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Background. Vulnerable species experiencing inbreeding depression are prone to localised extinctions
because of their reduced ûtness. For Tasmanian devils, the rapid spread of devil facial tumour disease
(DFTD) has led to population declines and fragmentation across the species9 range. Here we show that
one of the few remaining DFTD-free populations of Tasmanian devils is experiencing inbreeding
depression. Moreover, this population has experienced a signiûcant reduction in reproductive success
over recent years.

Methods. We used 32 microsatellite loci to examine changes in genetic diversity and inbreeding in the
wild population at Woolnorth, alongside ûeld data on breeding success from females to test for
inbreeding depression.

Results. We found that maternal internal relatedness has a negative impact on litter sizes. The results of
this study imply that this population has entered an extinction vortex and that to protect the population,
genetic rescue may be required. This study provides conservation managers with useful information for
managing wild devils and provides support for the <Wild Devil Recovery Program= which is currently
augmenting small, isolated populations.
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14 Abstract

15 Background. Vulnerable species experiencing inbreeding depression are prone to localised 

16 extinctions because of their reduced fitness. For Tasmanian devils, the rapid spread of devil 

17 facial tumour disease (DFTD) has led to population declines and fragmentation across the 

18 species9 range. Here we show that one of the few remaining DFTD-free populations of 

19 Tasmanian devils is experiencing inbreeding depression. Moreover, this population has 

20 experienced a significant reduction in reproductive success over recent years. 

21 Methods. We used 32 microsatellite loci to examine changes in genetic diversity and inbreeding 

22 in the wild population at Woolnorth, alongside field data on breeding success from females to 

23 test for inbreeding depression.

24 Results. We found that maternal internal relatedness has a negative impact on litter sizes. The 

25 results of this study imply that this population has entered an extinction vortex and that to 

26 protect the population, genetic rescue may be required. This study provides conservation 

27 managers with useful information for managing wild devils and provides support for the <Wild 

28 Devil Recovery Program= which is currently augmenting small, isolated populations.

29 Introduction

30 For threatened species, a reduction in reproductive success can severely impact population 

31 persistence. The Tasmanian devil, Sarcophilus harrisii, is one such species that has a decline of 

32 up to 80% in areas infected by an infectious clonal cancer, devil facial tumour disease (DFTD) 

33 (Loh et al. 2006; Pye et al. 2016; Lazenby et al. 2018). As the apex carnivore in Tasmania, devil 

34 population declines are causing trophic cascades in the Tasmanian ecosystem (Hollings et al. 

35 2014) and recent modelling has indicated that these populations will begin to succumb to small 

36 population genetic pressures (Grueber et al. 2018). Declining populations are at risk of reduced 
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37 gene flow and loss of genetic diversity (relative to larger, more connected populations) as an 

38 outcome of genetic drift and inbreeding (Charlesworth & Willis 2009). 

39 Since the discovery of DFTD in the mid-1990s, the national and international 

40 conservation community has rallied and research into Tasmanian devil biology has grown 

41 rapidly, including studies of DFTD epidemiology (e.g. Hamede et al. 2008; McCallum et al. 

42 2009; Hamede et al. 2012), devil behaviour (e.g. Sinn et al. 2014), ecological impacts (e.g. 

43 Hollings et al. 2014), population genetics (e.g. Lachish et al. 2011; Grueber et al. 2015; Epstein 

44 et al. 2016; Hendricks et al. 2017), ex situ conservation (e.g. Hogg et al. 2016) and 

45 translocations (e.g. Rogers et al. 2016; Thalmann et al. 2016; Wise et al. 2016; Grueber et al. 

46 2017). As DFTD spread from the north-east across Tasmania, devil populations have been 

47 monitored by the Save the Tasmanian Devil Program (STDP) since 2004 (Lazenby et al. 2018). 

48 One of the last-known DFTD-free populations is located at Woolnorth (40.77° S, 144.77° E), 

49 north-west Tasmania (Farquharson et al. 2018; Lazenby et al. 2018). Since 2014, this 

50 population has suffered an extreme decline in reproductive output, the cause of which remains 

51 unclear (Farquharson et al. 2018). 

52 Here we aimed to test whether the observed decline in wild devil reproductive fitness 

53 (specifically litter sizes) is a result of inbreeding depression. Inbreeding depression occurs when 

54 an accumulation of deleterious recessive alleles lowers individual heterozygosity, negatively 

55 impacting individual fitness relative to less-inbred individuals or populations (Keller & Waller 

56 2002; Frankham et al. 2017). Previous genetic research on a captive Tasmanian devil 

57 population revealed inter-individual variation in inbreeding, but no signs of inbreeding 

58 depression (Gooley et al. 2017). Although inbreeding depression is easier to study in controlled 

59 environments (such as captivity), it may be more consequential in the wild, as environmental 

60 conditions are more severe (Joron & Brakefield 2003; Armbruster & Reed 2005; de Boer et al. 

61 2015). Thus, studies of inbreeding depression in captive environments may underestimate the 

62 impact on inbreeding on fitness in the wild (Kristensen et al. 2008; Gooley et al. 2017). In 

63 addition, wild populations that experience inbreeding depression are more vulnerable to 

64 extinction (Keller & Waller 2002), and so isolated populations may need genetic rescue to 

65 combat the effects of inbreeding (Frankham 2015; Frankham et al. 2017).

66 Here we use multilocus heterozygosity to investigate inbreeding and inbreeding 

67 depression at the DFTD-free population of devils at Woolnorth. We aimed to test: 1) whether 

68 inbreeding is occurring in the devil population at Woolnorth, and 2) whether inbreeding is 

69 associated with the observed reduction in reproduction (specifically litter sizes). The results of 

70 this study will inform the ongoing management of fragmented devil populations in the face of 

71 DFTD.

72

73 Materials & Methods

74 Sample collection and genotyping

75 Samples were collected by the STDP following their Standard Operating Procedure (see 

76 Appendix 5 in Hogg et al. 2019) and shared with the University of Sydney for genetic analysis. 

77 DNA samples and corresponding reproductive and demographic data were available for years 

78 2006, 2007, 2009, 2014, 2015 and 2016. Reproductive output for females was taken as the 
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79 estimated count of offspring produced (i.e. <litter size=), following Farquharson et al. (2018).  

80 Female devils are limited to a maximum of 4 offspring per breeding event (Guiler 1970). For our 

81 data, litter size was estimated either by the presence and count of pouch young, or, for 

82 monitoring trips that occurred later in the year, by the presence and count of active teats 

83 (indicating pouch young had been denned) (following Keeley et al. 2012; Farquharson et al. 

84 2018). In total, 168 wild Tasmanian devils (90 females and 78 males) were included in this 

85 study. Male reproductive output could not be examined in this study.

86 DNA from ear biopsy samples from the 2006, 2007 and 2009 monitoring trips had been 

87 previously extracted (Hendricks et al. 2017), whilst samples from 2014, 2015 and 2016 were 

88 extracted using a phenol-chloroform technique (Sanbrook et al. 1989) and stored at -20oC. 

89 Samples were genotyped with 32 neutral microsatellite markers following Gooley et al. (2017) 

90 and Jones et al. (2003). A randomly chosen set of 7% were re-genotyped to estimate 

91 genotyping error. We tested for null alleles at each locus using Micro-Checker (van Oosterhout 

92 et al. 2004). GenAlEx (Peakall & Smouse 2006, 2012) was used to calculate observed (HO) and 

93 expected heterozygosity (HE) for each locus, each year, and conduct Hardy-Weinberg exact 

94 tests.

95 Inbreeding and inbreeding depression

96 Internal relatedness (IR), a multilocus heterozygosity statistic that is expected to be positively 

97 correlated with individual inbreeding coefficient (Amos et al. 2001), was calculated using the 

98 package Rhh (Alho et al. 2010) for R (R Core Team 2018). IR incorporates allele frequencies, 

99 because there is a higher chance that rare-allele homozygosity is the result of inbred mating, 

100 relative to common-allele homozygosity (Amos et al. 2001). All available samples, male and 

101 female, were used to estimate allele frequencies. We examined whether inbreeding was 

102 accumulating by testing for a change in IR over time using a linear model fitted in R with year as 

103 the fixed predictor and IR as the response (N = 168). 

104 To interpret associations between heterozygosity and litter sizes as inbreeding 

105 depression, molecular data must reflect variation in inbreeding levels among individuals, i.e. 

106 identity disequilibrium (Szulkin et al. 2010). This variation was quantified with the g2 statistic 

107 (David et al. 2007; Szulkin et al. 2010), using the package inbreedR (Stoffel et al. 2016) for R, 

108 with its precision evaluated using 1,000 Monte Carlo iterations. 

109 We tested for inbreeding depression by determining whether IR was a predictor of 

110 female litter size using linear regression; we predict a negative slope (i.e. increased IR is 

111 associated with decreased litter sizes). Litter size was modelled as a binomial response, where 

112 the number of events (successes) equalled the inferred litter size (based on pouch status; N = 

113 90 unique females), and the number of trials equalled the maximum possible litter size of four. 

114 Along with IR (our predictor of interest), age (based on tooth wear observations, Pemberton 

115 1990) and year were also included as continuous fixed predictors (with year = 0 for 2006).

116 Results

117 We found no evidence of null alleles at any of our loci, and missing data was low: >90% of 

118 individuals were successfully genotyped for >90% of loci. Genotyping error rate was 0.6%. 

119 Microsatellite diversity of Woolnorth devils was low (Table 1), and similar to observations of 
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120 other wild sites and captive populations (e.g. Gooley et al. 2017; Storfer et al. 2017; Grueber 

121 et al. 2018). Levels of IR remained constant across the study period (linear regression: ³Year 

122 = 0.003 ± 0.005 SE, p = 0.546; ³0 = -5.621 ± 9.295 SE, p =- 0.546, N = 168 devils, Figure 1).

123 We detected statistically significant identity disequilibrium in our dataset (g2 = 0.017, 

124 SE = 0.007, p-value = 0.003), indicating that variation at our molecular markers reflects 

125 variation in the level of inbreeding among individuals.  We found evidence that inbreeding 

126 depression is occurring in the devil population at Woolnorth: IR had a statistically significant 

127 negative effect on female litter sizes (increased homozygosity [IR] was associated with 

128 decreased fitness) (Figure 2; Table 2).

129 Discussion

130 Here, we show that one of the last-known DFTD-free wild populations of Tasmanian devils is 

131 experiencing inbreeding depression. Although our data did not detect an increase in inbreeding 

132 over the timescale of our study, we did show that maternal IR has a negative impact on 

133 reproductive output (litter size) in wild devils. A significant decline in reproduction over time has 

134 been observed at Woolnorth (Farquharson et al. 2018); inbreeding depression may be either 

135 partially responsible for this trend, or a worrying consequence of it. Taken together, these 

136 observations suggest that the Woolnorth population may be close to a tipping point, whereby 

137 inbreeding reduces reproductive rates (perhaps in concert with other factors), which in turn 

138 further reduces population size and exacerbates the occurrence of inbreeding and inbreeding 

139 depression. This raises the management option of genetic rescue whereby supplementation 

140 could increase the fitness of this population, which is now effectively isolated as a result of devil 

141 facial tumour disease causing 80% declines in adjacent devil populations (Whiteley et al. 2015; 

142 Lazenby et al. 2018). 

143 Small populations that exist in fragmented landscapes are expected to increase in mean 

144 inbreeding levels over time (Wright et al. 2007; Frankham et al. 2017) and monitoring this 

145 process is an important element of genetic management in conservation (Fredrickson et al. 

146 2007; La Haye et al. 2012). Given the short time-period in which litter size appears to be 

147 decreasing at Woolnorth (Farquharson et al. 2018), our failure to detect a corresponding change 

148 in IR over time may indicate that a measurable increase in population mean inbreeding is yet to 

149 occur. This interpretation is not unprecedented: for example, the southernmost Swedish 

150 population of arctic fox did not show an increase in inbreeding coefficients until four years after 

151 population fragmentation that occurred in the late 1990s (Noren et al. 2016). In any case, the 

152 declining reproductive output seen here, and previously (Farquharson et al. 2018), could lead to 

153 a decrease in effective population size. If true, the result will be an eventual increase in 

154 inbreeding, and a strengthening of its negative effects. To test this hypothesis, it will be 

155 important to continue monitoring of the trajectory of demographic and genetic processes 

156 occurring in this population, given its importance as the last DFTD-free wild population of 

157 Tasmanian devils.

158 Devil populations, with and without DFTD, are fragmented across the landscape, so 

159 inbreeding depression may be occurring at other sites, particularly those affected by DFTD. It 

160 would be informative to quantify inbreeding depression into the future to facilitate effective 

161 management of wild populations. Evidence of inter-individual variation in inbreeding at 
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162 Woolnorth (g2 analysis) indicates that we have the molecular tools available to test for 

163 inbreeding depression; it will be informative to determine whether this is also true for other sites. 

164 The results can be used to predict the outcomes of the STDP management strategy of 

165 augmenting small wild populations to promote gene flow (Grueber et al. 2018; Fox & Seddon 

166 2019).

167 Conclusions

168 In conclusion, we have presented the first documented evidence of inbreeding depression in a 

169 wild population of Tasmanian devils. Whether inbreeding is the driver of the observed 

170 reproductive decline at Woolnorth, or the reproductive decline is driving the increase in 

171 inbreeding cannot be determined. Nevertheless, our data do show that inbreeding is detrimental 

172 in this population, and that it is poised to become more prevalent: this population appears to be 

173 at the cusp of the extinction vortex. Augmenting this population with genetic material from other 

174 locations across Tasmania may alleviate the effects of inbreeding and minimise inbreeding 

175 depression.
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Table 1(on next page)

Genetic variation of 32 polymorphic microsatellite loci in the Woolnorth Tasmanian devil
population.

Genetic diversity measured by number of alleles (Na), observed heterozygosity (HO),

unbiased estimate of expected heterozygosity (HE) and Hardy-Weinberg Exact test (p-value).

Total number of devils N = 168.
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1 Table 1: Genetic variation of 32 polymorphic microsatellite loci in the Woolnorth Tasmanian 

2 devil population measured by number of alleles (Na), observed heterozygosity (HO), unbiased 

3 estimate of expected heterozygosity (HE) and Hardy-Weinberg Exact test (p-value). Total 

4 number of devils N = 168.

Locus1 N Na HO HE p-value

Sh2b 147 2 0.340 0.378 0.239

Sh2g 167 3 0.701 0.646 0.053

Sh2i 168 3 0.411 0.406 0.443

Sh2p 168 3 0.667 0.617 0.300

Sh2v 168 6 0.548 0.587 0.738

Sh3a 155 3 0.226 0.245 0.078

Sh3o 168 4 0.464 0.522 0.129

Sh5c 160 3 0.069 0.067 0.977

Sh6e 168 2 0.435 0.412 0.452

Sh6L 167 2 0.138 0.139 0.943

Sha001 164 3 0.085 0.083 0.955

Sha008 161 3 0.547 0.534 0.769

Sha009 163 4 0.319 0.297 0.954

Sha010 161 7 0.826 0.778 0.757

Sha011 167 2 0.329 0.386 0.061

Sha012 156 3 0.487 0.538 0.000

Sha013 162 7 0.710 0.675 0.718

Sha014 165 4 0.491 0.525 0.108

Sha015 155 2 0.471 0.471 0.978

Sha023 156 5 0.436 0.423 0.998

Sha024 148 2 0.209 0.199 0.486

Sha025 166 2 0.193 0.231 0.037

Sha026 164 3 0.226 0.233 0.667

Sha028 148 5 0.264 0.241 0.970

Sha033 166 2 0.331 0.301 0.178

Sha034 166 3 0.193 0.200 0.580

Sha036 165 2 0.248 0.295 0.048

Sha037 164 6 0.610 0.688 0.000

Sha039 160 4 0.400 0.407 0.961

Sha040 165 5 0.612 0.599 0.000

Sha042 163 2 0.313 0.297 0.479

Sha032 147 3 0.061 0.060 0.986

5 1 The ten <Sh= markers were developed by Jones et al. 2003; the remaining 22 <Sha= markers 

6 were developed by Gooley et al. (2017)

7

8 Gooley R, Hogg CJ, Belov K, Grueber CE (2017) No evidence of inbreeding depression in a Tasmanian 

9 devil insurance population despite significant variation in inbreeding. Scientific Reports, 7, 1830.

10 Jones M, Paetkau D, Geffen E, Moritz C (2003) Microsatellites for the Tasmanian devil (Sarcophilus 

11 laniarius). Molecular Ecology Notes, 3, 277-279.
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Table 2(on next page)

Predictors of the number of joeys (proportion out of a maximum of four; binomial model)
produced by female Tasmanian devils (N = 90).
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1 Table 2: Predictors of the number of joeys (proportion out of a maximum of four; binomial 

2 model) produced by female Tasmanian devils (N = 90). 

Predictor Estimate SE p-value

Intercept 0.594 0.377 0.116

Age 0.145 0.143 0.312

IR -2.374 0.680 < 0.001

Year -0.319 0.038 < 0.001

3 Abbreviations: N = sample size, SE = standard error, IR = internal relatedness

4
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Figure 1
Internal relatedness of Tasmanian devils at Woolnorth (males and females) across
years.

Dotted line is at IR = 0. Note: annual monitoring trips were not conducted in 2008, 2010,
2011, 2012 and 2013.
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Figure 2
Eûect of IR on litter size.

Marginal eûect of IR based on the model shown in Table 2. The bold solid line is the ûtted
eûect of IR on litter size at the mean of age and year in the wild population. Note that year
has a strong eûect on litter size, so the vertical positioning (intercept) of this line will vary for
other years from the trend shown (later years having a lower intercept than earlier years;
Table 2). The ûne solid lines indicating the 95% CIs; raw data are overlaid.
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