown in this paper to 4D objects depicting 3D objects that change in332

time or scale, it is possible to see at once all correspondences between different elements of the 3D objects333

and the topological relationships between them.334

Compared to other 4D visualisation techniques, we opt for a rather minimal approach without lighting335

and shading. In our application, we believe that this is optimal due to better performance and because it336

makes for simpler-looking and more intuitive output. In this manner, progressively darker shades of a337

colour are a good visual cue for the number of faces of the same colour that are visually overlapping at338

9http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html

13/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2844v1 | CC BY 4.0 Open Access | rec: 2 Mar 2017, publ: 2 Mar 2017

http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html


any given point. Since we apply the projection from 4D to 3D in the GPU, it is cumbersome to extract339

the surfaces again in order to compute the 3D normals required for lighting in 3D, while lighting in 4D340

results in unintuitive visual cues.341
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