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ABSTRACT 1	
  
 2	
  

We studied the effect of linearization on the repeatability of the Tofts and reference 3	
  
region models (RRM) for Dynamic Contrast-Enhanced MRI (DCE MRI). We compared the 4	
  
repeatabilities of these two linearized models, the standard non-linear version, and semi-5	
  
quantitative methods of analysis. 6	
  

Simulated and experimental DCE MRI data from 12 rats with a flank tumor of C6 glioma 7	
  
acquired over three consecutive days were analyzed using four quantitative and semi-quantitative 8	
  
DCE MRI metrics. The quantitative methods used were: 1) Linear Tofts model (LTM), 2) Non-9	
  
linear Tofts model (NTM), 3) Linear RRM (LRRM), and 4) Non-linear RRM (NRRM). The 10	
  
following semi-quantitative metrics were used: 1) Maximum enhancement ratio (MER), 2) time 11	
  
to peak (TTP), 3) initial area under the curve (iauc64), and 4) slope.  LTM and NTM were used 12	
  
to estimate Ktrans, while LRRM and NRRM were used to estimate Ktrans relative to muscle 13	
  
(RKtrans). Repeatability was assessed by calculating the within-subject coefficient of variation 14	
  
(wSCV) and the percent intra-subject variation (iSV) determined with the Gage repeatability and 15	
  
reproducibility (R&R) analysis.  16	
  

The iSV for RKtrans using LRRM was two-fold lower compared to NRRM at all simulated 17	
  
and experimental conditions. A similar trend was observed for the Tofts model, where LTM was 18	
  
at least 50% more repeatable than the NTM under all experimental and simulated conditions. 19	
  
The semi-quantitative metrics iauc64 and MER were as equally reproducible as  Ktrans and RKtrans 20	
  
estimated by LTM and LRRM respectively. The iSV for iauc64 and MER were significantly 21	
  
lower than the iSV for slope and TTP.  22	
  

In simulations and experimental results, linearization improves the repeatability of 23	
  
quantitative DCE MRI by at least 30%, making it as repeatable as semi-quantitative metrics. 24	
  
 25	
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1. INTRODUCTION 1	
  
Dynamic contrast-enhanced MRI (DCE MRI) involves the serial acquisition of T1-2	
  

weighted images before, during, and after the injection of a contrast agent that shortens the T1 3	
  
relaxation time of water, resulting in an increase of the MRI signal in tissues/voxels where the 4	
  
agent accumulates.1 After application of a proper pharmacokinetic (PK) model, parameters 5	
  
related to tissue perfusion,2 blood flow,3 capillary leakage,4 and transit time of the contrast agent 6	
  
can be derived from the dynamic MRI signal in a voxel or a tissue of interest (TOI).5 7	
  

The two PK parameters most commonly estimated from DCE MRI data are the rate of 8	
  
contrast agent transfer from to blood tissue (Ktrans) and the rate of transfer from tissue to blood 9	
  
(kep).1 Several studies have shown evidence that Ktrans can be used to differentiate tumors from 10	
  
normal tissue,6-7 and to monitor anti-cancer treatment in fibrosarcoma,8 breast,9-10 and brain 11	
  
neoplasms.11-12. Unfortunately, these results are inconsistent with other studies, which showed 12	
  
that Ktrans offers little to no utility to monitor anti-cancer treatment in breast and brain cancers.13-13	
  
14 Because of these limitations, quantitative DCE MRI descriptors are not part of the standard of 14	
  
care for clinical DCE MRI.  15	
  

These contradictory results may be due to the inherent insensitivity of DCE MRI that 16	
  
results in a low signal-to-noise ratio (SNR),15-16 slow temporal resolution,17 variability in the 17	
  
arterial input function (AIF) needed for PK modeling,18-19 and/or the model assumed during data 18	
  
analysis.20-21 Some of these limitations have been addressed by the introduction of the non-linear 19	
  
reference region model (NRRM),22,23 which does not require AIF determination, and the linear 20	
  
reference region model (LRRM) that also does not require the AIF and gives more accurate 21	
  
parameter estimates than the NRRM under low SNR and slow temporal resolution.24-25 The 22	
  
standard Tofts model for DCE MRI has also been linearized, and it was recently demonstrated 23	
  
that such linearization improves its performance under low SNR and low temporal resolution.26 24	
  

We recently demonstrated that the relative Ktrans (RKtrans) estimated by LRRM is a better 25	
  
predictor of response to neoadjuvant chemotherapy in breast cancer than the RKtrans estimated 26	
  
using NRRM. An analoguous behavior was observed for Ktrans and kep estimated using the linear 27	
  
(LTM)  and non-linear  (NTM) Tofts models.27 Based on these results, we hypothesized that 28	
  
linearization should improve the repeatability of quantitative DCE MRI. We performed a 29	
  
retrospective study to compare the repeatability of RKtrans and kep estimated by NRRM and 30	
  
LRRM. We also compared the repeatability of quantitative NRRM and LRRM descriptors with 31	
  
semi-quantitative descriptors and quantitative NTM and LTM descriptors of DCE MRI.  32	
  

 33	
  
2. METHODS 34	
  

All of the experimental data and MATLAB R2015a codes used in the simulations and 35	
  
experimental analyses are publicly available for download without restrictions.28 The 36	
  
experimental data was downloaded from DataVerse,21 while the code used to simulate and 37	
  
analyze all data is available at https://github.com/JCardenasRdz/Gage-repeatability-DCE MRI.  38	
  
 39	
  
2.1 Theory of the quantitative analysis of DCE MRI and its models 40	
  

The generalized kinetic model for DCE MRI establishes that the differential equation that 41	
  
describes the pharmacokinetic behavior of a contrast agent (CA) within a voxel is:  42	
  

  

dCTOI

dt
 =  K trans ⋅Cp t( )− kepCTOI          (1) 43	
  

 44	
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CTOI is the concentration of the tracer in the tissue of interest (TOI) as a function of time. Cp(t) is 1	
  
the concentration of the tracer in plasma as a function of time (also known as the AIF), and Ktrans 2	
  
is the rate transfer constant from the plasma into the TOI, while kep is the transfer constant from 3	
  
the TOI to plasma. The quantitative analysis of DCE MRI data requires three steps to estimate 4	
  
Ktrans and kep for any TOI: 1) solve Eq. [1], 2) transform the observed changes in the MRI signal 5	
  
to changes in concentration of the contrast agent, and 3) fit the concentration curves of step 2 to 6	
  
the solution obtained in step 1. The first and most common solution to Eq. [1] was developed by 7	
  
Tofts et al:1 8	
  

  
CTOI (t) =  K trans ⋅ Cp (t) ⋅e

0

T

∫
−kep T−t( )

dt               (2) 9	
  

 10	
  
Equation (2) depicts an equation that is non linear in the parameters, and requires a non-linear 11	
  
fitting routine to estimate Ktrans and kep, thus we have named this method the Non-linear Tofts 12	
  
Model (NTM).  Non-linear fitting methods are very sensitive to low SNR, while linear fitting 13	
  
methods are more robust and significantly faster. Murase, et al., addressed these issues by 14	
  
developing a linear approximation of the NTM, and we have named this method the Linear Tofts 15	
  
Model (LTM) ( Eq. [3]).26  16	
  
 17	
  

  
CTOI (t) =  K trans ⋅ Cp (t)dt − kep ⋅ CTOI (t)dt

0

T

∫0

T

∫  
       (3) 18	
  

 19	
  
Requiring to know the Cp(t) is a major limitation of Eq. [2] and Eq. [3], because it is  challenging 20	
  
to measure Cp(t) experimentally. The reference region model (RRM) was introduced to remove 21	
  
the need of knowing Cp(t), and uses instead a reference region (RR) as surrogate for the Cp(t) 22	
  
(Eq. [4]).22,29  23	
  
 24	
  

  
CTOI (t) =

K trans,TOI

K trans,RR ⋅CRR(t)+ K trans,TOI

K trans,RR ⋅[kep,RR − kep,TOI ]⋅ CRR(t) ⋅e
0

T

∫
– kep,TOI (T−t )

dt    (4a) 25	
  

  
CTOI (t) = RKtransCRR(t)+ RKtrans ⋅[kep,RR − kep,TOI ]⋅ CRR(t) ⋅e

0

T

∫
– kep,TOI (T−t )

dt        (4b) 26	
  

 27	
  
CTOI(t) and CRR(t) are the concentrations of the contrast agent at time t in the TOI and RR 28	
  
respectively. Ktrans,TOI and Ktrans,RR are the transfer constants between plasma and the 29	
  
extravascular extracellular space (EES) of the TOI and the RR respectively. RKtrans = Ktrans,TOI / 30	
  
Ktrans,RR , kep,RR and kep,TOI are the transfer rates (min-1) from the TOI and RR back to the plasma. 31	
  
Estimating RKtrans, kep,RR and kep,TOI  using Eq. [4] requires a nonlinear fitting method. Thus, we 32	
  
have named Eq. [4] the Non-linear  RRM (NRRM). We obtained a linear solution to the RRM, 33	
  
and demonstrated that the Linear RRM (LRRM) is more robust than NRRM to low SNR and 34	
  
slow temporal resolution (Eq. [5]).24 35	
  

  
CTOI (t) =  RKtrans ⋅CRR(t)+ K trans,TOI

ve,RR

⋅ CRR(t)dt  –  kep,TOI ⋅ CTOI (t)dt
0

T

∫0

T

∫           (5) 36	
  

 37	
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The same definitions used for Eq. [4] apply to Eq. [5], and ve,RR is the fractional volume of the 1	
  
extravascular extracellular space. The goal of our study was to determine how the model used in 2	
  
the analysis of the data affects the repeatability of DCE MRI.  3	
  
 4	
  
2.2 Gage Repeatability and Reproducibility (R&R) analysis 5	
  

The Gage Repeatability and Reproducibility (Gage R&R) methodology was initially 6	
  
developed to determine the sources of variation in a manufacturing system.30 Gage R&R analysis 7	
  
uses ANOVA to determine the percent of the observed variation in a system that is due to the 8	
  
parts (process), measuring protocol (repeatability), and the operator (reproducibility). Thus, this 9	
  
methodology can be used to determine if the inherent variability in the system is small compared 10	
  
to the process variability, and the proportion of the observed variability caused by differences in 11	
  
operators. The Gage R&R study of DCE MRI data presented in this work used repeated imaging 12	
  
sessions on the same subject (part) to determine the percentage of the observed variability that is 13	
  
due to the fitting algorithm used for the analysis of DCE MRI data. The Gage R&R methodology 14	
  
was implemented using the gagerr function in Matlab R2015a.28 15	
  
 16	
  
2.3 Simulations 17	
  

Thirty simulated tumor enhancement curves were created by using Ktrans and ve values 18	
  
that were randomly selected from a normal distribution (Figure 1). The mean Ktrans was set to 19	
  
0.25 min-1 with a standard deviation of 0.1, and the mean ve was set to 0.4 with a standard 20	
  
deviation of 0.1. A single muscle reference region enhancement curve was created for all 21	
  
subsequent analyses using a Ktrans of 0.1 min-1 and a ve of 0.1. These values represented 22	
  
reasonable values for tumor and muscle tissues from previous reports.31 All curves were 23	
  
simulated using Eq. [2], and a simulated Cp(t) was simulated (Eq. [6]): 24	
  

  25	
  

  
Cp (t) = A ⋅ t ⋅e − t⋅C( ) + D ⋅(1− e− t⋅E ) ⋅e− t⋅F                                                                                (6) 26	
  

 27	
  
where A = 30 mM/min, C = 4.0 min-1, D = 0.65 mM, E = 5.0 min, and F = 0.04 min-1 . This set 28	
  
of parameters simulated an AIF with an injection speed of 0.005 mL/sec, which is similar to a 29	
  
previously reported AIF.32  30	
  

To simulate potential changes in enhancement curves under experimental conditions of 31	
  
performing DCE MRI of a rat tumor model for 3 consecutive days, white Gaussian noise was 32	
  
added to each of the 30 simulated enhancement curves 3 separate times at the same SNR. White 33	
  
Gaussian noise was also added to a simulated muscle reference region enhancement curve. SNR 34	
  
was defined as the ratio of the signal power over the noise power in decibels. 35	
  

The RKtrans value for each of the 3 curves for each of the 12 rats over three consecutive 36	
  
days was determined using LRRM without a non-negative constraint; LRRM with a non-37	
  
negative constraint; and NRRM with a non-negative constraint and initial guesses for RKtrans 38	
  
taken from a gamma distribution with coefficient a = 1.40 and b = 0.56, which corresponds to 39	
  
reasonable values from previous reports (NRRM); and NRRM with a non-negative constraint 40	
  
and initial guesses for RKtrans, kep,TOI, and kep,RR taken from the estimates from LRRM with a non-41	
  
negative constraint (NRRM*). Additionally, we determined the rate of transfer from tissue to 42	
  
blood in the tissue of interest (kep,TOI), and the rate of transfer from tissue to blood in the 43	
  
reference region (kep,RR).  44	
  
 45	
  

 46	
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 1	
  
Figure 1. A diagram of the steps to produce simulated Gage R&R percentage plots. 1) 30 Ktrans 2	
  
and ve values were generated from a normal distribution. Ktrans mean = 0.25 and standard 3	
  
deviation = 0.1. ve mean = 0.4 and standard deviation = 0.1. The Ktrans and ve values were paired 4	
  
and the Tofts model was used to simulate 30 enhancement curves. To simulate how DCE MRI 5	
  
data from a single mouse could fluctuate over 3 days, 2) white Gaussian noise (SNR = 20 in this 6	
  
example) was added to an individual enhancement curve 3 times. 3) Each curve with noise was 7	
  
fit by NRRM, LRRM, LTM, and NTM analysis and the fitted RKtrans and Ktrans values were stored 8	
  
in their respective tables. This process was repeated for all 30 enhancement curves. After, Gage 9	
  
R&R analysis was conducted and the percent variance (repeatability) value was stored. Steps 1-3 10	
  
were repeated 1000 times using the same SNR, and the percent variance values were stored each 11	
  
time. After, the median value of the 1000 % variance values generated was taken as the true % 12	
  
variance for the particular SNR. 13	
  
 14	
  

Gage R&R analysis was performed to measure the repeatability of the RKtrans values 15	
  
determined with LRRM, NRRM, and NRRM* through the calculation of percent intra-group 16	
  
variances due to the fitting method. These three values were stored and the process starting from 17	
  
the addition of white Gaussian noise was repeated 1000 times. The median Gage R&R percent 18	
  
variance values from the 1000 values generated for each of the three fitting methods were taken 19	
  
as the true Gage R&R percent variance values for that SNR. The process was repeated for SNR 20	
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values ranging from 5 to 40. Quantitative LTM and NTM analyses and semi-quantitative 1	
  
analyses were also performed in the same manner. 2	
  
 3	
  
2.4 In vivo study 4	
  
2.4.1 Animal Model 5	
  

As described previously, all experimental data for this study was obtained from 6	
  
DataVerse.21 The Institutional Animal Care and Use Committee of the University of Texas MD 7	
  
Anderson Cancer Center approved the studies. Twelve male Cr1:NIH-Foxn1rnu T cell deficient, 8	
  
athymic nude rats (Charles River, Wilmington, MA) were injected subcutaneously with 5000 C6 9	
  
rat glioma cells in the flank region. Tumor diameters were monitored daily with calipers until 10	
  
they reached 1 cm. At that time, the rats were imaged on 3 consecutive days with DCE MRI. 11	
  

At the start of each MRI scanning session, hair around the tumor region was shaved and 12	
  
the tumor was placed in a bath of ultrasound gel to improve B0 homogeneity around the tumor. 13	
  
Isoflurane gas (1-2% in a 1 l/min O2 flow) was used to anesthetize the rat and a temperature 14	
  
controlled pad was placed underneath the rat to maintain temperature. A tail vein was 15	
  
catheterized to deliver the contrast agent.  16	
  
 17	
  
2.4.2 DCE MRI Acquisition Methods 18	
  

All imaging was conducted with a 7 T Bruker MRI scanner with a 30 cm bore. Sagittal 19	
  
and axial T2 weighted images and axial T1 weighted images were used to locate the tumor. A 3D 20	
  
fast spoiled gradient echo sequence was used for DCE MRI. Axial images were acquired using a 21	
  
10 msec repetition time (TR), 1.7 msec echo time (TE), 15o excitation pulse, 16 mm slab 22	
  
thickness (8 slices each 2 mm thick), 469 x 625 µm in-plane resolution, 128 x 80 matrix size, 60 23	
  
x 50 mm field of view and 1 average. A spoiled hermite magnetization preparation pulse was 24	
  
used to excite an 8 cm slab 2 mm caudal to the DCE MRI slice package to reduce inflow 25	
  
artifacts. 50 frames of images were acquired with a temporal resolution of 6.4 sec and a total 26	
  
scan time of 320 sec. 27	
  

After 10 baseline images were acquired, a bolus of 0.2 mmol/kg of gadopentetate 28	
  
dimeglumine (Gd-DTPA, Bayer Healthcare Pharmaceuticals, Wayne, NJ) was delivered at an 29	
  
injection rate of 0.005 mL/sec followed by a saline flush of the same volume and injection rate.  30	
  
Two of the twelve rats had technical scanning failures on 1 of the 3 days of imaging. As a result, 31	
  
3 consecutive DCE MRI studies were not obtained for these rats. Data from these 2 rats were 32	
  
excluded from analysis. 33	
  
 34	
  
2.4.3 Image Analysis 35	
  

Because a quantitative pre-contrast T1 map was not obtained, we used the signal 36	
  
enhancement ratio (SER) to replace concentration in the equations. The SER and concentration 37	
  
are linearly correlated (Eq. [7]): 38	
  

  
SER(t) =

S(t ) − S(0)

S(0)

             (7) 39	
  

Where SER(t) is the SER at time t, S(t) is the MR signal at time t, and S(0) is the signal before 40	
  
injection of the contrast agent (t=0). 41	
  

The following semi-quantitative metrics were used in this work: a) maximum 42	
  
enhancement ratio (MER), b) time to peak (TTP), c) initial area under the curve (iauc64), and d) 43	
  
slope (Figure 2). The MER was defined as the maximum of each SER(t) curve. The TTP was 44	
  
determined by subtracting the time at the final baseline time point (10th image) from the time of 45	
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the MER. iacu64 was determined from the area under the curve from the first post-baseline time 1	
  
point (11th image) to the time point acquired 64 seconds post-baseline (20th image). The slope 2	
  
was determined by dividing MER by TTP.  3	
  

 4	
  

5	
  
Figure 2. Semi-quantitative analyses. a) Mean Enhancement Ratio (MER) is the maximum of the 6	
  
curve, Time To Peak (TTP) is the time from the last baseline image (0 minutes) to the time at the 7	
  
maximum (2.0 minutes), slope is MER divided by TTP, and iauc64 is the area under the curve 8	
  
from the last baseline image to 64 seconds post-baseline (shaded area). b) TTP is affected by 9	
  
noise more than MER. 10	
  
 11	
  
Data fitting 12	
  

As mentioned earlier, the NTM and NRRM require a non-linear fitting algorithm and an 13	
  
initial guess to estimate their respective pharmacokinetic parameters. An initial guess of Ktrans = 14	
  
0.5, and kep,TOI = 5.0 was used for the NTM, while the following initial guesses were used for the 15	
  
NRRM: RKtrans=2.0, kep,TOI= 5.0, and kep,RR= 5.0. The MATLAB function lsqcurvefit was used for 16	
  
all non-linear fittings, while constraining all possible solutions between 0 and 10. The function 17	
  
tolerance was set to 1 x 10-16 and the maximum number of iterations was set to 100,000. The 18	
  
linear methods do not require an initial guess, but their solution was constrained to be greater 19	
  
than or equal to zero using non-negative least squares as implemented in the MATLAB function 20	
  
lsqnonneg. Finally, we studied the effect of using the parameters estimated with the LTM as the 21	
  
initial guess for the NTM (NTM*), and the parameters estimated by the LRRM as the initial 22	
  
guess for the NRRM (NRRM*).  23	
  

Our quantitative analysis of all DCE MRI data using the NTM (Eq. [2]) and LTM (Eq. 24	
  
[3]) assumed a population AIF of the form: 25	
  

  
Cp (t) = 0.64 ⋅e−0.033⋅t + 0.42 ⋅e−0.0010⋅t                                                                                            (6)  26	
  

The fitting for the NRRM and LRRM used muscle as a surrogate for the AIF. 27	
  
 28	
  
Region of interest (ROI) approach 29	
  
ROI Analysis 30	
  

ROIs for the tumor and muscle were drawn by a single observer (KMJ) on slices 4, 5, and 31	
  
6 of the 8 slices imaged for each rat. The three slices chosen showed the largest tumor volume. 32	
  
The same ROIs for any given rat were used for LTM, NTM, LRRM and NRRM analyses. For 33	
  
each rat, the average intensity of the whole tumor ROI and muscle reference region ROI from all 34	
  
time points were used to generate the enhancement curve that was fit with LRRM and NRRM 35	
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analyses to compute RKtrans, kep,TOI, and kep,RR. The average signal intensity of the whole tumor 1	
  
ROI and the population AIF were used for the LTM and NTM analyses. 2	
  
Pixelwise Analysis 3	
  

For an individual rat, each pixel within the ROI chosen for the tumor region was used to 4	
  
compute RKtrans, kep,TOI, and kep,RR. A single enhancement curve for the muscle reference region, 5	
  
generated by taking the average intensity value of the whole muscle reference region ROI from 6	
  
all time points, was used for all tumor pixel analysis. Based on the SNR of these data sets, pixels 7	
  
within the tumor ROI that showed less than 10% enhancement were excluded from analysis. 8	
  
This was also done in a previous study that used this data.21 Additionally, pixels that showed 9	
  
poor fits based on the R2 value were excluded from analysis. A range of R2 values from 0 – 0.9 10	
  
were used as the cutoff point to ensure that comparisons between LRRM and NRRM were not 11	
  
affected by the selected R2 cutoff point. After removing the pixels with poor fits, the median 12	
  
value of the remaining pixels was determined for RKtrans, kep,TOI, and kep,RR. 13	
  
 14	
  
2.4.4 Statistical Analysis 15	
  

A summary of the parameter values generated from quantitative and semi-quantitative 16	
  
DCE MRI analyses were provided in the form of mean, range, and within-subject coefficient of 17	
  
variation (wSCV). The values were taken on a global scale meaning that values from all rats over 18	
  
each of the three time points were included in the calculation. The wSCV was calculated as 19	
  
follows: 1) the base-10 logarithm was applied to estimated quantitative and semi-quantitative 20	
  
descriptors, 2) the within-subject variance (variance for each row) was calculated, 3) the mean 21	
  
within-subject standard deviation was calculated (wSD) by taking the square root of the within-22	
  
subject variance, 4) wsCV= 1-antilog(wSD)-1.33,34 A Student’s t-Test at the 95 % confidence 23	
  
level was used to determine the level of significance of the differences between LRRM and 24	
  
NRRM with RKtrans and kep,TOI. 25	
  

Gage R&R analysis was also performed to test repeatability.29 Normally, Gage R&R 26	
  
analysis is conducted to test variations between operators measuring a specific characteristic of a 27	
  
part. It is of course desired that different operators would measure the same value for the same 28	
  
part. Gage R&R analysis allows for the measurement of the percent variation in the measured 29	
  
quantity due to the operator compared to the total variation. In this study, we compared different 30	
  
fitting methods rather than comparing different operators. Thus, each fitting method was 31	
  
assigned a unique operator identification and each rat was given a unique part identification for 32	
  
Gage R&R analysis. As a result, the intra-part or intra-subject percent variance (iSV) measured 33	
  
was due to the fitting method. This analysis was performed for both the simulations and the 34	
  
experimental data. 35	
  
 36	
  
3. RESULTS 37	
  
3.1 Simulations 38	
  

A total of 5 hours 32 minutes of computation time were required to generate 3.15 million 39	
  
simulated enhancement curves. These curves were subsequently analyzed with quantitative and 40	
  
semi-quantitative methods, and then with Gage R&R analysis. The use of 30 enhancement 41	
  
curves was sufficient for convergence as evidenced by the tight confidence intervals in the Gage 42	
  
R&R plots (Figure 3). The median percent variance due to repeatability was obtained from the 43	
  
1000 Gage R&R analyses performed at each SNR (Figure 3). The median percent variance value 44	
  
and its corresponding 95% confidence interval were evaluated over the range of SNRs tested 45	
  
from each DCE MRI fitting method. Comparisons between LRRM with and without non-46	
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negative constraints showed no difference in percent variance over the range of SNRs tested 1	
  
(Figure 3A). Thus, LRRM with a non-negative constraint was chosen to compare with NRRM, 2	
  
which also had a non-negative constraint, to avoid erroneous negative RKtrans, kep,TOI, and kep,RR 3	
  
values from being generated in both methods.  4	
  

 5	
  
 6	
  

 7	
  
Figure 3. Dependence of Gage R&R on signal-to-noise. The median Gage R&R percent of the 8	
  
1000 repetitions (described in Figure 1) is displayed for each SNR tested for a) quantitative 9	
  
reference region analyses, b) semi-quantitative analyses, and c) quantitative Tofts analyses. The 10	
  
LRRM analysis without and with a non-negative constraint produced almost identical Gage R&R 11	
  
percentages. Also note that the 95% CIs were smaller than the marker size for most plots. 12	
  
 13	
  

LRRM showed a significantly lower Gage R&R percent variance compared to NRRM at 14	
  
all SNRs tested (Figure 3A). A significant difference was defined as non-overlapping 95% 15	
  
confidence intervals. Interestingly, when repeating the analysis with NRRM* (NRRM initialized 16	
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using LRRM-derived coefficients as the initial guess), the Gage R&R percent variance values 1	
  
were similar between LRRM and NRRM* (Figure 3A). This result emphasizes that the 2	
  
repeatability of RKtrans estimated via the NRRM is highly dependent on a proper initial guess. 3	
  
 4	
  

LTM showed a significantly lower Gage R&R percent variance compared to NTM and 5	
  
LRRM at low SNRs (Figure 3B). The significant difference between LTM and NTM at low 6	
  
SNRs further emphasizes that linearizing a model improves repeatability. Additionally, when 7	
  
repeating analysis with NTM* (NTM initialized using LTM-derived coefficients as initial 8	
  
guesses), the Gage R&R percent variance values were similar between LTM and NTM, which 9	
  
was seen with LRRM and NRRM as well. Semi-quantitative analyses showed the best 10	
  
repeatability measurements with iauc64 and MER (Figure 3C). The variability of these two 11	
  
descriptors was significantly lower than the variability of the slope and TTP at all SNRs, and 12	
  
similar to the RKtrans values estimated via the LRRM and NRRM*. The Gage R&R value of the 13	
  
slope was significantly lower than for TTP at all SNRs and similar to NRRM with a random 14	
  
initial guess at mid-range SNRs. 15	
  

 16	
  
3.2 In vivo Results 17	
  

Overall, the semi-quantitative measurements, LTM, and LRRM measurements showed 18	
  
lower wSCVs than the NRRM measurements, with TTP showing the lowest wSCV in both 19	
  
pixelwise and ROI analyses (Table 1). Notably, the wSCVs of RKtrans measurements were lower 20	
  
with LRRM vs. NRRM in pixelwise analysis. The wSCVs of RKtrans measurements were also 21	
  
lower with NRRM* vs. NRRM in pixelwise analysis. The RKtrans values from all rats at all time 22	
  
points were significantly higher with LRRM compared to NRRM in pixelwise (p<0.01) and ROI 23	
  
analysis (p<0.01) and the kep,TOI values were significantly lower with LRRM compared to NRRM 24	
  
in both pixelwise (p<0.01) and ROI analysis (p < 0.01). The RKtrans values were significantly 25	
  
higher with NRRM* compared to NRRM in pixelwise analysis (p = 0.04) and the kep,TOI values 26	
  
were significantly lower with NRRM* compared to NRRM in pixelwise analysis (p < 0.01). 27	
  

 28	
  
Interestingly, the RKtrans and the kep,TOI values from ROI analysis were similar between 29	
  

NRRM* and NRRM. This was also seen in the Ktrans and the kep,TOI values from ROI analysis 30	
  
between NTM* and NTM. Therefore data with high SNR produces the same estimates for the 31	
  
quantitative metrics produced by reference region and Tofts model analyses regardless of the 32	
  
initial guess. Pixelwise analysis however showed similar RKtrans and kep,TOI values between 33	
  
NRRM* and LRRM. This suggests that using the initial guesses produced by LRRM for NRRM 34	
  
analysis results in similar estimates for RKtrans and kep,TOI with data that has low SNR. This 35	
  
similarity is based on median values produced by LRRM and NRRM*, and comparing individual 36	
  
pixel fits between NRRM and NRRM* may not always be similar. Thus, using good initial 37	
  
guesses is more beneficial for data with low SNR than data with high SNR.  38	
  

For Gage R&R analysis of the experimental DCE MRI study, only a single percent 39	
  
variance value is generated for the dataset, meaning statistical significance could not be assessed 40	
  
(Table 2). 41	
  

 42	
  
 43	
  
 44	
  
 45	
  

 46	
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Table 1. Results of DCE MRI Analyses 1	
  
	
   	
   ROI 	
   	
   Pixel 	
   	
   
Model Parameter Mean IQR wSCV Mean IQR 	
  	
  	
  	
  	
  	
  	
  	
  	
  wSCV 
Quantitative Parameters (Reference Region) 	
   	
   	
   	
   	
   	
   
LRRM R

Ktrans
 2.57 1.86-­‐3.23 0.41 2.40 1.67-­‐3.16 0.40 

  kep,TOI 0.11 0.01-­‐0.73 0.74 0.03 0.0-­‐0.04 0.68 
NRRM R

Ktrans
 1.52 1.02-­‐2.61 0.97 1.99 1.13-­‐2.97 0.92 

  kep,TOI 1.03 0.62-­‐1.47 0.91 1.33 0.81-­‐1.55 0.73 
NRRM* R

Ktrans
 1.24 0.73-­‐1.68 0.74 1.99 1.13-­‐2.97 0.63 

	
   kep,TOI 0.45 0.12-­‐0.71 0.61 0.30 0.07-­‐0.43 0.53 
Quantitative Parameters (Tofts Model) 	
   	
   	
   	
   	
   	
   
LTM K

trans
 	
  	
  	
  	
  	
  0.25 0.03-­‐0.34 0.43 0.22 0.09-­‐0.24 0.66 

  kep,TOI 0.85 0.64-­‐1.10 0.37 0.90 0.73-­‐1.05 0.21 
NTM K

trans
 0.16 0.09-­‐0.24 0.57 0.18 0.17-­‐0.21 0.20 

  kep,TOI 7.64 6.89-­‐8.04 0.19 8.20 8.67-­‐9.48 0.45 
NTM* K

trans
 0.08 0.05-­‐0.11 0.43 0.05 0.04-­‐0.05 0.27 

	
   kep,TOI 1.87 1.04-­‐2.32 0.26 2.21 1.59-­‐2.83 0.29 
Semi-Quantitative Parameters 	
   	
   	
   	
   	
   	
   	
   
	
   MER 5.93 4.56	
  –	
  8.22 0.44 7.46 6.22	
  –	
  8.81 0.25 
	
   TTP 3.79 3.20	
  –	
  4.05 0.15 3.09 2.99	
  –	
  3.20 0.07 
	
   iauc64 0.21 0.15	
  –	
  0.29 0.48 0.22 0.18	
  –	
  0.26 0.29 
	
   slope 1.56 1.31	
  –	
  2.60 0.41 2.46 2.13	
  –	
  2.82 0.27 
 2	
  
 3	
  
 4	
  
 5	
  
 6	
  
 7	
  
 8	
  

 9	
  

 10	
  

 11	
  

 12	
  

 13	
  

 14	
  

 15	
  

 16	
  

LRRM = linear reference region model  
NRRM = nonlinear reference region model with set initial guess  
NRRM* = nonlinear reference region model with initial guess from LRRM estimates 
LTM = linear tofts model 
NTM = nonlinear tofts model with set initial guess  
NTM*	
  =	
  nonlinear	
  tofts	
  model	
  with	
  initial	
  guess	
  from	
  LTM	
  estimates	
   
MER = mean enhancement ratio, TTP = time to peak, iauc64 = initial area under the curve 
IQR: inter-quartile range 
wSCV: within subject coefficient of variation. Bounds: 95% lower and upper confidence intervals 
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Table 2. Summary of Gage R&R Percent Variances 1	
  

 2	
  
Similar to simulation results, the median Gage R&R percent variance value from analysis 3	
  

was lower with LRRM compared to NRRM and lower with LTM compared to NTM in both 4	
  
pixelwise and ROI analysis. This held true for all thresholds set for pixel inclusion based on the 5	
  
R2 of the fit (Figure 4A and 4B). An R2 value of 0.9 was not chosen as a threshold because of the 6	
  
high number of pixels that were discarded when doing so. The median Gage R&R percent 7	
  
variance value was lower with NRRM* compared to NRRM and NTM* compared to NTM for 8	
  
pixelwise analysis but similar for ROI analysis, which matched with wSCV results. The Gage 9	
  
R&R percent variance value for RKtrans with LRRM was similar to percent variance values for 10	
  
LTM, MER, slope, and iauc64 in both pixelwise and ROI analysis (Table 2). The Gage R&R 11	
  
percent variance values for RKtrans with NRRM, NTM, and TTP were similar, and were also 12	
  
higher than all other Gage R&R percent variance values in both pixelwise and ROI analysis.  We 13	
  
attribute the lower repeatability of TTP to the stronger dependence of TTP on image noise 14	
  
relative to the dependence of MER and iauc64 on image noise (Figure 2B).   15	
  

 16	
  
RKtrans pixelwise maps from a representative rat over the three days of DCE MRI show 17	
  

the distribution of RKtrans values with LRRM, NRRM, and NRRM* (Figure 5). The median 18	
  
RKtrans values from the maps for days 1, 2, and 3 were 3.44, 3.08, and 3.16 min-1 respectively for 19	
  
LRRM; 3.52, 1.26, and 3.17 min-1 respectively for NRRM; and 3.51, 2.89, and 2.97 min-1 20	
  
respectively for NRRM*. These results indicated a larger variability with NRRM as compared to 21	
  
LRRM and NRRM* in measuring RKtrans over multiple days. Additionally, the pixelwise 22	
  
distributions for NRRM had larger standard deviations and were more highly skewed than the 23	
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pixelwise distributions with LRRM. For the rat shown in Figure 5, the standard deviation of the 1	
  
pixels for days 1, 2, and 3 were 2.0, 2.16, and 2.63 respectively for LRRM; 2.50, 0.84, and 2.97 2	
  
respectively for NRRM; and were 2.22, 1.87, and 2.31 respectively for NRRM*.  3	
  
 4	
  
 5	
  

 6	
  
Figure 4. In vivo pixelwise percent Gage R&R plots. a) LRRM, NRRM, and NRRM* and b) 7	
  
LTM, NTM, and NTM* Gage R&R percent variances by pixelwise analysis as a function of the 8	
  
R2 correlation coefficient of the fit. Pixels that had R2 coefficients less than the threshold were 9	
  
excluded from analysis.  10	
  
 11	
  
 12	
  
4. DISCUSSION 13	
  

The results of this study support our hypothesis that linearization can be used to improve 14	
  
the repeatability of the reference region model for DCE MRI, making quantitative DCE MRI as 15	
  
repeatable as LTM and semi-quantitative DCE MRI. The repeatability and reproducibility of 16	
  
quantitative DCE MRI has been evaluated previously for the standard Tofts models and for the 17	
  
NRRM;32,35,36 our work adds to this body of literature by studying the effect that linearization has 18	
  
on the repeatability of relative Ktrans (RKtrans) and supporting the past study that shows 19	
  
linearization improves the repeatability of Ktrans. Our Gage R&R analysis of simulations showed 20	
  
that a lower percentage of the variability in the measurement system is due to the algorithm when 21	
  
the LRRM is used instead of the NRRM, regardless of the SNR of the DCE MRI data. This is 22	
  
consistent with previous reports that concluded that linearization improves the accuracy of the 23	
  
Tofts and reference region models for DCE MRI.24,26, Our experimental results showed lower 24	
  
wSCV and iSV values for RKtrans with LRRM compared to NRRM, for pixelwise analyses.  This 25	
  
improved repeatability was also evident in the pixelwise parametric maps of RKtrans. The 26	
  
improvement in the repeatability of the pixelwise analyses with LRRM indicated that LRRM is 27	
  
especially useful under conditions of lower SNR.   28	
  
 29	
  

The wSCV for RKtrans determined by the LRRM in this study is in good agreement with 30	
  
the wSCV (~0.40) for RKtrans reported in previous repeatability studies of the reference region 31	
  
model.34,37 However, our data was acquired at slower temporal resolution and lower SNR. The 32	
  
wSCV for RKtrans determined by the NRRM is only half as reproducible than previous reports, 33	
  
demonstrating that linearization improves the repeatability of the RRM under less-than-ideal 34	
  
conditions.35,36 35	
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 1	
  
Figure 5.  RKtrans parametric maps. a) LRRM b) NRRM and c) NRRM* RKtrans parametric maps 2	
  
of an individual rat imaged on three consecutive days. 3	
  
 4	
  

The accuracy and precision of the algorithms most commonly used for non-linear curve 5	
  
fitting of DCE data are highly dependent on the initial guess of the true values of Ktrans and kep 6	
  
(RKtrans for the RRM).24,26,38 This long-standing issue in quantitative DCE MRI is either ignored 7	
  
or requires fitting each voxel thousands of times using different initial guesses.37 However, this 8	
  
approach is computationally very demanding and does not scale linearly with the number of 9	
  
initial guesses. This makes quantitative DCE MRI time consuming and highly variable if the 10	
  
wrong initial guess is used. The linearizations of the standard Tofts model by Murase, et al. and 11	
  
the linearization of the RRM by Cárdenas-Rodríguez, et al., avoid this issue entirely because 12	
  
their methods use a linear regression that does not require an initial guess.24,26 Furthermore, 13	
  
linearization of the Tofts model (LTM) introduces a small bias into the estimated Ktrans at slow 14	
  
temporal resolution and low SNR,26 while the LRRM makes it possible to accurately estimate 15	
  
RKtrans at temporal resolution as slow as 30 seconds. In this study we demonstrated that the 16	
  
repeatability of NRRM and NTM approached the repeatability of LRRM and LTM if the results 17	
  
of LRRM and LTM were used as the initial guess for NRRM (NRRM*) and NTM (NTM*). 18	
  
Also, the median value and interquartile range of RKtrans determined using NRRM* was similar 19	
  
to values determined using LRRM for pixelwise analyses. This result indicated that an “ideal” 20	
  
initial guess can overcome the variability of NRRM analysis induced by image noise.  Our 21	
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results demonstrate that the quality of NRRM analysis is fundamentally limited under practical 1	
  
imaging conditions. 2	
  

The repeatability of RKtrans estimated with the LRRM was comparable to the repeatability 3	
  
of LTM, MER and iauc64 measurements, as shown by Gage R&R analyses of simulated and 4	
  
experimental data. A previous study showed that MER and iauc64 measurements have good 5	
  
reproducibility,34 which suggests that LRRM also has good reproducibility (where repeatability 6	
  
tests measurements under the same conditions, and reproducibility tests measurements under 7	
  
different conditions). TTP measurements, RKtrans estimated with the NRRM, and Ktrans estimated 8	
  
with the NTM showed the lowest repeatability, which was attributed to the stronger sensitivity to 9	
  
noise for these measurements.21  10	
  

These results regarding improved repeatability and less sensitivity to image noise 11	
  
contribute to the evidence that LRRM has advantages relative to NRRM for DCE MRI analysis.  12	
  
Other studies have shown that LRRM can estimate accurate RKtrans values at temporal sampling 13	
  
rates as slow as 60 seconds,24 while NRRM requires temporal sampling rates less than 32.0 14	
  
seconds to estimate accurate RKtrans values,39 and the Tofts model requires a temporal sampling 15	
  
rate of 5.0 seconds or faster.15,40 Furthermore, these previous studies showed that NRRM 16	
  
underestimates RKtrans and overestimates kep,TOI especially with low SNR, which matched the 17	
  
results of our study. In these previous studies, the calculation speed of LRRM was shown to be 18	
  
1350-8200 times faster than NRRM (depending on the SNR).24  For these many reasons, the 19	
  
LRRM is a superior approach for analyzing DCE MRI data as compared to NRRM.   20	
  

Our results also demonstrate the benefits of using Gage R&R analysis as a means to 21	
  
compare repeatability between different MRI analysis methods. Gage R&R analysis calculates 22	
  
the percentage of variation due to the measurement source compared to the total variation, and 23	
  
thus is not subject to the scale of the DCE MRI parameter being measured. For comparison, 24	
  
wSCV is subject to the scale of the DCE MRI parameter, and thus wSCV is inherently smaller 25	
  
for DCE MRI parameters that have a small absolute value like TTP, compared to larger DCE 26	
  
MRI parameters like MER. In our experimental results, wSCV values for TTP compared to MER 27	
  
were lower, while Gage R&R analyses clearly showed better repeatability measurements for 28	
  
MER compared to TTP, for both pixelwise and ROI analysis, during simulations and 29	
  
experimental analyses.  30	
  

Despite the promising results presented in this work, two limitations still remain. First, 31	
  
the DCE MRI data used to compare the repeatability of quantitative and semi-quantitative 32	
  
parameters was acquired at a temporal resolution of approximately 6.4 seconds, which is 33	
  
significantly faster than the standard of care for DCE MRI (20-40 seconds). Fortunately, the 34	
  
LRRM has been shown to be robust at low temporal resolution.24 Second, our results were 35	
  
acquired in a rat model of cancer and it is still unclear if linearization also improves the 36	
  
repeatability of quantitative clinical DCE MRI. We have initiated clinical studies to translate our 37	
  
current results to diagnosis of patients. 38	
  

In conclusion, this report introduces the Gage R&R analysis as a convenient method to 39	
  
determine the repeatability of DCE MRI, while also demonstrating that linearization increase the 40	
  
repeatability of the Tofts and reference region models for DCE MRI by approximately 40%.  41	
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