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Abstract

Summary:  MerCat (“Mer -  Catenate”)  is  a parallel,  highly  scalable and modular  property 

software package for robust analysis of features in next-generation sequencing data. Using 

assembled contigs and raw sequence reads from any platform as input, MerCat performs 

k-mer counting of any length k, resulting in feature abundance counts tables. MerCat allows 

for  direct  analysis  of  data  properties  without  reference  sequence  database  dependency 

commonly  used  by  search  tools  such  as  BLAST  for  compositional  analysis  of  whole 

community shotgun sequencing (e.g., metagenomes and metatranscriptomes). 

Availability and implementation: MerCat is written in Python and distributed under a BSD 

license. The source code of MerCat is freely available at https://github.com/pnnl/m  ercat

MerCat is compatible with Python 2 and 3 and works on both Mac OS X and Linux. MerCat 

can also be easily installed using bioconda: conda install mercat 

Contact:  Richard Allen White III  and Janet Jansson,  Biological  Sciences Division,  Pacific 

Northwest  National  Laboratory,  Richland,  Washington  99352,  USA.  Email: 

Richard.white@pnnl.gov or raw937@gmail.com, Janet.jansson@pnnl.gov
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1 Introduction 

Whole community sequencing of total DNA (i.e., metagenomics) and total RNA (i.e., 

metatranscriptomics) have provided windows into the composition, functions and potential 

roles of microbial communities residing in complex ecosystems (e.g., soil) (White III  et al.,  

2016a). The throughput of next generation sequencing (NGS) technologies is continuously 

increasing: sequence data currently requires terabytes of storage (White III et al., 2016a) and 

read lengths can exceed 90 kbp (Laver  et  al., 2015).  Therefore,  developments of  robust 

bioinformatics tools are needed to analyze these data. 

Reference  sequence  databases  and  tools  that  classify  sequences  are  critical 

bottlenecks  in  metagenomics  and  metatranscriptomics.  For  example,  tools  that  search 

reference  sequence  databases  against  query  data  such  as  homology-based  BLAST are 

computationally slow against large databases (e.g., KEGG) (Silva  et al., 2016). In addition, 

metagenome  assembly  approaches,  although  recently  improved  for  complex  data  types 

(Howe et al., 2014; Li et al., 2015; White III et al., 2016b), are not able to assemble all data. 

Open-source reference sequence databases are facing a number of challenges, including 

finding  lasting  funding,  many  are  moving  to  a  subscription-based  access  (e.g.,  KEGG 

www.kegg.jp/kegg/), slowed development (e.g., COG https://www.ncbi.nlm.nih.gov/COG/), or 

discontinuation (e.g., CAMERA http://camera.calit2.net/).  

Database-independent  property  analysis  (i.e.,  DIPA)  which  utilizes  counting  of 

k-mers  subsequences  (of  length  k)  from  sequence  reads  obtained  from  NGS  platforms 

without a reference sequence database for matching query data. DIPA-based k-mer counting 

provides  rapid  and  robust  microbial  community  analysis  and  characterization  without  the 
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biases or limitations of sequence databases (Jiang et al., 2012) and/or de novo assembly in 

order to compare and contrast sequence datasets.  K-mers are critical to assembly (Li et al., 

2015), counting (Zhang et al., 2014), partitioning (Howe et al., 2014), genomic binning (Wu et 

al., 2015) and classification (Jiang et al., 2012). K-mer based counting is amongst the fastest 

approaches  for  profiling  metagenomic  and/or  metatranscriptomic  data  (Lindgreen  et  al., 

2015). 

There  are  many  k-mer  counters  (Zhang  et  al.,  2014),  and  even  database 

dependent k-mer profilers (Koslicki and Falush, 2016). MerCat provides only k-mer counting 

tool  for  assembled  contigs  (.fna),  translated  protein-coding  ORFs  (.faa)  and  NGS reads 

(.fastq) for any size k-mer.  Alpha diversity metrics for microbial ecology including chao1, ace, 

simpson, goods coverage, dominance and fishers alpha are generated by MerCat. Nucleotide 

properties  (e.g.,  %G+C,  %A+T)  and  protein  properties  of  translated  protein-coding  open 

reading frames (ORFs) (e.g., protein isoelectric point, pI, and hydrophobicity metrics) are also 

generated. 

Here we describe MerCat, a tool that can accommodate any size sequence file by 

utilizing a ‘divide and conquer’ approach and then performs k-mer analysis.  MerCat can be 

employed for rapid, robust, versatile analysis of NGS microbial community data using DIPA. 

2 DESCRIPTION OF THE TOOL 

MerCat  is  a  modular  and  highly-scalable  Python-based  open-source  software 

package. MerCat computes k-mer frequency counting to any length k on  assembled contigs  

as nucleotide fasta, raw reads (e.g., fastq), and translated protein-coding ORFs (e.g., protein  
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fasta). The package also allows for user-defined custom analyses.  Although raw read inputs 

can be used in MerCat, it is not recommended due to low quality and sequencing errors, thus 

we utilize Trimmomatic (Bolger  et al., 2014) for quality control trimming of low-quality data 

obtained by fastq formats (default trimming is base pair quality score >Q30). K-mer counting in 

MerCat  has  two  modes:  DNA mode,  which  can  analyze  nucleotide  contigs  directly,  and 

Protein  mode,  wherein  nucleotide  contigs  are   translated   into  protein-coding ORFs with 

Prodigal (Hyatt  et al., 2012), using the metagenomic option (default) (Figure 1).  Individual 

sequence files or many files within a single folder can be analyzed by MerCat. Tabular outputs 

include overall feature files (e.g., many files within a folder), or per-file feature analysis based 

on k-mer frequency counts tables for either nucleotides and/or proteins fasta files.  Tabular file  

outputs  are  stored  as  comma-separated  files  for  downstream analysis.  MerCat  can  also 

calculate Alpha diversity metrics for each file in both Protein and DNA mode. As a default, we 

provide k-mer frequency stacked bar plots for individual samples and MDS plots for many 

samples.

 MerCat can handle input files >10 gigabyte by splitting them into multiple files. 

MerCat computes on the individual files, then combines the resulting data, analyzes data and 

produces the final output (as mentioned previously) for large input files. The combined overall  

output generated may be too large to fit in the available memory of a standard computer. For 

this  reason,  we  used  Dask,  a  Python-based  parallel-computing  library  that  enables 

processing data that does not fit into available memory. Dask stores the data on a hard disk, 

then loads portions of it back and forth into memory as needed for analysis. This enables 

MerCat to scale from laptop to high-performance computing resources, all within the same 
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user friendly-package. 

3 SUMMARY

MerCat provides DIPA for metagenomic and metatranscriptomic data, starting from 

nucleotide and protein sequence files and ending with tabular files for downstream analysis 

and visualization. MerCat is scalable,  accommodating for large input files,  is user-friendly, 

easy to install  and is user customizable. MerCat fills a major computational bottleneck by 

enabling  rapid  analysis  of  many datasets  and  large  datasets  in  a  database  independent 

manner. 
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Figure 1: MerCat workflows.  Inputs include assembled contigs (.fna), assembled contigs 
previously translated protein-coding ORFs (.faa) and NGS reads (.fastq) for any size k-mer. 
Outputs include tabular count tables for individual mers, stacked bar and MDS plots, alpha 
diversity statistics.  Prodigal  uses metagenomic mode as default  for  translating assembled 
nucleotide  contigs into  protein-coding ORFs (.faa).  Trimmomatic  as  default  requires  base 
quality >Q30. 
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