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Abstract

Summary:  ATLAS  (Automatic  Tool  for  Local  Assembly  Structures)  is  a  comprehensive 

multi-omics data analysis pipeline that is massively parallel and scalable. ATLAS contains a 

modular  analysis  pipeline for  assembly, annotation,  quantification and genome binning  of 

metagenomics and metatranscriptomics data and a framework for reference metaproteomic 

database construction. ATLAS transforms raw sequence data into functional and taxonomic 

data  at  the  microbial  population  level  and  provides  genome-centric  resolution  through 

genome  binning.   ATLAS  provides  robust  taxonomy  based  on  majority  voting  of 

protein-coding open reading frames (ORFs) rolled-up at the contig level using modified lowest  

common  ancestor  (LCA)  analysis.  ATLAS  is  user-friendly,  easy  install  through  bioconda 

maintained  as  open-source  on  GitHub,  and  is  implemented  in  Snakemake  for  modular 

customizable workflows. 

Availability and implementation: ATLAS is written in python and distributed under a BSD 

license. ATLAS is compatible with python 3.5+ and anaconda 3+ versions. ATLAS functions 

on  both  MacOS  and  Linux.  The  source  code  of  ATLAS  is  freely  available  at 

https://github.com/  pnnl  /atlas  .

Contact:  Richard  Allen  White  III  and  Janet  Jansson,  Earth  and  Biological  Sciences 

Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA. Email: 

Richard.white@pnnl.gov or raw937@gmail.com, Janet.jansson@pnnl.gov
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1 Introduction 

Whole  community  sequencing  of  DNA  (i.e.,  metagenomics)  and  RNA  (i.e., 

metatranscriptomics) has provided a wealth of information about microbial communities in a 

variety  of  habitats,  including  community  compositions,  predicted  functions,  and  metabolic 

potential and activities (Jansson, 2011; Mason  et al., 2014; Prosser, 2015;  Hultman  et al., 

2015; Butterfield et al., 2016; White III  et al., 2016a). Recent improvements in metagenome 

assembly have enabled direct assembly of large and complex metagenomes (Howe  et al., 

2014; Li et al., 2015; White III et al., 2016b). In addition, new algorithms have been developed 

and applied for binning genomes from metagenome data (Albertsen et al.,  2013; Imelfort  et 

al., 2014; Wu et al., 2016).  These approaches provide valuable insight into the function of 

microbial populations that are yet to be cultivated.

Current sequencing technologies can reach very high throughput >1 Terabytes (TB) 

of data in a single run (White III  et al., 2016a). With increasing sequencing throughput, a 

framework for rapid, modular, customizable workflows, and integrated data analysis is needed 

to  obtain  meaning  from  microbial  community  derived  sequencing  data.  While  some 

metagenomic data analysis pipelines and frameworks exist, such as IMG (Chen et al., 2017), 

Parallel-META (Su et al., 2014), MG-RAST (Meyer et al., 2008), MetaAMOS (Treangen et al., 

2013), and MetaPathways2 (Konwar et al., 2013), none include every key element required 

for metagenome and metatranscriptome analysis.  These key elements include quality control  

of  raw  data,  assembly,  genomic  binning,  coverage  estimation,  functional  annotation, 

taxonomic  annotation  using  lowest  common  ancestor  (LCA)  and  quantitative  analysis  of 

reads.  Here  we  introduce  ATLAS  (Automatic  Tool  for  Local  Assembly  Structures)  as  an 
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integrated and customizable pipeline for metagenome/metatranscriptome data quality control, 

assembly  and  annotation,  metagenome  binning,  coverage  estimation,  and  expression 

analysis. 

2 DESCRIPTION OF TOOL

ATLAS has five analysis steps: (1) quality control, (2) assembly (3) annotation, (4) 

genome binning, and (5) taxonomic, functional and expression quantification analyses (Figure 

1). Default input data are Illumina paired-end reads in FASTQ format; however, single-end 

Illumina, Ion Proton, and SOLiD reads in FASTQ format are also supported.

The  quality  control  module  (Step  1)  involves  quality  filtering  of  the 

metagenome/metatranscriptome sequence read data using the decontamination tool BBduk2 

within  the  BBMap tool  suite  (https://sourceforge.net/projects/bbmap/).  This  approach uses 

k-mers to find and trim adapter sequences, performs quality based read trimming, and filters  

reads based on a minimum length threshold. The reads have the option of error correction 

based  on  both  k-mer  overlaps  and  read  pair  overlaps  using  Tadpole  within  BBMap. 

Decontamination can be performed across any reference read set and reads will be grouped 

into reference bins or non-hits using BBSplit. ATLAS provides references for common Illumina 

DNA  spike-ins  (i.e.,  bacteriophage  phiX)  and  ribosomal  RNA  as  default  contaminant 

databases. Any additional contamination references in FASTA format are supported and be 

user  supplied.  Following  decontamination,  quality  controlled  read  sets  are  used  in  read 

quantification of Step 5. A future version of ATLAS will include MerCat (i.e., “Mer-Cat enate”), 

a de novo assembly free direct read analysis module plug-in (Figure 1, White III et al., 2017). 
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MerCat will provide alpha diversity and feature abundance calculations from quality controlled 

reads supplied by ATLAS using k-mer counting of any length k, specified by end user,  without  

a reference sequence database dependency  (i.e., database independent property analysis -  

DIPA) (White III et al., 2017).

The  assembly  module  uses  quality  controlled  sequence  reads  for  de  novo 

assembly (Step 2).  Pre-assembly sub-setting uses the quality controlled reads as input then 

uses a read coverage normalization step based on k-mer frequency. The data is then subset 

to  a  target  coverage  using  BBNorm  (in  BBMap  tool  suite 

(https://sourceforge.net/projects/bbmap/). This subset of high-quality reads is then used as 

input to ATLAS default assemblers SPAdes (i.e., metagenomic mode) (Bankevich et al., 2012) 

for datasets <100 GB and MEGAHIT (Li et al., 2015) for larger more complex datasets (e.g., 

soil). Assembled contigs are assessed for total length and percent read coverage. The final  

contigs can optionally be trimmed prior to determining open reading frames. Assembly output 

defaults include quality controlled contigs >1 kbp in length, with read coverage estimations 

>2x per contig, and with at least 40% coverage of reads across the entire contig. 

The annotation module (Step 3) performs functional and taxonomic annotation of 

quality control contigs. Quality controlled contigs are translated to protein coding open reading 

frames (ORFs) using Prodigal (Hyatt et al., 2012) in metagenome mode and annotated using 

DIAMOND  (Buchfink  et  al., 2015)  blastp  for  protein-protein  searching.  DIAMOND  blastp 

high-scoring pairs are filtered to user specified bitscore and e-value cut-offs (defaults >200 

and <1x107, respectively). Functional annotation utilizes non-redundant RefSeq (O'Leary et  

al., 2016), EggNOG (Huerta-Cepas et al., 2016), dbCAN for CAZy families (Yin et al., 2012), 
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ENZYME for enzyme commission number (EC) (Bairoch, 2000), and COG (Tatusov  et al., 

2003)  databases.  ATLAS  obtains  KEGG  (Kanehisa  and  Goto,  2000)  (i.e.,  KO  number) 

annotations from EggNOG reference database. ATLAS provides pre-formatted databases via 

FTP with subcommands to simplify the process of database downloading, formatting, and 

version tracking. The database ontologies and hierarchies are included within the annotation 

references for downstream analysis.  A DNA-DNA database search module using the Lambda 

search tool (Hauswedell et al., 2014) will be added to a future version ATLAS (Figure 1). This 

DNA-DNA database search module will annotate ribosomal internal transcribed spacers (ITS), 

small subunit (SSU), and large subunit (LSU) genes using Unite ITS (Abarenkov et al., 2016) 

and the Silva (SSU/LSU) (Pruesse et al., 2007) databases (Figure 1). 

For  taxonomic  annotation,  ATLAS  uses  RefSeq  high-scoring  pairs  along  with 

NCBI’s taxonomy assignments reference tree via a modified majority voting-method (MMVM) 

that utilizes lowest common ancestor (LCA) (Hanson  et al., 2016), to determine the lowest 

common ancestor represented across all ORFs present within a single contig. Assembly and 

annotation  outputs  from  ATLAS  can  be  directly  used  to  create  databases  for  proteome 

searches or as inputs for quantitation analysis (step 5, below).

The binning module (Step 4)  of  ATLAS uses MaxBin2 (Wu  et  al., 2016)  to  bin 

genomes from metagenomes.  There are two binning parameters for MaxBin2 in ATLAS;  (1) 

differential  coverage  estimation  by  user  specified  samples  or  (2)  within  a  single  sample 

without  multi-sample  differential  coverage  mapping.  For  quality  control  of  bins,  we 

recommend the CheckM package (Parks et al., 2015). However, future versions of ATLAS will 

include a bin quality control and annotation integrated into our MMVM taxonomic assignment 
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package. 

The last  module  (Step 5)  quantifies  the coverage of  the assembly by  mapping 

reads  using  annotations  from  metagenomes  and  metatranscriptomes.  Functional  and 

taxonomic count data is obtained by mapping quality controlled reads to assembled contig  

annotations using BBMap, then parsed using featureCounts of the Subread package (Liao et 

al.,  2014)  to  user  specifications.  This  provides  the  final  tabular  output  of  functional 

annotations, expressed functions (if RNA-Seq is available), taxonomy, and taxonomy based 

functional annotations based on user specifications.

ATLAS  is  written  in  Python  3.5,  implemented  using  Snakemake  (Köster  and 

Rahmann, 2012) workflow infrastructure for flexible scalability, trivial parallelism of workflow 

steps,  and  extensive  data  provenance  for  reproducibility. ATLAS is  easily  installed  using 

bioconda  (https://bioconda.github.io/):  conda  install  --channel  bioconda  atlas.  The  source 

code of ATLAS is freely available at https://github.com/pnnl/atlas  . 

3 SUMMARY

ATLAS packages,  databases,  and workflows are  easy to  use,  simple to  install, 

modular,  and  user  customizable.  ATLAS  provides  a  robust  bioinformatics  framework  for 

metagenomic and metatranscriptomic data, where raw FASTQ files are fully processed into 

annotated  tabular  files  for  downstream  analysis  and  visualization.  ATLAS  fills  a  major 

computational  and  analysis  gap,  namely  the  integration  of  quality  control,  assembly, 

annotation, binning and expression analysis, and provides a framework for integrated 'omics 

analysis. 
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Figure  1:  ATLAS  workflow.  MerCat  and  Lambda  based  (DNA-DNA  database)  search 
modules will be added to a future version of ATLAS. 
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