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Abstract 13 

Hybrid zones are important windows into evolutionary processes and our understanding of their 14 

significance and prevalence in nature has expanded quickly. Yet most hybridization research has 15 

restricted temporal and spatial resolution, limiting our ability to draw broad conclusions about 16 

evolutionary and conservation related outcomes. Here, we argue rapidly advancing 17 

environmental DNA (eDNA) methodology should be adopted for studies of hybrid zones to 18 

increase temporal sampling (contemporary and historical), refine and geographically expand 19 

sampling density, and collect data for taxa that are difficult to directly sample. Genomic data in 20 

the environment offer the potential for near real-time biological tracking and eDNA provides 21 

broad, but as yet untapped potential to address eco-evolutionary questions. 22 
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Hybrid zonesregions where groups that differ in one or more heritable characters interbreed 23 

and produce offspring with admixed genomeshave long been considered important windows 24 

into evolutionary processes (Harrison 1990, Harrison and Larson 2014). The study of hybrid 25 

zones has provided insights into the nature of species boundaries, the role that hybridization may 26 

play in adaptive introgression and speciation, and the influences that climate and environmental 27 

disturbance have on the distributions and interactions between species (Harrison 1990, Taylor et 28 

al. 2015, Stewart et al. 2016, Taylor and Larson 2019). As the data used to study hybrid zones 29 

have shifted towards higher resolution genome-spanning sets of loci (Gompert et al. 2017), we 30 

have continued to expand our understanding of the importance and prevalence of hybridization 31 

in nature (reviewed in Taylor and Larson, 2019). 32 

  Particularly as rates of hybridization increase globally, due to a number of factors which 33 

include species introductions, range shifts, and anthropogenic disturbances, many authors have 34 

argued for the accurate quantification of hybridization, the examination of temporal trends in 35 

extent and location of hybrid zones, and the importance of tracking changes in species 36 

interactions at the level of the genome through time (Buggs 2007, Taylor et al. 2015, Grabenstein 37 

and Taylor 2018). Although outcomes of hybridization are variable, both positive and negative 38 

from an evolutionary or species conservation perspective (Grabenstein and Taylor 2018), without 39 

accurate documentation, we cannot determine the consequences of hybridization, or mitigate 40 

hybridization in instances where it threatens species survival. We will also be hampered in our 41 

ability to understand how anthropogenic change is altering species interactions. Thus, despite 42 

renewed calls for temporally repeated and high-resolution studies of hybrid zones, our ability to 43 

thoroughly investigate the dynamics within hybrid zones has been limited by various factors.  44 
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 Most hybrid zone studies are conducted in a single season, across a single geographic 45 

replicate. Given our growing awareness that hybridization between the same taxa can have 46 

variable outcomes that depend on geography, ecology / life history, local demographics, and 47 

habitat, (e.g., Mandeville et al. 2017, Schumer et al. 2017, Stewart et al. 2017), such studies limit 48 

our ability to draw broad conclusions about evolutionary and conservation related outcomes of 49 

hybridization. While many would prefer to incorporate repeated geographic and temporal 50 

sampling into studies of hybridization in nature, the reality of short funding cycles, logistical 51 

challenges of geographically replicated field work, and sequencing costs for thousands of 52 

samples has limited the number of temporal or geographically replicated investigations of hybrid 53 

zones (see Buggs 2007). 54 

 Decreased sequencing costs has partially alleviated this problem, even for non-model 55 

organisms, bringing such studies within the realm of possibility for most labs. However, 56 

geographically replicated sampling at the scale needed to adequately address questions about the 57 

consistency of interspecific interactions in hybrid zones remains challenging, especially for 58 

organisms that are logistically difficult to directly sample.  59 

 60 

Using environmental DNA to study hybrid zones 61 

 62 

DNA that is collected and extracted from environmental samples is referred to as environmental 63 

DNA or ‘eDNA’. It is a means of collecting information without visual observation or direct 64 

handling of organisms, which sometimes has negative impacts on the organisms or the habitats 65 

in which they live, and requires expertise and spatio-temporal sampling effort (Jerde et al. 2011). 66 

Sometimes referring to samples obtained from direct remains (e.g., hair, saliva, scat), much 67 
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eDNA work uses indirect genomic remnants found within the environment (e.g., air, water, or 68 

soil) which allows for sampling areas of suspected site occupancy and increasing access to 69 

habitats that are difficult to sample. Whether subcategorized into intracellular (e.g., DNA 70 

enclosed within cell membranes) or extracellular (e.g., free-floating nucleic acids after cell lysis), 71 

eDNA represents a biological archive of genes, species, and communities that historically or 72 

currently reside within specific habitats.  Although challenges remain, a number of studies have 73 

successfully (and repeatedly) used eDNA in both aquatic (e.g. Thomsen et al. 2012, Kelly et al. 74 

2014, Pilliod et al. 2014, Deiner et al. 2016, Ma et al. 2016, Stewart et al. 2017) and terrestrial 75 

(e.g. Andersen et al. 2012, Ushio et al. 2017, Franklin et al. 2019) habitats for occurrence 76 

(presence/absence) and relative abundance measures (number of sequenced eDNA reads) 77 

(reviewed in Barnes & Turner 2016, Goldberg et al. 2016, Stewart 2019). Rapid advances in the 78 

use of eDNA have also seen non-invasive sampling markers evolve from mtDNA barcodes of 79 

various sizes (Foote et al. 2012, Egan et al. 2013, Ma et al. 2016), to diagnostic SNPs (Uchii et 80 

al. 2016, Uchii et al. 2017), and nuclear DNA (nDNA; Carpenter et al. 2013, Bylemans et al. 81 

2017, Minamoto et al. 2017, Aylward et al. 2018, Dysthe et al 2018), making the detection of 82 

even closely related species, and their potential admixture, possible. Building from recent 83 

advances in the use and study of eDNA that expand beyond mitochondrial barcodes, we believe 84 

that eDNA is a potentially powerful tool that could augment studies of hybridization and hybrid 85 

zones in nature. Studies of hybridization and hybrid zones should use of eDNA to increase 86 

temporal sampling (contemporary and historical), to refine and geographically expand sample 87 

collection, and to collect data for taxa that are otherwise difficult to directly sample (e.g., rare, 88 

cryptic, or otherwise elusive). 89 
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 Two recent reviews have highlighted new potential uses of eDNA, encouraging a 90 

transition from strictly taxonomic monitoring and conservation management, to more ecological 91 

(Bálint et al. 2018) and population oriented avenues of research (Adams et al. 2019). We add to 92 

this discussion by suggesting that eDNA is a promising but underutilized tool for evolutionary 93 

investigations, particularly for studying hybrid zones. The use of eDNA for the detection of 94 

macroorganisms was especially significant in monitoring invasive genotypes (Ficetola et al. 95 

2008), which is comparable to documenting parental species genotypes in contact zones. Due to 96 

the incredible sensitivity and rapid accumulation of eDNA for occupancy patterns, in near real-97 

time, it should provide an excellent tool for the quantification of low-density, transient, or cryptic 98 

species, factors that have traditionally made studying hybrid zones challenging. Ideal hybrid 99 

zone sampling frameworks are often difficult to accomplish because many clades along the 100 

speciation continuum are poorly understood, including their ecology, phenology, breeding 101 

behavior, and how these might differ during divergence; here we argue eDNA sampling may 102 

alleviate some of these difficulties.  103 

 104 

Expanding the geographic extent and temporal resolution of hybrid zone studies 105 

 106 

Collecting DNA from the environment, rather than directly from organisms, can provide high-107 

resolution temporal data across a large taxonomic breadth and geographic context compared to 108 

traditional methods which rely on the direct sampling of organisms (Bálint et al. 2018). For rare 109 

individuals or cryptic populations (e.g. juvenile forms), low probabilities of detection increase 110 

systematic errors and hinder accurate occurrence estimations, but eDNA sampling efforts 111 

increase detection rates, reducing false negatives and confirming true absence records (Wilcox et 112 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27996v1 | CC BY 4.0 Open Access | rec: 30 Sep 2019, publ: 30 Sep 2019



6 

 

al. 2018). Further, eDNA collection is both labor, time, and cost-efficient (Qu & Stewart 2019), 113 

and the collection of eDNA has frequently been included in citizen science projects (e.g. Biggs et 114 

al. 2015, Buxton et al. 2018), or accomplished via extensive collaborative networks (Wilcox et 115 

al. 2018). These aspects alone would vastly improve both the geographical extent and temporal 116 

resolution of sampling across hybrid zones, particularly for complex mosaic hybrid zones (e.g., 117 

Larson et al 2013) or hybrid zones that extend across national borders (e.g. Stewart et al. 2016, 118 

Ryan et al. 2018) and/or have broad geographic distributions (e.g., Scriber 2011). The ease of 119 

collecting environmental samples (e.g. water or soil) further means that dense geographic and 120 

repeated temporal sampling could refine known hybrid zone boundaries and identify new regions 121 

of contact, while simultaneously allowing for broader sampling coverage without being 122 

prohibitively expensive or labor-intensive.  123 

Moreover, although eDNA often degrades rapidly in nature (on the scales of days to 124 

weeks) making it an ideal tool to monitor the contemporary distribution of organisms (Goldberg 125 

et al. 2016), eDNA can be successfully amplified up to 1 million years after it is shed into the 126 

environment  (Willerslev et al. 2007, Kirkpatrick et al. 2016). When combined with dating 127 

methods (e.g., isotopic analysis, rare historical events that leave paleoecoligcal traces, or annual 128 

lamina in sediments; reviewed in Bálint et al. 2018), eDNA may illuminate the historical spatial 129 

legacy from species movements. For example, a recent study successfully used eDNA to identify 130 

a historical invasion front, contrasting the ecological impact of the invasive species to recent 131 

climate change events (Ficetola et al. 2018). Importantly, even the contemporary collection of 132 

eDNA can allow for a retroactive look at spatial patterns of occurrence and relative abundance in 133 

genes and species through time, which has obvious application to the study of hybrid zones. 134 

Aspects of hybridization history and hybrid zone movement, which are often difficult to deduce 135 
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(e.g., the source and speed of genetic invasion fronts [i.e. hybrid zone movement], the frequency 136 

of reticulated contact, or establishment of tension zones), could all be addressed using spatially 137 

and temporally explicit eDNA collections. 138 

Making predictions about hybrid zone movement may be possible when using eDNA 139 

tools for hybrid zone investigations. Species distribution models (SDMs) can link biological 140 

observations, geospatial habitat, and climactic covariates to forecast future distribution 141 

probabilities based on eDNA data (Muha et al. 2017, Wilcox et al. 2018). By using similar 142 

techniques, one could geographically sample hybrid zones, along with the abiotic and biotic 143 

parameters that they are correlated with at high-resolution, and then predict ecologically realistic 144 

patterns of introgression and movement trajectories through time. This is an especially useful 145 

opportunity for analysing dispersal pathways (Muha et al. 2107) as introgression from introduced 146 

species (e.g., Hohenlohe et al. 2013) and climate change (see Taylor et al. 2015) alter species 147 

interactions and distributions. 148 

 149 

Providing insight into cryptic aspects of hybridization and ecology 150 

 151 

We further think that eDNA can serve as a springboard for the collection of otherwise difficult to 152 

sample data. Although our current understanding is that eDNA derives from both dead (e.g., 153 

Dell’Anno and Danovaro 2005, Pietramellara et al. 2009) and living (e.g., Pochon et al. 2017) 154 

biomass, quantifying viability and fecundity dynamics within hybrid zones might also possible 155 

with eDNA. Sources of genetic material within environments are varied (Stewart 2019) and 156 

intracellular or eRNA sources are assumed to originate from metabolically-active living 157 

organisms before being rapidly removed from the environment. Examination of proportions of 158 
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eDNA / eRNA (e.g., Steven et al. 2017), or intra to extracellular (correcting for degradation), 159 

could allow for inferences related to general patterns of mortality either due to hybridization 160 

itself, or via species interaction and competition. If sampling is directed at discrete life-stages 161 

(e.g. egg, larval, and adult forms) that occupy distinct temporal (e.g. seasonal) or geographical 162 

(e.g. terrestrial vs. aquatic, or species-specific aquatic vertical distribution of gametes or eggs; 163 

Stewart 2019) realms, eDNA collections may also open windows into differential mortality 164 

throughout development.  165 

The detection of eDNA is also known to spike in aquatic environments during 166 

reproductive seasons (e.g., Laramie et al. 2015, Spear et al. 2015), with breeding events 167 

characterized by higher nDNA relative to mtDNA, facilitating quantification of reproductive 168 

bouts within hybrid zones and 2) phenological breeding patterns in the parental species coming 169 

into contact. As X- and Y- linked markers (e.g., Taberlet et al. 1993; Brinkman & Hundertmark 170 

2009), and sex-associative mtDNA heteroplasmy markers (Mioduchowska et al. 2016) have also 171 

been developed for non-invasive sampling, it may also be possible to determine sex ratios within 172 

populations that have genetically determined sex. This is especially important for species that do 173 

not display sexual dimorphism. Sex-linked markers could further provide insight on postzygotic 174 

reproductive isolation, such as hybrid dysfunction (Haldane’s rule). Likewise, eDNA would 175 

allow the quick retrieval of diagnostic genes that differ between the parental species within 176 

hybrid zones when accompanied with high-quality reference genomes and initial exploratory 177 

work.  178 

 179 

Practical considerations and potential limitations  180 

 181 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27996v1 | CC BY 4.0 Open Access | rec: 30 Sep 2019, publ: 30 Sep 2019



9 

 

When coupled with proper marker design and sampling strategy, eDNA is robust with low error 182 

rates, yet it is not without its limitations. For example, most eDNA studies to date have 183 

employed mtDNA as their marker of choice, allowing for the delineation of maternal lineage or 184 

contact boundaries, but failing to incorporate aspects of admixture. This is not a hindrance f 185 

exploratory analyses, as a necessary first-step would be delineating species boundaries and 186 

identifying potential geographic areas of introgression (Fig. 1). The relative proportions of 187 

genetically similar taxa can be quantified using mtDNA SNP detection via eDNA sampling (e.g., 188 

Uchii et al. 2016, Uchii et al. 2017), but key information regarding the dynamics of species 189 

interactions, such as hybridization, would remain unavailable. However, eDNA collections 190 

quantifying nDNA have now been used successfully in the field (Minamoto et al. 2017, Dysthe 191 

et al. 2018), and could reveal important spatio-temporal patterns in areas of contact. By 192 

combining different markers, researchers could perform population level cline analysis, 193 

comparing expected proportions of inheritance for each marker (Fig.1). As the pool of eDNA 194 

data would potentially represent be an amalgamation of all individuals sequences within a 195 

population,  analysis would be akin to Pool-Seq pipelines (e.g., Pfenninger et al. 2105, Taus et al. 196 

2017). If diagnostic markers show strong evidence for cytonuclear discordance via eDNA 197 

surveys, subsequent individual assessments should be made using traditional sampling. Although 198 

individual measures of hybridization (F1, F2, and backcrosses) are, at present, beyond the scope 199 

of eDNA, exploratory analysis using eDNA would decrease guess-work in geographic sampling, 200 

potentially helping to pinpoint populations of importance. For refining and expanding sampling 201 

for well-studied hybrid zones with a priori information about admixture, eDNA represents a 202 

potentially valuable addition to current sampling protocols.  We emphasize that eDNA, like 203 

many other tools, should not be used as a standalone method for the study of hybridization and 204 
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hybrid zones in nature. eDNA has always been a compliment to other traditional sampling 205 

practices, whether for biodiversity monitoring to confirm presence/absence assays, or in this 206 

case, to clarify levels of admixture. 207 

 208 

Environmental DNA is a currently underutilized tool for studying hybrid zones 209 

 210 

Genomic data in the environment offer the potential for near real-time biological tracking. Since 211 

its inception for macroorganismal use (Ficetola et al. 2008), eDNA has been widely adopted and 212 

utilized in conservation biology, although it provides broader yet untapped potential to address 213 

eco-evolutionary questions. eDNA is especially useful for detecting cryptic species and unique 214 

genotypes. Thus, a promising application for eDNA in an eco-evolutionary framework is to 215 

obtain quantitative measures of species presence / absence and to link this to the chronology of 216 

spatial occurrence and relative abundance. eDNA could facilitate the reconstruction the historical 217 

presence and movement of species boundaries (and hybrid zones) with future research avenues 218 

including investigating species boundaries, delineating fine-scale hybrid zones, and tracking the 219 

spatio-temporal introgression of invasive genotypes. Importantly, eDNA allows for the data and 220 

original sample to be stored within a repository, archived so that new questions may be asked or 221 

new taxa may be studied. The significance of this cannot be understated given the rapid 222 

discovery of new markers or genes under selection, rendering eDNA an invaluable tool for 223 

evolutionary studies, now and in the future. 224 

 225 

 226 

 227 
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 452 

Figure 1:  Examples of how spatial and temporal eDNA sampling could facilitate hybrid zone 453 

research, including expanded geographic replicates, population-level cline analysis 454 

(mitochondrial DNA, mtDNA; nuclear DNA, nDNA), and comparisons of contemporary and 455 

historical samples for the detection of unknown species distributions. Diagram key is located in 456 

the top left corner 457 
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