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Abstract 

Macromolecular assemblies play an important role in almost all cellular processes. 

However, despite several large-scale studies, our current knowledge about protein 

complexes is still quite limited, thus advocating the use of in silico predictions to 

gather information on complex composition in model organisms. Since protein-

protein interactions present certain constraints on the functional divergence of 

macromolecular assemblies during evolution, it is possible to predict complexes 

based on orthology data. Here, we show that incorporating interaction information 

through network alignment significantly increases the precision of orthology-based 

complex prediction. Moreover, we performed a large-scale in silico screen for protein 

complexes in human, yeast and fly, through the alignment of hundreds of known 

complexes to whole organism interactomes. Systematic comparison of the resulting 

network alignments to all complexes currently known in those species revealed many 

conserved complexes, as well as several novel complex components. In addition to 

validating our predictions using orthogonal data, we were able to assign specific 

functional roles to the predicted complexes. In several cases, the incorporation of 

interaction data through network alignment allowed to distinguish real complex 

components from other orthologous proteins. Our analyses indicate that current 

knowledge of yeast protein complexes exceeds that in other organisms and that 

predicting complexes in fly based on human and yeast data is complementary rather 

than redundant. Lastly, assessing the conservation of protein complexes of the 

human pathogen Mycoplasma pneumoniae, we discovered that its complexes 

repertoire is different from that of eukaryotes, suggesting new points of therapeutic 

intervention, whereas targeting the pathogen’s Restriction enzyme complex might 

lead to adverse effects due to its similarity to ATP-dependent metalloproteases in the 

human host.  

 

 

Introduction 

Almost every major process in a cell, such as replication, transcription, translation 

and degradation, is carried out not by single proteins, but by macromolecular 

complexes, regulated through intricate networks of protein-protein interactions. To 
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understand cellular behaviour on a systemic level, we thus need a comprehensive 

knowledge of the protein complexes present in the respective organism.  

In the last years, many small-scale studies have identified protein complexes in yeast 

and human, which have been collected in the public databases MPACT [1] and 

CORUM [2], respectively. Moreover, several large-scale proteomics experiments, 

using tandem-affinity purification coupled to mass spectrometry analysis, have 

focused on systematically unveiling the composition of macromolecular complexes in 

the budding yeast Saccharomyces cerevisiae [3,4,5,6,7], the human pathogen 

Mycoplasma pneumoniae [8], and recently also in the fruit fly Drosophila 

melanogaster [9] and in human [10,11]. Although yeast is the least complex 

eukaryotic model organism with about 6,000 genes, several hundreds of protein 

complexes were found, and the total number of complexes in yeast was estimated to 

be over 800 [5]. Moreover, the first screen in M. pneumonia already yielded 62 homo- 

and 116 heteromultimeric protein complexes, despite the pathogen’s small genome 

of only 689 protein-coding genes [8]. The importance of protein complexes for cell 

survival becomes apparent when probing the essentiality of their protein-coding 

genes through knock-out mutations. Indeed, several studies have shown that protein 

complexes in yeast are significantly enriched in essential genes [12,13,14,15]. To 

discover the molecular details of how individual proteins function together as 

macromolecular assemblies, follow-up initiatives have then aimed at identifying those 

complexes that are suitable for structural studies by combining systematic 

bioinformatics and experimental validation strategies [16,17].  

So far, however, these important investigations, which have improved our 

understanding of the architecture and function of protein complexes, were limited to 

yeast, not only due to the scarcity of functional data in other organisms, but also 

because their protein complexes are yet largely unknown. To determine whether the 

findings for yeast complexes describe general principles of molecular organization 

and to discover how protein complexes have evolved, it is thus necessary to define 

protein complexes in other species, complementing the results of recent screening 

efforts [9,10,11]. Since the experimental characterization of macromolecular 

assemblies is difficult and requires large amounts of time and resources, predicting 

protein complexes based on existing protein-protein interaction (PPI) and orthology 

data becomes an interesting alternative.  
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Indeed, different strategies have been developed to exploit these data. On the one 

hand, several graph-clustering strategies have been applied to interactome networks 

in order to identify functional modules and protein complexes as densely connected 

subgraphs [18,19,20]. In addition, new algorithms have specifically been designed for 

this task with the aim to distinguish real complex components from spurious 

interactors and to allow shared components across different complexes [21,22]. 

Various clustering techniques were also used to define protein complexes from 

purification data in the original large-scale screens of macromolecular assemblies in 

yeast, fly, human and M. pneumoniae [5,6,7,8,10,11]. On the other hand, since 

protein complexes are often conserved due to the constraints PPIs pose on 

functional divergence during evolution [23,24], it is possible to predict complexes 

using orthology information. In its simplest form, orthology-based complex prediction 

reports the collection of all orthologous proteins of a given complex in one species as 

the corresponding complex in the other organism [25]. However, one-to-many and 

many-to-many orthology relationships between species often imply functional 

divergence of paralogous genes after duplication, leading to the prediction of many 

false complex components with increasing proteome size.  

The recent advent of tools for the comparison and alignment of protein interaction 

networks [26,27,28,29,30,31,32] now opens up new possibilities for complex 

prediction. One strategy is to align whole interactome networks of different species to 

search for conserved functional modules [27,32,33,34]. For instance, Sharan et al. 

aligned the yeast and H. pylori interactomes, finding 11 conserved protein complexes 

[27], while Hirsh and colleagues found 150 conserved complexes by aligning the 

yeast and fly interactomes, matching known complexes in yeast with coherent 

functional annotations [33]. However, interactome to interactome alignment does not 

exploit knowledge about the composition of known complexes. This can only be done 

through complex to interactome alignment, in which the network representation of a 

known query complex in a given organism such as yeast is aligned to the 

interactome of a target species. For instance, Dost et al. developed the QNet 

algorithm [35], which allows the querying of input graphs of treelike topology in 

interaction networks, and used it to align 94 manually curated yeast complexes from 

the MPACT database [1] to the fly interactome, finding 36 of them to be conserved in 

fly.  
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For this work, we applied our recently developed tool for network comparison, 

NetAligner, which was demonstrated to outperform the current standard in the field in 

a variety of different benchmarks [36] and was already used successfully to discover 

the role of structural disorder in the rewiring of interactomes during evolution [37]. 

Using NetAligner, we investigated how the incorporation of interaction data through 

network alignment influences the performance of orthology-based complex 

prediction. Moreover, we systematically aligned known protein complexes in H. 

sapiens, S. cerevisiae and M. pneumoniae to whole species interactomes to find 

novel complex components in yeast and human, predict yet undiscovered complexes 

in the fly D. melanogaster and search for similarities and differences between the 

complexes repertoires of H. sapiens and the human pathogen M. pneumoniae.  

 

 

Results and Discussion 

 

Network alignment increases precision in orthology-based complex prediction 

A standard, straightforward method to predict protein complexes in a target species 

based on those known in a given query organism is the so-called ‘orthologs 

approach’. In that method, the union of all orthologous proteins of the respective 

query complex components is predicted to constitute that complex in the target 

species [25]. The general idea behind this approach is that many protein complexes 

are evolutionarily conserved, because they perform critical cellular tasks, such as 

replication, transcription or translation, needed in all forms of cellular life. However, 

due to evolutionary divergence of proteins after duplication, which can lead to 

functionally non-overlapping paralogs, not all orthologs of the components of a given 

complex in one species should be expected to be part of the corresponding complex 

in another organism. Prediction of protein complexes using the standard orthologs 

approach can thus result in false complex components (i.e. false positive 

predictions). To test whether the incorporation of interaction information through 

network alignment can decrease the number of false positives and thus increase the 

precision of orthology-based complex prediction, we compared the performance of 

the orthologs approach to that of NetAligner [36] in predicting yeast protein 

complexes based on human complexes and vice versa through complex to 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.280v2 | CC-BY 4.0 Open Access | received: 10 Mar 2014, published: 10 Mar 2014

P
re
P
ri
n
ts



 
 

 6 

interactome alignment (Fig. 1A). For this, we used the non-redundant benchmark set 

of 71 matching human-yeast complex pairs (see Materials & Methods), which we 

previously defined [36], and analysed the complex predictions of the orthologs 

approach with respect to how well they agree with the corresponding benchmark set 

complexes (see Materials & Methods). We evaluated both precision (i.e. fraction of 

true complex components among all proteins predicted to be part of the given 

complex) and recall (i.e. fraction of complex components recovered in the given 

prediction) in the same way as in our previous study [36], so that we could directly 

compare the performance of the orthologs approach to the performance reported for 

NetAligner in predicting protein complexes via complex to interactome alignment (see 

below and Materials & Methods). We found that incorporating interaction data 

through network alignment significantly increases the precision of orthology-based 

complex prediction (i.e. the ability to distinguish orthologs that are part of the complex 

in the target species from those that are not). When using NetAligner with default 

parameters there is a significant increase in precision from 34.6% to 54.1% (p-value=

2.04ç 10
232, one-sided Fisher’s exact test), which is also present when calibrating 

NetAligner for the alignment of human complexes to the yeast interactome (53.9%, p-

value= 4.07ç 10232, one-sided Fisher’s exact test) or vice versa (58.5%, p-value=

2.65ç 10
236 , one-sided Fisher’s exact test; Fig. 1B). As expected, using network 

alignment for complex prediction reduces the recall of true complex components 

(from 58.0% to 44.9% with default parameters; Fig. 1B), mainly due to current 

interactome networks still being incomplete and missing many interactions existing in 

nature [38]. However, ongoing and future interaction detection experiments should 

increase interactome coverage and thus also increase the recall of true complex 

components when predicting protein complexes through network alignment.  

 

Strategy to predict complexes through complex to interactome alignment 

To predict complexes in yeast, human and fly, which are the species with the most 

interaction data available, and to identify novel complex components, we aligned the 

non-redundant sets of human, yeast and mycoplasma protein complexes (see 

Materials & Methods) to whole species interactomes using NetAligner [36]. In 

contrast to a pure orthologs-approach, network alignment via NetAligner incorporates 

knowledge about protein-protein interactions into orthology-based complex 

prediction. When aligning a query complex to the interactome of a target species, 
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NetAligner aligns those pairs of orthologous proteins that are part of the two input 

networks and identifies conserved and likely conserved interactions, as well as parts 

where the query complex and target interactome differ slightly, represented through 

gaps and mismatches in the alignment graph constructed by the program [36]. 

Several program parameters, such as the vertex and edge probability thresholds, 

further determine which pairs of orthologous proteins will be part of the final 

alignment solutions. For those alignment scenarios that were part of the complex to 

interactome alignment benchmark reported in [36] (i.e. yeast vs. human and human 

vs. yeast), we could use the best-performing parameter combinations, while for the 

others there is no benchmark data available, and we thus used the default 

parameters (Table 1). We considered only the highest-ranked significant alignment 

solution (with a standard p-value threshold of 0.05) for each query complex.  

 

Finding novel components of yeast and human protein complexes 

To find novel components of protein complexes in yeast and human, we aligned the 

non-redundant sets of 1027 human complexes and 244 yeast complexes from the 

manually curated databases CORUM [2] and MPACT [1], to the yeast and human 

interactome, respectively (see Materials & Methods). Here, we did not use the 

complexes identified in large-scale studies to ensure that our predictions are based 

only on curated data sources. This yielded 257 non-redundant significant complex 

predictions in yeast and 89 in human (Table 2 and Fig. 2A & 2C). We then identified 

novel components by comparing our complex predictions to all known complexes in 

the respective species (see Materials & Methods). We found 307 non-redundant 

novel components across 181 yeast complexes and 175 non-redundant novel 

components in 65 human complexes (Table 2 and Fig. 2B & 2D). Given the recall 

and precision of the method (Table 1), most of the predicted complexes are probably 

sub-complexes (as our method misses some complex components due to incomplete 

interaction data), and we can estimate that at least 61% of the yeast and 50% of the 

human novel components we predicted are real complex members (due to the 

inclusion of false positives). For an independent in silico validation of our predictions, 

we computed the number of predicted complexes that are functionally homogeneous 

(see Materials & Methods) separately for each Gene Ontology (GO) category (i.e. 

biological process, molecular function and cellular component) [39], and compared it 

to the respective number of functionally homogeneous query complexes (Fig. 3A & 
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3B). We found that, even when requiring the complexes to fulfill this criterion in at 

least two GO categories (e.g. ‘biological process’ and ‘molecular function’; see 

Materials & Methods), the majority of the predicted complexes in yeast (70%) and 

human (73%) are indeed functionally homogeneous. The fact that the fraction of 

human query complexes that are homogeneous is smaller than the fraction of 

predicted yeast complexes (63% vs. 70%) indicates that our predictions are, on 

average, of at least the same quality as the manually-curated human complexes 

stored in the CORUM database [2]. On the other hand, the fraction of homogeneous 

yeast query complexes is larger than the fraction of homogenous complex 

predictions in human (97% vs. 73%), suggesting that in this case, our predictions are 

of lower quality than the query complexes (Fig. 3A & 3B). However, this might also 

mean that our current knowledge about protein complexes is considerably better in 

yeast than in human, with several real human complex components still missing the 

respective functional annotations and thus leading to less homogeneous complex 

predictions. In addition, we tested whether the annotations of the predicted 

complexes hint towards specific functional roles in the cell by computing the 

statistical significance of GO term enrichments in each complex (see Materials & 

Methods). We found that 233 of our complex predictions in yeast (91%) and 87 in 

human (98%) were significantly functionally enriched with respect to the given 

species interactome, indeed suggesting specific cellular roles for those complexes 

and further validating our predictions. For the complete list of predicted complexes, 

see Supplemental Table 1, in which we annotated the complexes with the GO terms 

that are shared by most complex components to provide information about their 

possible biological roles and highlighted those functional annotations that are 

significantly enriched in the given complex. We also created subsets of high-

confidence (HC) predictions (Supplemental Table 1), requiring each member 

complex to be functionally homogeneous and originate from a homogeneous query 

complex with which it shares at least one homogeneous GO term (see Materials & 

Methods). This resulted in HC sets of 105 yeast and 61 human complex predictions 

(Table 2 and Fig. 2A & 2C), with 98% and 97% of them, respectively, being 

significantly functionally enriched with respect to the given species interactome. We 

found 107 non-redundant novel components across 63 HC yeast complexes and 91 

non-redundant novel components in 41 HC human complexes (Table 2 and Fig. 2B & 

2D). For instance, we predicted the proteins MPPA, MPPB, QCR1 and QCR2 to form 
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a complex in human (Fig. 4A). All four proteins are orthologous to the alpha and beta 

subunits of the Mitochondrial processing peptidase (MPP) complex in yeast, which is 

involved in the maturation of mitochondrial proteins by proteolytic cleavage of the N-

terminal localization sequence [40]. NetAligner found the interaction between MPPA 

and MPPB of the yeast query complex to be conserved between human MPPA and 

MPPB, as well as between the QCR1 and QCR2 orthologs (also known as UCR-1 

and UCR-2). In addition, this interaction was predicted to be likely conserved 

between the other components of the complex (Fig. 4A), but no subcomplex of any of 

the four proteins was found in current databases. According to our in silico validation 

experiments, all components of the predicted complex are involved in proteolysis and 

have metalloendopeptidase activity, but two of them (MPPA and MPPB) localise to 

the mitochondrial matrix, while the other two (QCR1 and QCR2) localise to the 

mitochondrial inner membrane as core components of the Cytochrome bc1 complex. 

Although it might be that the MPP and QCR subunits form two separate complexes in 

vivo, a combined MPP/QCR complex might also exist, since the two subcellular 

localizations are adjacent, and it was observed that in plants, the MPP complex is 

actually integrated into the cytochrome bc1 complex, with QCR1 and QCR2 being 

identical to MPPB and MPPA, respectively [40]. Another interesting example is the 

alignment of the human EXO1-MLH1-PCNA complex, which is involved in DNA-

mismatch repair, to the yeast interactome (Fig. 4B). The yeast complex predicted by 

the alignment solution consists of six different proteins, PCNA, RAD27, DIN7, EXO1, 

MLH1 and MLH3, based on interactions existing either in human or yeast and 

predicted to be likely conserved in the other species (Fig. 4B). The DNA sliding 

clamp PCNA and the endonuclease RAD27 (also known as FEN1) are known to form 

a complex in DNA replication and repair [41], and the interaction between MLH1 and 

MLH3 plays an important role in meiotic recombination and mismatch repair [42]. In 

addition, the double-stranded DNA exonucleases EXO1 and DIN7, both participating 

in mismatch repair, have high sequence similarity, and the double knockout of EXO1 

and RAD27 is lethal [43]. Together, these findings point towards the possibility of a 

six-component mismatch-repair complex in yeast and also that the corresponding 

human complex might have additional components.  

Finally, when comparing the distributions of the number of novel components in yeast 

and human complex predictions (Fig. 2B & 2D), we observed an exponential decay in 
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yeast, while the distribution in human is broader, indicating that our current 

knowledge about yeast complexes surpasses that of human ones.  

 

Predicting fly complexes from human and yeast data is complementary rather 

than redundant 

The fruitfly Drosophila melanogaster is an important model organism. However,  

there does not yet exist a dedicated database of protein complexes in fly, the first 

large-scale screen, reporting 556 complexes, has only recently been completed [9], 

and only 221 complexes are annotated in GO [39]. We thus predicted protein 

complexes in that species by aligning the non-redundant sets of 244 yeast 

complexes and 1027 human complexes to the fly interactome (see Materials & 

Methods). This resulted in 66 non-redundant significant complex predictions 

originating from yeast and 219 from human (Table 3 and Fig. 2E & 2G), with only 

little overlap (see below). Compared to the set of 777 known complexes in fly (based 

on GO annotations and the recent large-scale screen by Guruharsha et al. [9]; see 

Materials & Methods), our complex predictions contained 252 non-redundant novel 

components across 56 complexes based on yeast data and 454 non-redundant novel 

components in 200 complexes originating from human data (Table 3 and Fig. 2F & 

2H). Among those complexes, 6 and 45, respectively, were entirely novel. Again 

based on the recall and precision of the method (Table 1), we can estimate that most 

of the predicted complexes are probably sub-complexes and that at least 54% of the 

novel components we found are real complex members. The independent in silico 

validation (see Materials & Methods) revealed that the majority of the predicted fly 

complexes are functionally homogeneous, independent of whether they originated 

from yeast (70%) or human (68%) query complexes (Fig. 3C & 3D). This indicates 

that both of those organisms represent interesting sources for predicting evolutionary 

conserved protein complexes in fly based on network alignment. The fraction of 

homogeneous predicted fly complexes also lies between that of the human (63%) 

and yeast (97%) query complexes, indicating that our predictions are, on average, of 

at least the same quality as the manually-curated human complexes stored in the 

CORUM database [2], but of lower quality than the manually-curated yeast 

complexes in MPACT [1]. Here, we observed the biggest loss of homogeneity in the 

cellular component category (Fig. 3C). This might, however, result from the 

respective fly proteins missing sub-cellular annotations, which would again suggest 
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that the current knowledge about protein complexes in yeast surpasses that of 

complexes in other species. Among the fly complex predictions, 58 based on yeast 

(88%) and 189 based on human data (86%) were significantly functionally enriched 

with respect to the fly interactome (see Materials & Methods), indicating specific 

cellular roles for those complexes and further validating our predictions. For the 

complete list of all predicted fly complexes, see Supplemental Table 2. The HC 

subsets of fly complex predictions (see Materials & Methods and Supplemental Table 

2) consist of 42 fly complexes originating from yeast and 71 from human data (Table 

3 and Fig. 2E & 2G), with 95% and 94% of them, respectively, being significantly 

functionally enriched with respect to the fly interactome. We found 134 non-

redundant novel components across 32 HC complexes predicted from yeast and 168 

non-redundant novel components in 62 HC complexes originating from human query 

complexes, with 4 and 11 of those complexes being completely novel (Table 3 and 

Fig. 2F & 2H). For instance, aligning the yeast Replication factor C (RFC) complex, 

consisting of the components RFC1-5, to the fly interactome predicted the 

corresponding fly assembly to encompass six proteins, Q9VKW3, Q9VX15, RFC1, 

RFC2, Q7KLW6 and Q9U9Q1. According to the complex annotations in GO [39], the 

first four of those are known to belong to the RFC complex in fly, while the latter two 

are novel. Our alignments showed that both Q7KLW6 and Q9U9Q1 are orthologous 

to RFC2-5 in yeast, and our in silico validation experiments revealed that all six 

predicted components are involved in DNA replication and have ATP-binding 

capability, important for performing the loading of the DNA sliding clamp [44,45]. 

Moreover, in the HTP screen of Guruharsha et al. [9], the first five of those proteins 

were purified together, which provides further evidence for Q7KLW6 to actually be a 

component of the RFC complex in fly. On the other hand, this is also an example 

where NetAligner (through the incorporation of interaction data) was able to filter out 

false positive components that a simple orthologs approach would have predicted to 

belong to the complex. These comprise the proteins Q8T3K3, Q8IQ05 and Q95WV5, 

which are annotated as DNA replication accessory factors and most similar to the 

yeast chromosome transmission fidelity protein 18 (CTF18), which is known to 

substitute RFC1 in the RFC-like complex that also contains the proteins CTF8 and 

DCC1 and is required for establishment of chromosome cohesion in the S-phase of 

the cell cycle [46,47]. Moreover, the SNX subcomplex of the human Retromer 

complex, which is involved in mediating endosome to trans-Golgi network retrograde 
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transport [48,49], represents an example for predicting fly complexes based on 

human data (Fig. 4C). It consists of the SNX1-SNX6 dimer that is important for 

membrane-bound coat formation [48,49], and we predict this complex to exist in fly 

as an assembly of Q9VQQ6 and Q9VLQ9. This prediction is not only supported by 

SNX1 and SNX6 being the best BLAST [50] hits of Q9VQQ6 and Q9VLQ9, 

respectively, but also through the interaction between the two human components 

being conserved in fly (Fig. 4C).  

Comparing the fly complex predictions from yeast and human data (Fig. 5), we found 

only 26 pairs of matching complexes (i.e. pairs of predicted fly complexes with a 

component overlap of more than 50% of each complex), covering 21 non-redundant 

predicted complexes from human (10%) and 12 from yeast data (18%). One reason 

for this little overlap between the fly complex predictions is probably the low number 

of matching human and yeast query complexes. Indeed, only 41 (4%) and 46 (19%) 

of the non-redundant sets of 1027 human and 244 yeast query complexes, 

respectively, are present in the non-redundant set of matching human/yeast complex 

pairs. Between the HC subsets, there are only 11 pairs of matching complexes, 

covering 11 non-redundant predicted HC complexes from human (15%) and 7 from 

yeast data (17%; Fig. 5). Moreover, none of the completely novel complexes we 

predicted was found based on both yeast and human data. This clearly indicates that 

predicting fly complexes from yeast and human query complexes through network 

alignment is complementary rather than redundant. Protein complexes that were 

found both when starting from human and from yeast data include the Replication 

factor C complex, the Casein kinase II, the 20S core and 19/22S regulatory particles 

of the proteasome, as well as the Septin, Tubulin and Actin filament complexes (Fig. 

5), which all represent well-studied conserved assemblies.  

 

Mycoplasma complexes differ substantially from those of eukaryotes 

Kühner et al. [8] reported the first genome-wide analysis of protein complexes in the 

human pathogen Mycoplasma pneumoniae, which has one of the smallest known 

genomes (689 protein-encoding genes). This analysis revealed a rather complicated 

machinery of almost 200 protein complexes, of which the majority were yet unknown 

[8]. To predict whether some of these are actually conserved in other organisms, we 

aligned the non-redundant set of 174 mycoplasma complexes to the interactomes of 

yeast, fly and human (see Materials & Methods). The complex to interactome 
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alignments led to only 11, 9 and 6 non-redundant significant predictions in those 

species, respectively (Table 4). Compared to the sets of known protein complexes 

(see Materials & Methods), our predictions contained 86 non-redundant novel 

components across 6 yeast complexes, 68 across 9 fly complexes and 30 in 5 

human complexes (Table 4). Based on the recall and precision of the method (Table 

1), we can again estimate that most of the predicted complexes are probably sub-

complexes and that at least 54% of the novel components we found are real complex 

members. According to our independent in silico validation (see Materials & 

Methods), only 55%, 44% and 33% of all predicted yeast, fly and human complexes, 

respectively, are functionally homogeneous. However, also only 39% of all query 

mycoplasma complexes are homogeneous, indicating that many proteins of this 

organism still lack functional annotations. On the other hand, all complex predictions, 

except for one in yeast, were significantly functionally enriched with respect to the 

given species interactome, suggesting that they perform specific biological roles. For 

the complete list of predicted yeast, fly and human complexes, based on 

mycoplasma data, see Supplemental Table 3. The HC subsets of those complex 

predictions (see Materials & Methods and Supplemental Table 3), consist of only 

three predicted complexes in yeast (one novel component), one in fly (four novel 

components) and one in human (no novel components; Table 4), with all of them 

being significantly functionally enriched with respect to the given species 

interactome. The mycoplasma query complexes that were predicted to be conserved 

in those HC sets comprise the DNA polymerase III complex in human, the ATP 

synthase complex in fly and yeast, as well as the 6-phosphofructokinase and the 

ribonucleoside-diphosphate reductase in yeast. The DNA polymerase III complex, 

consisting of DPO3X and the yet uncharacterized proteins Y007 and Y450, 

represents an interesting case: it was aligned to the RFC complex in human, whose 

clamp loading function is actually incorporated into the DNA polymerase III 

holoenzyme complex in prokaryotic species such as mycoplasma [51].  

Overall, the very low numbers of significant complex predictions suggest that the 

mycoplasma interactome (at least the part currently known) is very different from the 

interactomes of yeast, fly and human, indicating that there probably exist protein 

complexes that are unique to the pathogen and might thus be targeted by drugs 

without causing adverse effects in the human host.  
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Comparing the different subsets of mycoplasma complexes that led to significant 

predictions in the other species (Fig. 6), one complex, the Restriction enzyme 

complex, could be aligned to protein complexes in all three species interactomes, two 

additional complexes were found in both yeast and human (the DNA polymerase III 

and Cohesin-like complexes), two in both fly and human (the Protein chaperone and 

Pyruvate dehydrogenase complexes), and four complexes were found in both the 

yeast and fly interactome (the ATP synthase, Peptidase, Ribosome and RNA 

polymerase complexes; Fig. 6). This means that the majority of mycoplasma 

complexes that led to significant predictions (56%) could be found in more than one 

target species, representing complexes involved in core biological processes 

conserved from bacteria up to higher eukaryotes. The alignment of the Restriction 

enzyme complex was, at first, surprising, because it is known to exist only in bacteria 

and archaea. A closer inspection, however, revealed that it was aligned to ATP-

dependent metalloproteases in the eukaryotic species, suggesting that targeting the 

Restriction enzyme complex with drugs might also affect ATP-dependent 

metalloproteases in the human host and thus lead to potential adverse effects.   

 

 

Conclusions 

Protein complexes represent key molecular entities that are implicated in many 

important biological processes within a cell. However, complexes are yet largely 

uncharacterized in most species and experimental determination of their composition 

is still a costly endeavour. Increasing our knowledge about protein complexes in 

important model organisms via complex prediction thus represents an attractive 

option. Here, we showed that incorporating PPI data through network alignment 

significantly increases the precision of orthology-based complex prediction, though at 

the expense of missing some real complex components. By aligning known protein 

complexes to the interactomes of human, yeast and fly (the species with the highest 

number of interactions currently available in public databases) using NetAligner [36], 

our recently developed tool for network alignment, we were able to identify conserved 

protein (sub)complexes between human and yeast, as well as novel complex 

components, with higher precision than by using a simple orthologs-based approach. 

In addition, we predicted novel macromolecular assemblies (not present in current 
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databases) in fly based on known yeast and human complexes, and found that our 

contemporary knowledge of yeast complexes surpasses that of other species, which 

is not surprising given the huge efforts invested into detecting macromolecular 

assemblies in yeast [3,4,5,6,7]. On the other hand, we found that current human and 

yeast complex data leads to complementary predictions in fly, meaning that querying 

known macromolecular assemblies of those species in the fly interactome unveils 

different conserved complexes. In the in silico validation experiments that we 

performed, our predicted complexes had about the same functional homogeneity as 

the known complexes we used for querying, and we were able to assign specific 

functional roles to almost all complexes. Finally, aligning the protein complexes of the 

human pathogen M. pneumoniae [8] to the interactomes of human, yeast and fly 

yielded only a handful of significant complex predictions, suggesting that the 

mycoplasma interactome is at least in parts quite different from those of eukaryotic 

species. Quantifying those differences is very difficult due to the incompleteness of 

current interactome data [38]. Nevertheless, since this issue is at least partly 

addressed through the prediction of likely conserved interactions by the NetAligner 

algorithm, it indicates that some of the protein complexes that have been identified in 

mycoplasma might not have any counterpart in eukaryotes and thus represent 

interesting drug targets with little chances of causing adverse effects in the human 

host. On the other hand, our analyses revealed that the pathogen’s Restriction 

enzyme complex, which is known to be unique to bacteria and archaea, is similar to 

ATP-dependent metalloproteases in human, implying that targeting this complex 

might have undesirable outcomes.  

 

 

Materials & Methods 

 

Datasets of protein sequences 

We collected datasets of protein sequences for human (Homo sapiens), fly 

(Drosophila melanogaster), yeast (Saccharomyces cerevisiae) and mycoplasma 

(Mycoplasma pneumoniae) from the UniProt Knowledgebase release 15.8 [52] by 

merging the set of sequences stored in Swiss-Prot (including splice variants) and 

TrEMBL with experimental evidence on protein or transcript level. For mycoplasma, 
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due to a lack of annotation data, we also included sequences not yet marked as 

having experimental evidence, but excluded all sequences that were only present in 

TrEMBL and thus of low confidence. Clustering based on 100% sequence identity 

resulted in non-redundant sets of 75,981 human, 23,296 fly, 6,121 yeast and 687 

mycoplasma protein sequences.  

 

Lists of orthologous proteins 

We determined lists of orthologous proteins for species combinations of human, fly, 

yeast and mycoplasma by performing a reciprocal BLASTP [50] search. We used an 

E-value threshold of 10210  and considered only hits in the top10 of the BLASTP 

output to filter out spurious matches. This resulted in non-redundant sets of 91,112 

human/fly, 19,558 human/yeast, 12,778 fly/yeast, 1,005 human/mycoplasma, 644 

fly/mycoplasma and 488 yeast/mycoplasma orthologs.   

 

Interactome construction 

We built interactome networks for human, fly and yeast by extracting and merging 

data from the major interaction databases IntAct [53], MINT [54] and HPRD (for 

human) [55]. We excluded interactions without support in form of Pubmed ID(s) or 

interaction detection method(s). For mycoplasma, we extracted the list of high-

confidence interactions from Kühner et al. [8], mapping ordered locus names to 

UniProt accession codes [52]. This resulted in non-redundant interactomes 

consisting of 53,290 interactions in human, 19,260 in fly, 60,721 in yeast and 1,058 in 

mycoplasma.  

 

Non-redundant benchmark set of human/yeast complex pairs 

We used the non-redundant benchmark set of conserved human/yeast complex pairs 

described in [36]. In brief, this set is based on the manually-curated yeast complexes 

from the MPACT database [1] and human complexes from the CORUM database [2] 

whose components are fully present in the respective species interactome, and 

clustered to remove redundancy. Matching (i.e. conserved) complexes between the 

two species are defined by requiring at least 2 and 25% of the components of the 

given human complex to have at least one ortholog in the respective yeast complex 

and vice versa. The complete benchmark set encompasses 71 matching 
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human/yeast complex pairs, consisting of 64 non-redundant human and 52 non-

redundant yeast complexes.  

 

Complex to interactome alignment using NetAligner 

We performed all complex to interactome alignments using the NetAligner algorithm 

that we recently developed [36] and which is also available as a web server [56]. For 

all species combinations, we computed vertex and interaction conservation 

probabilities required by NetAligner based on the interactomes and lists of 

orthologous proteins as described in [36], using default parameters. We assigned 

reliabilities to each interaction based on the number of Pubmed IDs supporting it as 

previously described [26]. For aligning the complexes to whole organism 

interactomes, we created a network representation of each complex, consisting of all 

interactions between complex components that are present in the respective species 

interactome and including self-interactions with a reliability of 0 for all singletons in 

order to not lose any information about complex composition [36]. 

 

Performance comparison to simple orthologs approach 

To compare the performance of NetAligner to that of a simple orthologs approach, in 

which the set of all orthologs of the components of a given query complex are 

predicted to be part of the complex in the target species, we evaluated the results of 

this approach with respect to the benchmark set of protein complexes as described in 

[36]. In brief, the complex predictions are evaluated in terms of how well they agree 

with the respective matching benchmark set complexes based on the overlap of their 

protein components. For each complex predicted by the orthologs approach, we first 

determined the best-matching benchmark complex of the same species by 

minimising the total number of unmatched components. A complex prediction was 

deemed to ‘cover’ a benchmark complex if it contained at least 2 and at least 50% of 

its components. We then calculated the number of true positives (TP) as the total 

number of distinct proteins common to any given complex prediction and the 

benchmark complex it covers; the number of false positives (FP) as the total number 

of distinct proteins that are part of any given complex prediction, but not present in 

the benchmark complex it covers; and the number of false negatives (FN) as the total 

number of distinct proteins present in any given benchmark complex, but not part of 
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any complex prediction covering that complex. Next, we computed the performance 

of the orthologs approach in terms of precision and recall: 

precision =
TP

TP + FP
; recall =

TP

TP + FN
 

Finally, we report the average precision and recall of predicting yeast complexes 

based on human protein complex data and vice versa to avoid parameter overfitting 

(Fig. 1B). For NetAligner, since we used the same performance evaluation strategy, 

as well as the same list of orthologs and set of benchmark complexes, we could 

directly take the performance results reported in our previous work for complex to 

interactome alignment [36]. We also evaluated the performance when using default 

parameters (Fig. 1B).  

 

Non-redundant sets of protein complexes in human, yeast and mycoplasma 

We collected non-redundant sets of protein complexes in human, yeast and 

mycoplasma. For this, we first extracted all human complexes from the CORUM 

database [2], the set of manually curated yeast complexes from the MPACT 

database [1], as well as all homo- and heteromeric mycoplasma complexes from 

Kühner et al. [8]. Analogously to the procedure for constructing the non-redundant 

benchmark set of human/yeast complex pairs [36], we then filtered out those 

complexes that were not fully present in the respective species interactome and 

clustered them based on the overlap of their components using complete linkage 

hierarchical clustering to remove redundancy. The distance d(c1,c2)  between two 

complexes c
1
 and c

2
 was defined as: 

d(c
1
,c
2
) = 12

c
1
+ c

2

max c
1
, c

2( )
,  

and we cut the resulting dendrogram using a distance threshold of 0.5, such that 

each pair of complexes in the same cluster share more than 50% of their 

components (choosing the largest complex of each cluster as its representative). 

This resulted in non-redundant sets of 1027 protein complexes in human, 244 in 

yeast and 174 in mycoplasma.  

 

Identification of novel complex components 

To identify novel components in our complex predictions, we compared them with the 

set of known complexes of the respective species. We took all 1826 known human 
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complexes from the CORUM database [2], all 402 human complexes annotated in 

the Gene Ontology (GO) [39], as well as the 155 and 622 complexes from the recent 

high-throughput (HTP) studies of Hutchins et al. [10] and Havugimana et al. [11], 

respectively (3005 complexes in total). For yeast, we collected all 263 manually 

curated and all 871 HTP complexes from the MPACT database [1], which include the 

large-scale studies performed by Gavin et al. [3] and Ho et al. [4]. We then added the 

491 and 547 complexes defined in the HTP studies by Gavin et al. [5] and Krogan et 

al. [6], respectively, as well as all 350 yeast complexes annotated in GO and the 

recently published set of 720 yeast complexes from Babu et al. [7] (3242 complexes 

in total). Since there does not yet exist a dedicated database of protein complexes in 

fly, we determined the set of known fly complexes based on the set of HTP 

complexes reported by Guruharsha et al. [9] and shared GO annotations (child terms 

of ‘macromolecular complex’ (GO:0032991)), similar to [57], resulting in a total of 777 

fly protein complexes. For each predicted complex in a given organism, we then 

determined the known complex of that species with the largest overlap in terms of 

protein components and marked all those proteins as novel that are not part of the 

known complex.  

 

Computation of functional homogeneity 

We computed the functional homogeneity of protein complexes as an automated 

strategy to validate their composition in terms of protein components. First, we 

extracted the GO protein annotations from the UniProt database [52] for all GO 

categories (i.e. biological process, molecular function and cellular component). Then, 

we calculated the GO homogeneity h(c) of each complex c  per GO category, 

defined as the maximum fraction of protein components p(c)  that share the same 

GO term t  [58]:  

h(c) = max
t

pt (c)

p(c)
 

We classified each complex with a GO homogeneity of higher than 0.5 as functionally 

homogeneous in the given GO category. Lastly, to increase the confidence level of 

all subsequent analyses, we defined all those complexes as functionally 

homogeneous that fulfilled this criterion in at least two GO categories.  
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Statistical significance of functional enrichments  

For all most-abundant functional annotations of a given complex and GO category 

(i.e. those that contribute to its functional homogeneity in that category), we 

determined the statistical significance of their enrichments in the complex with 

respect to the given species interactome, using a one-sided Fisher’s exact test with 

Bonferroni multiple testing correction and a strict p-value threshold of 0.025. We then 

defined all those complexes as significantly functionally enriched that had a 

significant enrichment p-value in at least two GO categories.  

 

High-confidence subsets of complex predictions 

We post-processed all sets of predicted complexes to define high-confidence (HC) 

subsets. A predicted complex has to fulfil the following criteria to be present in the 

given HC set: it has to (i) be part of the non-redundant subset of significant 

predictions, (ii) originate from a functionally homogeneous query complex, (iii) be 

homogeneous itself and (iv) share at least one homogeneous GO term with the given 

query complex. Query complexes were defined as high-confidence if they were 

functionally homogeneous.  
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Tables and table legends 

 

  Complex to interactome alignment 

  Yeast vs. 

human 

Human vs. 

yeast 

Other 

species 

P
a

ra
m

e
te

rs
 

Predict likely conserved interactions 1 1 1 

Vertex probability threshold 0.0 0.0 0.0 

Edge probability threshold 0.1 0.0 0.0 

Max insertion length 1 2 2 

Vertex to edge score balance 0.2 0.0 0.1 

P
e

rf
o

rm
a

n
c
e

 Precision [%] 49.17 60.91 54.07 

Recall [%] 38.06 56.06 44.91 

 

Table 1 NetAligner parameters and expected alignment performance 

 

The NetAligner parameters for complex to interactome alignment were taken from 

[36]. For yeast vs. human and human vs. yeast, we took the best performing 

parameter combinations for these species as determined in the benchmarks [36]. For 

all other species, we used the default parameters for complex to interactome 

alignment. The option to predict likely conserved interactions is always set to true (1), 

because this considerably improves alignment performance [36]. Precision and recall 

describe the expected performance of NetAligner in correctly identifying protein 

complex components (see Materials & Methods).  

 

 

 

 

 

 

 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.280v2 | CC-BY 4.0 Open Access | received: 10 Mar 2014, published: 10 Mar 2014

P
re
P
ri
n
ts



 
 

 22 

 

 

Table 2 Complex predictions in yeast and human 

 

Basic statistics of the complex prediction results in yeast and human, based on 

aligning known human complexes to the yeast interactome and vice versa (see 

Materials & Methods). Results are shown both for all complex predictions (All) and for 

the high-confidence subset (HC). #, number of; nr, non-redundant.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Prediction of protein complexes in fly 

 

 Human vs. yeast Yeast vs. human 

Prediction type All HC All HC 

# query complexes 1027 645 244 236 

# predicted complexes (nr) 257 105 89 61 

Total # complex components (nr) 604 372 464 325 

Average # proteins per complex 6.4 5.93 6.37 5.67 

Total # novel components (nr) 307 107 175 91 

Average # novel components per complex 2.75 1.46 2.4 1.62 

# entirely novel complexes (nr) 0 0 2 2 

 Yeast vs. fly Human vs. fly 

Prediction type All HC All HC 

# query complexes 244 236 1027 645 

# predicted complexes (nr) 66 42 219 71 

Total # complex components (nr) 405 255 640 291 

Average # proteins per complex 7.5 6.69 5.84 5.93 

Total # novel components (nr) 252 134 454 168 

Average # novel components per complex 4.61 3.55 3.69 2.79 

# entirely novel complexes (nr) 6 4 45 11 
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Basic statistics of the complex prediction results in fly, based on aligning known yeast 

and human complexes to the fly interactome (see Materials & Methods). Results are 

shown both for all complex predictions (All) and for the high-confidence subset (HC). 

#, number of; nr, non-redundant. 

 

 

 

Table 4 Predictions based on known mycoplasma complexes 

 

Basic statistics of the complex prediction results in yeast, fly and human, based on 

aligning known mycoplasma complexes to the respective species interactome (see 

Materials & Methods). Results are shown both for all complex predictions (All) and for 

the high-confidence subset (HC). #, number of; nr, non-redundant. 

 

 

Figure legends 

 

Figure 1 Network alignment vs. simple orthologs approach in predicting protein 

complexes 

 

Comparison of network alignment (using NetAligner [36]) and a simple orthologs 

approach in predicting protein complexes in a target species based on known 

complexes in a query organism. A: In the simple orthologs approach, all proteins in 

 Mycoplasma vs.  

 Yeast Fly Human 

Prediction type All HC All HC All HC 

# query complexes 174 67 174 67 174 67 

# predicted complexes (nr) 11 3 9 1 6 1 

Total # complex components (nr) 125 8 86 6 39 3 

Average # components per complex 13.64 2.67 12.0 6 7.17 3 

Total # novel components (nr) 86 1 68 4 30 0 

Average # novel components per complex 9.36 0.33 9.56 4 5.33 0 

# entirely novel complexes (nr) 0 0 0 0 1 0 
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the target species (yellow) that are orthologous to the proteins of the query complex 

(violet) are predicted to form the given complex in the target organism. This can lead 

to false positives (proteins marked with red dashed lines) that are not part of the real 

complex. In the more sophisticated network alignment strategy, only those orthologs 

are predicted to be part of the given complex in the target species that are supported 

by conserved or likely-conserved interactions (red) between the two organism 

interactomes. B: Performance of the orthologs (grey) and NetAligner (blue) methods 

on a benchmark set of known conserved human/yeast complex pairs, using default 

parameters (default) or parameter sets trained on one species pair (H/Y, Y/H) and 

evaluated across both species pairs. Error bars denote one standard error of the 

mean.  

 

 

Figure 2 Complex size and number of novel components distributions for all 

predicted complexes 

 

Distributions of the total number of components of all predicted complexes (blue) and 

the high-confidence (HC) subset (yellow) are shown on the left. Distributions of the 

number of novel components found in all predicted complexes (violet) and in the HC 

subset (orange) are shown on the right. A&B: prediction of yeast complexes based 

on human data; C&D: prediction of human complexes based on yeast data; E&F: 

prediction of fly complexes based on yeast data; G&H: prediction of fly complexes 

based on human data.  

 

 

Figure 3 Functional homogeneity of query and predicted complexes 

 

Comparison of the functional homogeneity of query (grey) and predicted complexes 

(green) in the different Gene Ontology (GO) annotation categories. BP, Biological 

Process; CC, Cellular Component; MF, Molecular Function. A: prediction of yeast 

complexes based on human data; B: prediction of human complexes based on yeast 

data; C: prediction of fly complexes based on yeast data; D: prediction of fly 

complexes based on human data. 
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Figure 4 Examples for complex prediction based on network alignment 

 

Examples of using NetAligner [36] to predict protein complexes based on aligning 

network representations of known protein complexes in one species to the 

interactome of another species. Notably, NetAligner does not require query 

complexes to be fully connected. Edge colors in the alignment solutions show which 

species the given interaction that was predicted to be likely conserved originates 

from. Green edges denote known conserved interactions. High-confidence 

interactions are highlighted with thicker edges. Alignment solution nodes represent 

pairs of orthologous proteins (separated by ‘/’) between the respective species, 

allowing both one-to-many and many-to-many orthology relationships. Components 

of the given predicted complex in the target species (extracted from the respective 

alignment solution) are listed, together with the GO biological process and molecular 

function annotations that could be assigned to the predicted complex. A: prediction of 

a mitochondrial processing peptidase complex in human; B: prediction of a mismatch 

repair complex in yeast; C: prediction of a SNX complex in fly. See main text for 

details. Network representations were created with Cytoscape [59]. 

 

 

Figure 5 Comparison of fly complex predictions originating from yeast and human 

data 

 

Comparison of the 219 and 66 non-redundant fly complexes predicted through 

alignment of human (red) and yeast (yellow) query complexes, respectively, to the fly 

interactome using NetAligner [36]. High-confidence (HC) subsets of the complex 

predictions are shown in darker blue. Matching complexes, i.e. those that were 

identified both from human and yeast query complexes with more than 50% shared 

components, are highlighted in orange. The 11 pairs of matching complexes between 

the two HC subsets are listed below.  
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Figure 6 Mycoplasma complexes leading to significant predictions in yeast, fly and 

human 

 

Comparison of the different sets of mycoplasma complexes that led to significant 

predictions in yeast (yellow), fly (blue) and human (red) through complex to network 

alignment using NetAligner [36] (grey arrows). Overlaps between the different sets 

are shown as a Venn diagram. Complexes found in at least two species are listed.  
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