
The impact of using large training data set KDD99 on

classification accuracy

Atilla Özgür Corresp., 1 , Hamit Erdem 1

1 Electrical Engineering, Başkent University, Ankara, Ankara, Turkey

Corresponding Author: Atilla Özgür
Email address: ati.ozgur@gmail.com

This study investigates the effects of using a large data set on supervised machine

learning classifiers in the domain of Intrusion Detection Systems (IDS). To investigate this

effect 12 machine learning algorithms have been applied. These algorithms are: (1)

Adaboost, (2) Bayesian Nets, (3) Decision Tables, (4) Decision Trees (J48), (5)Logistic

Regression, (6) Multi-Layer Perceptron, (7) Naive Bayes, (8) OneRule, (9)Random Forests,

(10) Radial Basis Function Neural Networks, (11) Support Vector Machines (two different

training algorithms), and (12) ZeroR. A well-known IDS benchmark dataset, KDD99 has

been used to train and test classifiers. Full training data set of KDD99 is 4.9 million

instances while full test dataset is 311,000 instances. In contrast to similar previous

studies, which used 0.08%–10% for training and 1.2%–100% for testing, this study uses full

training dataset and full test dataset. Weka Machine Learning Toolbox has been used for

modeling and simulation. The performance of classifiers has been evaluated using

standard binary performance metrics: Detection Rate, True Positive Rate, True Negative

Rate, False Positive Rate, False Negative Rate, Precision, and F1-Rate. To show effects of

dataset size, performance of classifiers has been also evaluated using following hardware

metrics: Training Time, Working Memory and Model Size. Test results shows improvements

in classifiers in standard performance metrics compared to previous studies.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

The impact of using large training data set1

on classification accuracy2

Atilla Özgür1 and Hamit Erdem2
3

1Başkent University, Ankara4

2Başkent University, Ankara5

Corresponding author:6

Atilla Özgür1
7

Email address: ati.ozgur@gmail.com8

ABSTRACT9

This study investigates the effects of using a large data set on supervised machine learning classifiers in

the domain of Intrusion Detection Systems (IDS). To investigate this effect 12 machine learning algorithms

have been applied. These algorithms are: (1) Adaboost, (2) Bayesian Nets, (3) Decision Tables, (4)

Decision Trees (J48), (5)Logistic Regression, (6) Multi-Layer Perceptron, (7) Naive Bayes, (8) OneRule,

(9)Random Forests, (10) Radial Basis Function Neural Networks, (11) Support Vector Machines (two

different training algorithms), and (12) ZeroR. A well-known IDS benchmark dataset, KDD99 has been

used to train and test classifiers. Full training data set of KDD99 is 4.9 million instances while full test

dataset is 311,000 instances. In contrast to similar previous studies, which used 0.08%–10% for training

and 1.2%–100% for testing, this study uses full training dataset and full test dataset. Weka Machine

Learning Toolbox has been used for modeling and simulation. The performance of classifiers has been

evaluated using standard binary performance metrics: Detection Rate, True Positive Rate, True Negative

Rate, False Positive Rate, False Negative Rate, Precision, and F1-Rate. To show effects of dataset

size, performance of classifiers has been also evaluated using following hardware metrics: Training

Time, Working Memory and Model Size. Test results shows improvements in classifiers in standard

performance metrics compared to previous studies.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 INTRODUCTION25

Internet, networks and computers form the backbone of modern life; protection of this backbone is very26

important (Raymond and Choo, 2011). According to Computer Security Institute survey (CSI, 2011),27

following tools are used to protect these sytems: firewalls, anti-viruses, malware protection programs,28

intrusion detection systems (IDS), and intrusion detection and prevention systems. IDS is used by 62%29

of enterprises that use variety of open source and commercial systems. IDS are categorized into the30

following classes (Scarfone and Mell, 2007):31

1. According to deployment of systems32

(a) Network Intrusion Detection Systems (Network IDS)33

(b) Host Intrusion Detection Systems (Host IDS)34

2. According to detection methodology.35

(a) Signature Detection36

(b) Anomaly Detection37

In the first category, network IDS uses network packets to detect attacks; consequently, it protects38

many computers in the network. On the other hand, host IDS uses logs and events in host system to detect39

attacks; therefore, it protects only one host.40

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Signature detection or misuse systems use signature database of known attacks to detect intrusions,41

but this database must be updated regularly. Their performance is low against unknown attacks; while it is42

very high against known attacks. For that reason, false alarms occur very rarely. Most enterprises prefer43

signature detection systems since false alarms are costly and resource intensive(CSI, 2011).44

However, anomaly detection systems suggest a different approach. They maintain system profiles45

that define normal activities. When an abnormal activity (different from the stored profiles) occurs, the46

system flags this activity as an intrusion. Anomaly detection systems produce more false alarms than the47

signature detection systems, since the definition of normal changes in time. But, they are more effective48

against unknown attacks.49

After Denning’s first paper (Denning, 1987) about IDS, hundreds of studies have been published.50

Nonetheless, it still remains an unsolved problem since IDS domain is a evolving problem—Attackers51

continuously change and improve their capabilities(Sommer and Paxson, 2010).52

To introduce importance of the problem and evaluate related studies, results from previous works have53

been collected for comparison purposes (Table 1). These results indicates that many methods have been54

applied in IDS domain, and Weka (Hall et al., 2009) is the most-used toolbox in literature.55

Based on Table 1 that presents previous 16 studies, nearly all of them utilized only a fraction of56

available training data — KDD99 benchmark dataset consists of 4898431 training instances and 31102957

test instances. But in the literature, minimum training set size is 4,000 instances (0.08%); maximum58

training 485,000 (10%), minimum test 2,650 (1.2%), maximum test 311,000(100%). In addition, it is59

common to see claims that KDD99 is too large for research study purposes (Horng et al., 2011; Yi et al.,60

2011; Chen et al., 2014; Kumar and Kumar, 2013) , justifying usage of small subset of KDD99.61

Using a restricted portion of the training data results in performance reduction in classifier models,62

since classifier models can only learn the data that they have seen in the training step. From generalization63

point of view, the models’ capabilities reduce as a result of using small datasets; therefore, using a larger64

training dataset brings small but non-trivial gains in generalization performance(Perlich, 2009; Cortes65

et al., 1994). As a result, using whole available training dataset may improve the generalization capability66

of classifiers. Considering the effect of using all training data in classification, this study proposes using67

the full training and the testing dataset with 4,898,431 and 311,029 instances.68

Definition of Reproducibility is that other researchers (wikipedia, 2015) should be able to reproduce69

given study. Reproducibility is one of the corners of scientific method. Nonetheless, most of the published70

studies are not reproducible(Gentleman and Temple Lang, 2007; Vandewalle et al., 2009; Peng, 2011).71

Study Reproducibility is needed for wide dissemination of results and comparison of scientific studies.72

Current study is fully reproducible with all of its code is open sourced in widely known github site.73

Researches can fully start our experiments with less than 15 minutes of effort. Of course some of our74

experiments run very long time (more than 56 hours for Multi Layer Perceptron, see Table 4) and takes75

significant hardware resources; thus, fully reproducing our study will need time and necessary hardware.76

Since most of the studies in KDD99 is not easily reproducible or comparable, current study can be77

benchmark study for further studies. Consequently, this study aims five contributions:78

• First, while most of studies have used 3–6 algorithms for comparison purposes, 13 supervised79

machine learning classifiers are trained and evaluated. These classifiers are Adaboost, Bayesian Nets,80

Decision Tables, Decision Trees (J48), Logistic Regression, Multi-Layer Perceptron, Naive Bayes,81

OneRule, Random Forests, Radial Basis Function Neural Networks, Stochastic Gradient Descent82

for Support Vector Machines, Sequential Minimal Optimization for Support Vector Machines and83

ZeroR.84

• Second, large data sets require more computing power. To show efect of large data set size on85

computing resources, following hardware metrics (training time, working memory, and model size)86

has been presented in detail, section 2.3 and Table 4. Evaluation is also performed with following87

standard binary performance metrics: Detection Rate, True Positive Rate, True Negative Rate, False88

Positive Rate, False Negative Rate, Precision and F1-Rate (Table 6 and Table 7).89

• Third, using whole training dataset — instead of fraction of it — improves classification results90

in IDS compared to previous studies, see Table 8. This improvement is predicted by Learning91

Curves(Perlich, 2009; Cortes et al., 1994).92

2/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

• Fourth, this study presents a fully reproducible environment for further KDD99 Dataset studies.93

Any researcher will be able to start our experiments with less than 15 minutes of time and will be94

able to add new classifiers to this experiment.95

• Last, the proposed study may be a reference study for similar studies in IDS using KDD99 due to96

previous contributions.97

2 EXPERIMENTS98

2.1 Dataset KDD9999

KDD-DARPA dataset is a simulated dataset, intended to be similar to a network of an US Air Force Base.100

DARPA sponsored an IDS event in MIT Lincoln Lab in 1998 (Cunningham et al., 1999). This event was101

repeated in 1999 by using improvements suggested by Computer Security Community (Lippmann et al.,102

2000). In these events, network dump files and other system files are released to participants. Participants103

preprocessed these files and used different algorithms to find intrusions.104

One of the DARPA IDS teams (Lee and Stolfo, 2000) released their preprocessed dataset to Knowledge105

Discovery and Data Mining (KDD) conference. This dataset was used in KDD 99 yearly competition106

(KDDCup, 1999). Even though DARPA dataset is suitable for both Host IDS and Network IDS research,107

KDD99 is suitable for only Network IDS research.108

Public benchmark dataset, KDD99 consists of seven weeks of computer activity simulation. To ease109

training of anomaly detection algorithms, first two weeks contains no attacks while the remaining five110

weeks are mostly attacks. These attacks are divided into 4 major groups:111

1. Denial of Service (DOS)112

2. Probing attacks (Probe)113

3. Remote to Local (R2L)114

4. User to Root (U2R)115

DOS attacks are designed to exhaust the target system; accordingly, they repeat the same attack over116

and over to consume system resources. Probe attacks are designed to get more information about the117

target system. R2L attacks are designed to give local access to target system; thus,they are more dangerous118

than DOS and probe attacks. U2R attacks give root access (super user) to normal user. Since root can do119

anything in system, U2R attacks are the most dangerous of all attacks in this dataset. Last two attacks,120

R2L and U2R, are very rare in KDD99.121

Applying preprocessing, 41 attributes have been created in KDD99 (Lee and Stolfo, 2000) from122

DARPA dataset. Training dataset of KDD99 consists of about 4.9 million records of 22 attack and normal123

instances. This dataset is widely imbalanced and about 80% of data set are attack instances, Table 2. Test124

dataset consists of 311,029 instances. Test and training datasets have different probability distributions125

(Elkan, 1999), and test dataset has some new attacks that do not exist in training dataset. These new attacks126

measure generalization of IDS models. In other words whether IDS models capable of distinguishing127

zero day attacks (unknown attacks) or not.128

Interestingly, KDD99 is one of the most used data sets in IDS research(Tavallaee et al., 2010). A129

recent survey by Tavallaee et al (Tavallaee et al., 2010) reviewed 276 studies (93 Host IDS and 163130

Network IDS), mostly in indexed journals. Of these studies: (i) 67 of them (24%) used DARPA, (ii) 77131

(28%) KDD99, (iii) 41 (15%) injected other attacks to KDD99, (iv) 86 (31%) did not disclose any dataset132

information, and (v) only 16 (6%) have used other datasets. In addition, KDD99 dataset is used in 149133

articles in 65 different journals with Science Citation Index impact factor(Özgür and Erdem, 2016). This134

number, 149 , does not include any conference articles, only journals. See Fig 1 for usage by year.135

On the other hand, this dataset has well known problems (McHugh, 2000; Brugger, 2007), but despite136

its problems, using this dataset is still useful to IDS domain. Brugger and Chow (Brugger and Chow,137

2005) have used Snort on tcpdump data from DARPA data set to show that DARPA data set is still useful138

for testing IDS. Additionally, good performance against DARPA dataset is a “necessary but not sufficient”139

(emphasis original) condition to show the capabilities of advanced IDS.140

3/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

20
10

20
11

20
12

20
13

20
14

20
15

10

20

30

40

50

14
16

25 25
23

46

#
o

f
A

rt
ic

le
s

Figure 1. KDD99 Dataset Usage By Years taken from (Özgür and Erdem, 2016).

2.2 Reproducible Build Tool141

Vandewalle et al (Vandewalle et al., 2009) proposes six levels of reproducibility. The best levels is:142

The results can be easily reproduced by an independent researcher with at most 15 min of143

user effort, requiring only standard, freely available tools (C compiler, etc.).144

All of our used tools are open source; hence, freely available. Java Development Kit (JDK) should145

be installed in the machine. In addition our build script downloads most of the necessary libraries146

using gradle’s dependency management. See following url for details: https://github.com/147

ati-ozgur/KDD99.148

2.2.1 How a new researcher would use our tool KDD99 Reproducible Test Bench149

1. Control that necessary programs are installed (java,sqlite3)150

2. Download code from github151

3. run startFresh script.152

Algorithm 1 How Build Tool Works?

Input: java,sqlite3 works, internet connection

Output: Trained models, training and test results

1. Download Used Gradle Distribution

2. Download dependencies (Groovy,Weka, Other packages) from maven repositories.

3. Download KDD99 Files

4. Unzip KDD99 Files

5. import to sqlite

6. Create necessary views and indexes

7. Create Training and Testing ARFF files for weka

8. for i = 1 to N do

9. Train Classifier Model using Training Dataset and save model file

10. Test Trained Model on Full KDD99 Training Dataset

11. Test Trained Model on Full KDD99 Test Dataset

12. end for

13. return Trained Models and Training Results

4/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

After running start script, build tool works according to Algorithm 1. Due to cross platform nature of153

used tools, this experiment is also cross platform and is tested in following platforms.154

1. Linux (Linux Mint 16,17.1, Ubuntu 14.04 LTS Desktop)155

2. MacOS (10.8,10.9,10.10)156

3. Windows (7,8, Server 2012)157

Note that: Most of the experiments need a lot of RAM due to large size of KDD99. See section 2.3158

for necessary Java heap settings.159

2.3 Test Environment160

Even though our environment are cross platform, experiments are conducted on only one computer. Its161

configuration is following.162

1. Windows Server 2012 R2163

2. Java 1.7.60 64 bit164

3. Weka 3.7.12 (Developer Edition)165

4. Intel(R) Xeon(R) CPU E5335 @ 2.00GHz (2 Socket-8 Core)166

5. 16 GB RAM167

6. 80 GB Solid State Disk (SSD) Hard disk that is used as page file memory168

7. Java Heap Memory Settings -Xms20096m -Xmx30192m (Start with 20 GB, go to max 30 GB169

memory)170

Especially, SSD and Heap Memory settings are important; since, these settings permit weka to171

use more memory than available physical memory. Weka is the most-used tool in previous studies,172

Table 1. Using command line interface of Weka has been preferred in this study to reduce memory usage.173

When training batch machine learning algorithms with Weka on full KDD99 training dataset, a powerful174

hardware with high memory and powerful CPU are needed. With lesser hardware, especially with low175

RAM, it is impossible to train a classifier on full KDD99 dataset.176

2.4 Selected Machine Learning Classifiers177

Choosing diverse classifiers helps to understand effect of dataset size on following metrics —Training178

Time, Training Memory, and Model Size. Even though it is obvious that using more training data will179

increase this metrics, Rate of increase is not so obvious. Classifiers usage of memory, training time and180

model size are very different, for example high model size of RBFNetwork was unexpected. Classifiers181

were included according to following 4 criteria, whether classifier: (1) is easy to train, (2) is among the182

most used, (3) is easy to understand, and (4) is hard to train. Table 3 contains the four groups, classifiers183

in these groups, and previous studies.184

Easy to train classifiers are internally simple algorithms. Their training times are very fast; therefore,185

they are mostly used for comparison purposes, not as building blocks for real systems. Since they are used186

for comparison, they are also called baseline algorithms. A good classifier is expected to out-perform187

these algorithms. ZeroR (Zero Rule) and OneR (One Rule) are used as baseline algorithms.188

The following Most Used Algorithms (Wu et al., 2008) are selected: (1) Decision Tree, (2) Naive189

Bayes, (3) Adaboost and other boosting algorithms, (4) Random Forests.190

Easy to Understand operating principles are a desirable feature of IDS (Scarfone and Mell, 2007).191

IDS operators can easily understand operating principles of following classifiers, and can easily comment192

on why system flagged that instance as an attack. These are (1) Logistic Regression, (2) Decision Table,193

(3) BayesNet and (4) Decision Tree (DT).194

Hard to Train Algorithms take more time to train than other classifiers, since their underlying195

mechanisms are more computationally intense. Hard to Train Algorithms are (1) Artificial Neural196

Network-Multi Layer Perceptron (ANN-MLP), (2) Artificial Neural Network-Radial Basis Function197

(ANN-RBF), (3) Support Vector Machines (SVM). Our study uses two different training methods for SVM.198

These training methods are stochastic gradient descent (SGD)(Witten and Frank, 2011) and sequential199

minimal optimization algorithm(SMO)(Platt, 1998).200

5/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

3 RESULTS OF THE APPLIED CLASSIFIERS USING FULL TRAINING DATASET201

This study has used full KDD99 dataset and 13 supervised classifiers using Weka to train classifiers on202

full KDD99 dataset and to test trained classifiers on full test dataset of KDD99. These classifiers have203

been compared, considering hardware and binary classification metrics.204

3.1 Comparison of Classifiers Regarding to Hardware Metrics205

First, the classifiers have been compared with the following hardware metrics: Training Time, Training206

Memory, and Model Size.207

Training time of classifiers can be seen in Table 4. Training time of ZeroR (1s) and OneR (67s) is208

lowest. Since these two classifiers are easy to train baseline classifiers, this short training time is expected.209

Training Time of other algorithms are mostly between Naive Bayes (75s) and Decision Table (106.75210

min). Highest training times are MLP (3368 min) and SMO (1838 min); thus, these two classifiers are211

clearly outliers. Other interesting fact is training time of Random Forests is 11 minutes, while training212

time of Decision Trees (J48) is 40 minutes. Even though Random Forests seems to be more complex, its213

working principles —divide dataset and then train decision trees— makes it faster to train.214

Classifiers and required memory information are given in Table 4. The minimum requirement for215

training memory is 3GB. But, some algorithms need as much as 14GB. The minimum amount of training216

memory is 3.067GB when Naive Bayes is used; while, the maximum is 13.935GB when Bayes Net is217

used. Out-of-place algorithms for training memory are ZeroR (7,248GB) and OneR (9,446 GB). These218

two algorithms are simpler than Naive Bayes; thus, their memory usage should be lower.219

Most of the model sizes are fairly consistent, lower than 1 mb. Nonetheless, two models have very220

large sizes— BayesNet and RBF Network, 1.7 GB and 1.6 GB respectively. Large model size might be a221

serious restriction in low memory environments. Model size, memory requirements, and training time222

are not given generally in studies. Therefore, these results should help researchers who work with large223

data(millions of instances) using Weka regardless of applied domain.224

3.2 Comparison of Classifiers Regarding to Binary Metrics225

Binary classifier performance can be evaluated by using confusion matrix. Table 5 is a generic confusion226

matrix of the binary-attack-classification problem and common performance metrics (True Positive, True227

Negative ...) derived from that confusion matrix. All classifiers are compared using these metrics in228

Table 6 and Table 7.229

Performance of classifiers on training dataset (Table 6) are all about %99. Such high results are due230

to overfitting; since, training and testing datasets are the same dataset in these experiments. Normally,231

Results in Table 6 are not given; since, only results on testing dataset should be presented in machine232

learning research. Yet, most of the results in literature are given for training dataset, instead of testing233

dataset(Table 1). With this in mind, we present Table 6 so that we can compare our results to previous234

studies.235

ZeroR, the simplest baseline classifier,has detection rate of 80,14% on training dataset. Even though236

this result may seem high, it is normal since this is the distribution of attack instances to all instances237

(attack plus normal) in KDD99 training dataset. ZeroR always predicts majority class in instances; that238

being so, ZeroR is independent of size of the data set. ZeroR has Not Applicable (NA) rate for True239

Negative since it does not predict any negative class. Similarly, its rates for False Positive and False240

Negative are %100. OneR, the second baseline classifier, still achieves 98.81%; proving that, there241

are very similar records in KDD99(Tavallaee et al., 2009). All other results are above 99%, signalling242

overfitting on training dataset.243

Table 7 contains results in testing dataset of KDD99. ZeroR has Detection Rate of 80,52% on test244

dataset —better than its result on training dataset. This result is due to the distributions of attacks to all245

instances (attack plus normal) in KDD99 testing dataset. Since the distribution of attack to normal in246

training data set is lower than that in testing data set, Detection Rate values of ZeroR on training data set247

is lower. OneR achieves 90% DR in Test dataset. It is such an interesting result since this result is higher248

than the other two more complex classifiers —RBFNetwork and Logistic Regression. Holte (Holte, 1993)249

demonstrates that simple classification rules perform very well in most datasets —KDD99 is not immune250

to this conclusion. Other results are very similar to each other, about 91%-92%. Best result is Decision251

Table (94.70%) while the second best is J48, Decision Tree (93,49%).252

6/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Comparison between results of the applied approach and previous studies can be seen in Table 8. Even253

though different metrics are provided before, Table 8 contains Detection Rate only. This is due to the fact254

that detection rate is the only consistent metric in previous studies.255

Table 8 suggests that the applied approach to use all training data gives very good results. Except for256

some studies, results in Table 8 are higher than literature. Two classifiers, J48 and Naive Bayes, belong to257

same study (Benferhat et al., 2013) that use prior expert knowledge to increase detection rate.258

4 DISCUSSION259

Current study has used full training dataset of KDD99 to train 13 different machine learning algorithms260

and has tested them on full test dataset. The findings of this study can be summarized as follows:261

1. Using more data to train batch learning algorithms needs more hardware resources, and this study262

gives more information about this resource usage.263

2. Considering obtained results, using time-consuming-to-train classifiers on KDD99 is questionable.264

Relatively simple classifiers (Naive Bayes,Decision Tree,OneR) give comparable results; yet, they265

use much less computing resources.266

3. Using full dataset for training algorithms increases train and test set detection rate, compared to267

previous studies, see Table 8.268

4. Since our study is fully reproducible— with less than 15 minutes effort— it will be a comparison269

study for further studies that use KDD99.270

5. As this study applied 13 classifier on the full training and test dataset of KDD99, improved results271

of this study can be a reference study for further studies in IDS or similar large datasets.272

Table 8 indicates that our results highly exceeds literature. This result is not unexpected, as Domingos273

(Domingos, 2012) claims that “More Data Beats Cleverer Algorithm.” In addition, numerous studies274

assert that more training examples increase test detection rate (Kalayeh and Landgrebe, 1983; Fukunaga275

and Hayes, 1989; Raudys and Jain, 1991; Cortes et al., 1994; Lenth, 2001; Last, 2007; Perlich, 2009;276

Halevy et al., 2009; Figueroa et al., 2012; Beleites et al., 2013).277

Relationship between training data and test detection rate is hypothesized in Learning Curves (Perlich,278

2009; Cortes et al., 1994). Learning Curves obey power law; as a result, small detection rate increases279

in the test set may be obtained using large amount of training data. For instance, an increase in test set280

detection rate from 0.91 to 0.92 may need 100.000 instances of new training data. According to Learning281

Curve hypothesis, using more training data converges test set detection rate to a point; for example, 0.85282

or 0.91. This convergence point differs from dataset to dataset.283

Learning Curves may be used to estimate training size requirements for desired test detection rate.284

For this study, best test detection rate is 94,70% for Decision Table. This shows that, using more data285

might increase test detection rate of other algorithms also; but, it might never go above 95.00%, since286

Training and Test Set have different probability distributions on KDD99.287

As a final note, several limitations exist in this study. First, KDD99 dataset is very old; thus, its288

applicability to real world IDS is limited. However the focus of our study is especially about classification289

performance versus dataset size. Second, our study considers only metric detection rate when comparing290

classifiers; this is due to the fact that most of the previous studies report consistently only detection rate.291

Besides, our study provides other performance metrics. Third, our study does not consider rare attack292

performance.293

5 CONCLUSION294

This study proposed that using full training dataset instead of subset improves the performance of machine295

learning classifiers on IDS benchmark dataset KDD99. Using Weka, 13 machine learning classifiers have296

been trained with full KDD99 training dataset and tested on full dataset, Table 7. Results of the current297

study have been compared against previous studies. Additionally, the results also gave information about298

difficulties in training of large data in hardware metrics: training time, working memory, and model size.299

This study has found that generally using more training data brings performance benefits in test detection300

7/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

rate in IDS domain, as predicted by Learning Curves. But some of the algorithms costs too much in the301

hardware resources while bringing less improvement. The findings of this study suggests that studies that302

are based on KDD99 should use more training data to obtain better results. KDD99 training requirements303

were given in this study; some of these requirements are significantly higher than those of in standard304

PCs, but these requirements are reachable nowadays. As the results shows, the finding of this study, using305

the most used machine learning methods, the full data set, and comparing the classifiers with respect to306

binary and hardware criteria, can be a reference study for further studies in IDS or similar large datasets.307

REFERENCES308

Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., and Popp, J. (2013). Sample size planning for309

classification models. Analytica Chimica Acta, 760(0):25 – 33.310

Benferhat, S., Boudjelida, A., Tabia, K., and Drias, H. (2013). An intrusion detection and alert correlation311

approach based on revising probabilistic classifiers using expert knowledge. Applied Intelligence,312

38(4):520–540.313

Brugger, S. (2007). Kdd cup 99 dataset (network intrusion) considered harmful.314

Brugger, S. T. and Chow, J. (2005). An assessment of the darpa ids evaluation dataset using snort.315

Chen, T., Zhang, X., Jin, S., and Kim, O. (2014). Efficient classification using parallel and scalable316

compressed model and its application on intrusion detection. Expert Systems with Applications,317

41(13):5972 – 5983.318

Chung, Y. Y. and Wahid, N. (2012). A hybrid network intrusion detection system using simplified swarm319

optimization (sso). Applied Soft Computing, 12(9):3014–3022.320

Cortes, C., Jackel, L. D., Solla, S. A., Vapnik, V., and Denker, J. S. (1994). Learning curves: Asymptotic321

values and rate of convergence. In Cowan, J. D., Tesauro, G., and Alspector, J., editors, NIPS 1994,322

volume 6, pages 327–334. Morgan Kaufmann Publishers, Inc.323

CSI (2011). 2010-2011 computer crime and security survey. Technical report, CSI.324

Cunningham, R. K., Lippmann, R. P., Fried, D. J., Garfinkel, S. L., Graf, I., Kendall, K. R., Webster, S. E.,325

Wyschogrod, D., and Zissman, M. A. (1999). Evaluating intrusion detection systems without attacking326

your friends: The 1998 darpa intrusion detection evaluation. Technical report, MASSACHUSETTS327

INST OF TECH LEXINGTON LINCOLN LAB.328

Denning, D. E. (1987). An intrusion-detection model. IEEE TRANSACTIONS ON SOFTWARE ENGI-329

NEERING, 13(2):222–232.330

Domingos, P. (2012). A few useful things to know about machine learning. Commun. ACM, 55(10):78–87.331

Eesa, A. S., Orman, Z., and Brifcani, A. M. A. (2015). A new feature selection model based on id3 and332

bees algorithm for intrusion detection system. Turk J Elec Eng & Comp Sci, 23:615–622.333

Elkan, C. (1999). Results of the kdd’99 classifier learning contest. http://cseweb.ucsd.edu/334

users/elkan/clresults.html.335

Figueroa, R., Zeng-Treitler, Q., Kandula, S., and Ngo, L. (2012). Predicting sample size required for336

classification performance. BMC Medical Informatics and Decision Making, 12(1):8.337

Fukunaga, K. and Hayes, R. R. (1989). Effects of sample size in classifier design. IEEE Trans. Pattern338

Analysis and Machine Intelligence, 11(8):873–885.339

Gentleman, R. and Temple Lang, D. (2007). Statistical analyses and reproducible research. Journal of340

Computational and Graphical Statistics, 16(1):1–23.341

Gowrison, G., Ramar, K., Muneeswaran, K., and Revathi, T. (2013). Minimal complexity attack342

classification intrusion detection system. Applied Soft Computing, 13(2):921 – 927.343

Guo, C., Zhou, Y., Ping, Y., Zhang, Z., Liu, G., and Yang, Y. (2014). A distance sum-based hybrid method344

for intrusion detection. Applied Intelligence, pages 1–11.345

Halevy, A., Norvig, P., and Pereira, F. (2009). The unreasonable effectiveness of data. IEEE Intelligent346

Systems, 24(2):8–12.347

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009). The weka data348

mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18.349

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets.350

Machine Learning, 11:63–90. 10.1023/A:1022631118932.351

Horng, S.-J., Su, M.-Y., Chen, Y.-H., Kao, T.-W., Chen, R.-J., Lai, J.-L., and Perkasa, C. D. (2011). A352

novel intrusion detection system based on hierarchical clustering and support vector machines. Expert353

Systems with Applications, 38(1):306 – 313.354

8/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Kalayeh, H. M. and Landgrebe, D. A. (1983). Predicting the required number of training samples. IEEE355

Transactions on Pattern Analysis and Machine Intelligence, 5(6):664–667.356

KDDCup (1999). Kdd cup 1999 data task description. http://kdd.ics.uci.edu/databases/357

kddcup99/task.html.358

Khor, K.-C., Ting, C.-Y., and Phon-Amnuaisuk, S. (2012). A cascaded classifier approach for improving359

detection rates on rare attack categories in network intrusion detection. Applied Intelligence, 36(2):320–360

329.361

Koc, L., Mazzuchi, T. A., and Sarkani, S. (2012). A network intrusion detection system based on a hidden362

naı̈ve bayes multiclass classifier. Expert Systems with Applications, 39(18):13492 – 13500.363

Kumar, G. and Kumar, K. (2013). Design of an evolutionary approach for intrusion detection. The364

Scientific World Journal, 2013:14.365

Last, M. (2007). Predicting and optimizing classifier utility with the power law. In Data Mining Workshops,366

2007. ICDM Workshops 2007. Seventh IEEE International Conference on, pages 219–224.367

Lee, W. and Stolfo, S. J. (2000). A framework for constructing features and models for intrusion detection368

systems. ACM Transactions on Information and System Security, 3:227–261.369

Lenth, R. V. (2001). Some practical guidelines for effective sample size determination. The American370

Statistician, 55(3):187–193.371

Lin, S.-W., Ying, K.-C., Lee, C.-Y., and Lee, Z.-J. (2012). An intelligent algorithm with feature selection372

and decision rules applied to anomaly intrusion detection. Applied Soft Computing, 12(10):3285 –373

3290.374

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., and Das, K. (2000). The 1999 darpa off-line intrusion375

detection evaluation. Computer Networks, 34:579–595.376

McHugh, J. (2000). Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion377

detection system evaluations as performed by lincoln laboratory. ACM Transactions on Information378

and System Security, 3(4):262–294.379

Nguyen, H. and Choi, D. (2008). Application of data mining to network intrusion detection: Classifier380

selection model. In Ma, Y., Choi, D., and Ata, S., editors, Challenges for Next Generation Network381

Operations and Service Management, volume 5297 of Lecture Notes in Computer Science, pages382

399–408. Springer Berlin / Heidelberg.383

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060):1226–1227.384

Perlich, C. (2009). Learning curves in machine learning. Technical report, IBM.385

Pfahringer, B. (2000). Winning the kdd99 classification cup: bagged boosting. SIGKDD Explor. Newsl.,386

1:65–66.387

Platt, J. C. (1998). Fast training of support vector machines using sequential minimal optimization.388

Technical report, Microsoft.389

Raudys, S. and Jain, A. (1991). Small sample size effects in statistical pattern recognition: Recom-390

mendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence,391

13(3):252–264.392

Raymond, K.-K. and Choo (2011). The cyber threat landscape: Challenges and future research directions.393

Computers and Security, 30(8):719 – 731.394

Scarfone, K. and Mell, P. (2007). Guide to intrusion detection and prevention systems (IDPS), volume395

800. NIST.396

Sheikhan, M. and Sharifi Rad, M. (2013). Gravitational search algorithm–optimized neural misuse397

detector with selected features by fuzzy grids–based association rules mining. Neural Computing and398

Applications, pages 1–13.399

Sindhu, S. S. S., Geetha, S., and Kannan, A. (2012). Decision tree based light weight intrusion detection400

using a wrapper approach. Expert Systems with Applications, 39(1):129 – 141.401

Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine learning for network402

intrusion detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,403

pages 305–316, Washington, DC, USA. IEEE Computer Society.404

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. (2009). A detailed analysis of the kdd cup 99405

data set. In Proceedings of the Second IEEE international conference on Computational intelligence406

for security and defense applications, CISDA’09, pages 53–58.407

Tavallaee, M., Stakhanova, N., and Ghorbani, A. (2010). Toward credible evaluation of anomaly-based408

intrusion-detection methods. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE409

9/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Transactions on, 40(5):516–524.410

Vandewalle, P., Kovacevic, J., and Vetterli, M. (2009). Reproducible research in signal processing. Signal411

Processing Magazine, IEEE, 26(3):37–47.412

wikipedia (2015). Reproducibility. http://en.wikipedia.org/wiki/Reproducibility.413

Witten, I. and Frank, E. (2011). Data Mining: Practical machine learning tools and techniques (Third414

Edition). Morgan Kaufmann Pub.415

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B.,416

Yu, P., Zhou, Z.-H., Steinbach, M., Hand, D., and Steinberg, D. (2008). Top 10 algorithms in data417

mining. Knowledge and Information Systems, 14:1–37.418

Yi, Y., Wu, J., and Xu, W. (2011). Incremental svm based on reserved set for network intrusion detection.419

Expert Systems with Applications, 38(6):7698 – 7707.420

Zeng, J., Liu, X., Li, T., Li, G., Li, H., and Zeng, J. (2011). A novel intrusion detection approach421

learned from the change of antibody concentration in biological immune response. Applied Intelligence,422

35(1):41–62.423

Zhang, J., Zulkernine, M., and Haque, A. (2008). Random-forests-based network intrusion detection424

systems. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,425

38(5):649 –659.426

Özgür, A. and Erdem, H. (2016). A review of kdd99 dataset usage in intrusion detection and machine427

learning between 2010 and 2015. PeerJ Preprints.428

10/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Classification Al-

gorithm

Author(s) [Reference] Detection Rate Train Set

Size

Test Set Size Software

Used

(Detection Rate) instance

number

instance

number

AdaBoost Gowrison et al 2013 (Gowrison et al.,

2013)

0.9844 6,983 6,983 Weka

AdaBoost Zeng et al, 2011 (Zeng et al., 2011) 0.9004–0.9088 60,000–

12,000

2650 NI

Bagged Boosting

(KDD99 Winner)

Pfahringer 1999 (Pfahringer, 2000) 0.9271 485,178 311,029* NI

Cascaded NB-J48 Khor et al 2012 (Khor et al., 2012) 0.9480 127,955 311,029* NI

Decision Stump Sindhu et al, 2012 (Sindhu et al., 2012) 0.7973 444,617 49,401 Weka

Decision Tree Lin et al, 2012 (Lin et al., 2012) 0.9885 444,618 49,402 NI

Decision Tree Benferhat et al, 2013 (Benferhat et al.,

2013)

0.9341–0.9401 494,019 311,029* NI

Decision Tree Guo et al, 2014 (Guo et al., 2014) 0.9170 20,752 311,029* NI

Decision Tree Sindhu et al, 2012 (Sindhu et al., 2012) 0.9666 444,617 49,401 Weka

DSSVM (Distance

Sum-based SVM)

Guo et al, 2014 (Guo et al., 2014) 0.9206 20,752 311,029* NI

Elman NN Sheikhan et al 2012 (Sheikhan and Shar-

ifi Rad, 2013)

0.8790 49,402 31,103* NI

Ensemble NN Sindhu et al, 2012 (Sindhu et al., 2012) 0.9676 444,617 49,401 Weka

Hidden Naive

Bayes (HNB)

Benferhat et al, 2013 (Benferhat et al.,

2013)

0.9419–0.9506 494,019 311,029* NI

Hidden Naive

Bayes (HNB)

Koc et al, 2012 (Koc et al., 2012) 0.9372 444,617 49,401 Weka

HMM Zheng et al, 2011 (Zeng et al., 2011) 0.9516–0.9600 60,000–

12,000

2650 NI

K–Nearest Neigh-

bor

Guo et al, 2014 (Guo et al., 2014) 0.9109 20,752 311,029* NI

ID3-Bee Eesa et al, 2015 (Eesa et al., 2015) 0.9314 4947 3117 C#

MLP Gowrison et al, 2013 (Gowrison et al.,

2013)

0.9390 6,983 6,983 Weka

MLP Sheikhan et al, 2012 (Sheikhan and

Sharifi Rad, 2013)

0.8000 49,402 31,103* NI

Naive Bayes Chung & Wahid 2012 (Chung and

Wahid, 2012)

0.8680 4,000 4,000 NI

Naive Bayes Zheng et al, 2011 (Zeng et al., 2011) 0.9681–0.9721 60,000–

12,000

2650 NI

Naive Bayes Benferhat et al, 2013 (Benferhat et al.,

2013)

0.9345–0.9515 494,019 311,029* NI

Naive Bayes Guo et al, 2014 (Guo et al., 2014) 0.9148 20,752 311,029* NI

NBTree Sindhu et al, 2012 (Sindhu et al., 2012) 0.9227 444,617 49,401 Weka

Neuro Tree Sindhu et al, 2012 (Sindhu et al., 2012) 0.9838 444,617 49,401 Weka java

neurotree

NIDAAC Zheng et al, 2011 (Zeng et al., 2011) 0.9562–0.9606 60,000–

12,000

2650 NI

PSO Chung & Wahid 2012 (Chung and

Wahid, 2012)

0.8830 4,000 4,000 NI

Random Forests Zhang et al, 2008(Zhang et al., 2008) 0.9808(a) 0.995(b)

0.9203(c)

494,020–

60,620

60,620(a)

60,620(b)

311,029(c)*

Weka

Random Forests Sindhu et al, 2012 (Sindhu et al., 2012) 0.8921 444,617 49,401 Weka

Random Tree Sindhu et al, 2012 (Sindhu et al., 2012) 0.8898 444,617 49,401 Weka

Representative Tree Sindhu et al, 2012 (Sindhu et al., 2012) 0.8911 444,617 49,401 Weka

RNN Sheikhan et al, 2012 (Sheikhan and

Sharifi Rad, 2013)

0.9410 49,402 31,103* NI

Rule Based Gowrison et al, 2013 (Gowrison et al.,

2013)

0.999 6,983 6,983 Weka

SSO–WLS Chung & Wahid, 2012 (Chung and

Wahid, 2012)

0.9330 4,000 4,000 Weka

SVM Chung & Wahid, 2012 (Chung and

Wahid, 2012)

0.9218 4,000 4,000 Weka

SVM Lin et al, 2012 (Lin et al., 2012)) 0.9903 444,618 49,402 NI

SVM Guo et al, 2014 (Guo et al., 2014) 0.9137 20,752 311,029* NI

Tree Augmented

Naive Bayes (TAN)

(Benferhat et al, 2013 (Benferhat et al.,

2013)

0.9436–0.9740 494,019 311,029* NI

Table 1. Classifiers Results from Literature (* means KDD99 original test dataset used, NI means

No Information)

11/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Dataset

Type

Attack Normal Total

Training 3,925,650

(80.15%)

972,781

(19.85%)

4,898,431

Test 250,436

(80.52%)

60,593

(19.48%)

311,029

Table 2. KDD99 Properties Attack/Normal

Easy to Use Most Used Easy to Understand Hard to Train

ZeroR Adaboost (Zeng et al., 2011;

Gowrison et al., 2013)

BayesNet (Nguyen and Choi,

2008)

MLP (Gowrison

et al., 2013;

Sheikhan and

Sharifi Rad, 2013)

OneR (Nguyen and

Choi, 2008)

Decision Tree (Nguyen and

Choi, 2008; Sindhu et al., 2012;

Guo et al., 2014; Khor et al.,

2012; Lin et al., 2012; Benfer-

hat et al., 2013)

Decision Table (Nguyen and

Choi, 2008)

RBF

Naive Bayes (Guo et al., 2014;

Nguyen and Choi, 2008; Zeng

et al., 2011; Benferhat et al.,

2013)

Decision Tree (Nguyen and

Choi, 2008; Sindhu et al., 2012;

Guo et al., 2014; Khor et al.,

2012; Lin et al., 2012; Benfer-

hat et al., 2013)

SVM (Chung and

Wahid, 2012; Lin

et al., 2012; Guo

et al., 2014)

Random Forest (Zhang et al.,

2008; Sindhu et al., 2012)

Logistic Regression

Table 3. Four Groups of Applied Classifiers

Classifier Name Working Memory Giga

Bytes

Training Time Min-

utes

Model Sizes

Bytes

Model Sizes

Mega Bytes

Logistic 7,233 10.37 39,661 0,038

BayesNet 13,935 5.22 1,787,990,728 1,705,161

NaiveBayes 3,067 1.80 14,936 0,014

SMO 7,724 1,128.90 40,124 0,038

J48 4,573 30.88 142,345 0,136

MLP 8,861 722.78 68,035 0,065

RBFNetwork 13,381 8.52 1,748,805,636 1,667,791

AdaBoostM1 5,549 12.87 9,714 0,009

SGD 12,253 34.58 38,225 0,036

DecisionTable 8,461 41.42 443,696 0,423

OneR 9,446 0.42 1,767 0,002

RandomForest 9,015 11.98 5,0012,917 47,696

ZeroR 7,248 0.02 1,110 0,001

Table 4. Classifiers Training Information

12/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Actual

Attack Normal

Predicted
Attack True Positives False Positives

Normal False Negatives True Negatives

Actual Number Performance Metrics Rate Performance Metrics

True Positive How many actual attacks classifier pre-

dicted as true attack (number).

tp rate T P
T P+FN

True Negative How many actual normal instances clas-

sifier predicted as normal(number).

fp rate FP
FP+T N

False Positive How many actual normal instances clas-

sifier predicted as attack, in other words

false alarm (number)

precision T P
T P+FP

False Negative How many actual attacks classifier pre-

dicted as normal, that is missed an attack

(number)

recall T P
T P+FP

Detection Rate (Ac-

curacy)

T P+T N
T P+FP+FN+T N

F-Measure 2T P
2T P+FP+FN

Table 5. Confusion Matrix for Binary Attack Classification

Algorithms Detection

Rate

True Pos-

itive Rate

True

Negative

Rate

False Pos-

itive Rate

False

Negative

Rate

precision F1-Rate

AdaBoostM1 99,20% 99,46% 97,82% 1,86% 1,86% 99,54% 99,50%

BayesNet 99,64% 99,55% 98,21% 0,01% 0,01% 99,99% 99,77%

DecisionTable 99,99% 99,99% 99,96% 0,03% 0,03% 99,99% 99,99%

J48 99,99% 99,99% 99,99% 0,01% 0,01% 99,99% 99,99%

Logistic 99,48% 99,76% 99,01% 1,63% 1,63% 99,60% 99,68%

MLP 99,92% 99,91% 99,62% 0,02% 0,02% 99,99% 99,95%

NaiveBayes 99,19% 99,24% 97,00% 1,00% 1,00% 99,75% 99,50%

OneR 98,81% 99,96% 99,84% 5,82% 5,82% 98,58% 99,26%

RandomForest 99,99% 99,99% 99,99% 0,01% 0,01% 99,99% 99,99%

RBFNetwork 99,36% 99,32% 97,31% 0,46% 0,46% 99,88% 99,60%

SGD 99,90% 99,91% 99,63% 0,13% 0,13% 99,97% 99,94%

SMO 99,88% 99,87% 99,48% 0,10% 0,10% 99,97% 99,92%

ZeroR 80,14% 100,00% NA 100,00% 100,00% 80,14% 88,98%

Table 6. Training Set Base Metrics

13/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

Algorithms Detection

Rate

True Pos-

itive Rate

True

Negative

Rate

False Pos-

itive Rate

False

Negative

Rate

precision F1-Rate

AdaBoostM1 91,49% 90,11% 70,39% 2,80% 2,80% 99,25% 94,46%

BayesNet 91,61% 89,78% 70,13% 0,82% 0,82% 99,78% 94,52%

DecisionTable 94,70% 93,98% 79,69% 2,32% 2,32% 99,41% 96,61%

J48 93,49% 92,03% 75,13% 0,49% 0,49% 99,87% 95,79%

Logistic 81,52% 77,68% 51,35% 2,62% 2,62% 99,19% 87,13%

MLP 91,82% 90,23% 70,90% 1,60% 1,60% 99,57% 94,67%

NaiveBayes 91,47% 89,95% 70,18% 2,25% 2,25% 99,40% 94,44%

OneR 90,74% 88,81% 68,10% 1,27% 1,27% 99,66% 93,92%

RandomForest 92,43% 90,85% 72,34% 1,03% 1,03% 99,73% 95,08%

RBFNetwork 85,28% 82,11% 57,09% 1,62% 1,62% 99,53% 89,98%

SGD 92,29% 90,82% 72,16% 1,63% 1,63% 99,57% 94,99%

SMO 91,92% 90,36% 71,16% 1,65% 1,65% 99,56% 94,74%

ZeroR 80,52% 100,00% NA 100,00% 100,00% 80,52% 89,21%

Table 7. Test Set Base Metrics

Classification Algo-

rithm

DR Literature on

Training

DR Literature on

Testing

DR Train DR Test

AdaBoostM1 0.9844(Gowrison

et al., 2013)

NA 0.9920 ↑ 0.9149

BayesNet 0.9062(Nguyen and

Choi, 2008)

NA 0.9964 ↑ 0.9161 ↑

DecisionTable 0.9166(Nguyen and

Choi, 2008)

NA 0.9999 ↑ 0.9470 ↑

J48 0.9885(Lin et al.,

2012)

0.9401(Benferhat

et al., 2013)

1.0000 ↑ 0.9349 ↓

Logistic Regression NA NA 0.9948 0.8152

MLP 0.9390(Gowrison

et al., 2013)

0.8000(Sheikhan and

Sharifi Rad, 2013)

0.9992 ↑ 0.9182 ↑

NaiveBayes 0.9721 (Zeng et al.,

2011)

0.9515(Benferhat

et al., 2013)

0.9919 ↑ 0.9147 ↓

OneR 0.8931(Nguyen and

Choi, 2008)

NA 0.9881 ↑ 0.9074

RandomForest 0.9808(Zhang et al.,

2008)

0.9203(Zhang et al.,

2008)

0.9999 ↑ 0.9243 ↑

RBFNetwork NA NA 0.9936 ↑ 0.8528

SGD NA NA 0.9990 0.9229

SMO 0.9903(Lin et al.,

2012)

0.9137(Guo et al.,

2014)

0.9988 ↑ 0.9192 ↑

ZeroR NA NA 0.8014 0.8052

Table 8. Comparison of Applied Classifiers with Previous Studies using Detection Rate

14/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2838v1 | CC BY 4.0 Open Access | rec: 1 Mar 2017, publ: 1 Mar 2017

