Milankovitch forcing of Early Jurassic wildfires
- Published
- Accepted
- Subject Areas
- Biosphere Interactions, Climate Change Biology, Biogeochemistry
- Keywords
- Precession, wildfire, charcoal, Pliensbachian, clay mineralogy , Mochras, eccentricity, background climate
- Copyright
- © 2019 Hollaar et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
- Cite this article
- 2019. Milankovitch forcing of Early Jurassic wildfires. PeerJ Preprints 7:e27991v1 https://doi.org/10.7287/peerj.preprints.27991v1
Abstract
The Early Jurassic was characterized by major climatic and environmental perturbations which can be seen preserved at high resolution on orbital timescales. The Early Jurassic is a period of overall global warmth, and therefore serves as a suitable modern-day analogue to understand changes in the Earth System. Presently, Earth’s climate is warming and the frequency of large wildfires appears to be increasing. Recent research has indicated that Quaternary deposits reveal that wildfires respond to orbital forcings; however, to date no study has been able to test whether wildfire activity corresponds to changes over Milankovitch timescales in the deep past.
A high-resolution astrochronology exists for the Upper Pliensbachian in the Llanbedr (Mochras Farm) borehole (NW Wales). Ruhl et al. (2016) show that elemental concentration recorded by hand-held X-ray fluorescence (XRF), changes mainly at periodicities of ~21,000 year, ~100,000 year and ~400,000 year, and which can be related to visually described sedimentary bundles. We have quantified the abundance of fossil charcoal at a high resolution (10-15 cm) to test the hypothesis that these well-preserved climatic cycles influenced fire activity throughout this globally warm period.
Preliminary results suggest that variations in charcoal abundance are coupled to Milankovitch forcings over periods of ~21,000 and ~100,000 years. We suggest that these changes in fire relate to changes in seasonality and monsoonal activity that drove changes in vegetation that are linked to variations in the orbital forcing. Supplementary to the charcoal record, a high-resolution clay mineralogy dataset has been generated to further explain the climatic cyclicity observed in the wildfire record regarding the hydrology on land.
Author Comment
This abstract was accepted for the 3rd International Workshop on the Toarcian Oceanic Anoxic Event