A peer-reviewed version of this preprint was published in PeerJ on 10 July 2017.

<u>View the peer-reviewed version</u> (peerj.com/articles/cs-120), which is the preferred citable publication unless you specifically need to cite this preprint.

Swainston N, Currin A, Green L, Breitling R, Day PJ, Kell DB. 2017. CodonGenie: optimised ambiguous codon design tools. PeerJ Computer Science 3:e120 https://doi.org/10.7717/peerj-cs.120

CodonGenie: optimised ambiguous codon design tools

Neil Swainston $^{Corresp.,-1}$, Andrew Currin 1 , Lucy Green 1 , Rainer Breitling 1,2 , Philip J Day 3 , Douglas B Kell 1,2

Corresponding Author: Neil Swainston
Email address: neil.swainston@manchester.ac.uk

CodonGenie, freely available from http://codon.synbiochem.co.uk, is a simple web application for designing ambiguous codons to support protein mutagenesis applications. Ambiguous codons are derived from specific heterogeneous nucleotide mixtures, which create sequence degeneracy when synthesised in a DNA library. In directed evolution studies, such codons are carefully selected to encode multiple amino acids. For example, the codon NTN, where the code N denotes a mixture of all four nucleotides, will encode a mixture of phenylalanine, leucine, isoleucine, methionine and valine. Given a user-defined target collection of amino acids matched to an intended host organism, CodonGenie designs and analyses all ambiguous codons that encode the required amino acids. The codons are ranked according to their efficiency in encoding the required amino acids while minimising the inclusion of additional amino acids and stop codons. Organism-specific codon usage is also considered.

¹ Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), University of Manchester, Manchester, United Kingdom

² School of Chemistry, University of Manchester, Manchester, United Kingdom

³ Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom

1 CodonGenie: optimised ambiguous codon design tools

- 2 1,*Neil Swainston, ¹Andrew Currin, ¹Lucy Green, ¹,²Rainer Breitling, ³Philip J Day, ¹,²Douglas B
- 3 Kell
- ⁴ Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
- 5 Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United
- 6 Kingdom.
- ²School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom.
- 8 ³Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL,
- 9 United Kingdom.
- 10 *Corresponding author.

11 **Abstract**

- 12 CodonGenie, freely available from http://codon.synbiochem.co.uk, is a simple web application
- 13 for designing ambiguous codons to support protein mutagenesis applications. Ambiguous codons
- 14 are derived from specific heterogeneous nucleotide mixtures, which create sequence degeneracy
- 15 when synthesised in a DNA library. In directed evolution studies, such codons are carefully
- selected to encode multiple amino acids. For example, the codon NTN, where the code N
- denotes a mixture of all four nucleotides, will encode a mixture of phenylalanine, leucine,
- 18 isoleucine, methionine and valine. Given a user-defined target collection of amino acids matched
- 19 to an intended host organism, CodonGenie designs and analyses all ambiguous codons that
- 20 encode the required amino acids. The codons are ranked according to their efficiency in
- 21 encoding the required amino acids while minimising the inclusion of additional amino acids and
- 22 stop codons. Organism-specific codon usage is also considered.
- 23 **Keywords**: codon, directed evolution, mutagenesis, protein engineering, enzyme engineering,
- 24 industrial biotechnology.

25 Introduction

- 26 Protein engineering seeks to synthesise proteins possessing particular function and structure
- 27 through directed evolution approaches, and is a discipline with a long history (Jäckel, Kast &
- 28 Hilvert, 2008). Traditional approaches include error-prone PCR and site-directed mutagenesis,
- and both approaches can produce reasonably large variant libraries that can be screened for a
- 30 range of desired features; typically achieving an increased enzymatic activity over the wild type
- 31 variant. These approaches have had a number of successes, but suffer from the limitations of
- being unable, a) to control the specific sites and nature of introduced mutations (in the case of
- 33 error-prone PCR); and b) to generate much larger variant libraries including the introduction of

- 34 mutations away from the active site in the case of site-directed mutagenesis.
- 35 In contrast, more recently introduced synthetic biology approaches to protein engineering have
- allowed for the controlled and large-scale mutagenesis of wild-type proteins (Currin et al., 2015).
- 37 The ability to design and assemble synthetic DNA *de novo*, introducing variant codons (those
- 38 containing mixtures of nucleotides) at precisely defined positions, allows for the synthesis and
- 39 expression of large and diverse combinatorial libraries, in which the position and biochemical
- and nature of the mutations are fully controlled (Swainston et al., 2014; Currin et al., 2014
- 41 al., 2017).
- 42 The design of variant protein libraries typically involves a manual process in which required sites
- 43 for mutation are selected, and ambiguous codons designed to introduce controlled variation in
- 44 these positions. In this process, one may wish to design a codon to specify any subset of amino
- acids in a given position. Since each amino acid may be included in the subset or otherwise, the
- number of possible subsets is $2^{20} 1$, i.e. there are 1,048,575 possible subsets of 20 amino acids,
- 47 not all of which are uniquely designable using ambiguous codons (of which there are less than
- $48 15^3 4^3 = 3311$, the exact number depending on the genetic code used by an organism).
- 49 Given the degeneracy of the codon table, there are often multiple ways to encode a chosen set of
- amino acids. The experimenter must a) decide if it is feasible to encode all desired amino acids
- 51 (Mena & Daugherty, 2005); b) determine whether this creates an acceptable number of sequence
- 52 combinations (depending on screening capability and throughput) (Kille et al., 2013; Lutz,
- 53 2010); and c) consider the codon usage of the organism to be used (Nakamura, Gojobori &
- 54 Ikemura, 2000). It therefore follows that the design of ambiguous codons is non-trivial, and as
- such, specialised software tools for the design of ambiguous codons have been recently released
- 56 (Halweg-Edwards et al., 2016). The CodonGenie software presented here adds to this toolkit,
- and considers the above parameters according to the user input and ranks the variant codons with
- respect to the host organism to provide a quick and easy-to-use means of selecting the optimal
- 59 variant codon.

60 Materials & Methods

61 Algorithm

- The standard codon table is such that 17 of the 20 naturally occurring amino acids are encoded
- by codons with fixed bases in the first and second positions, with the third "wobble"-position
- allowing variation that accounts for the degeneracy of the DNA code. Determining optimal
- ambiguous codons for combinations of amino acids involves the following process, which is
- optimized for computational efficiency, compared to a brute-force examination of all possible
- 67 ambiguous codons:
- Align the first two positions and select the most specific ambiguous bases to encode the
- alignment. For example, with the combination asparagine and isoleucine (encoded by AA [CT]

- and AT [ACT] respectively), the alignment of the first two positions is A [AT], i.e. AW.
- All combinations of aligned wobble positions are calculated, i.e. [CA], [CC], [CT], [TA],
- 72 [TC], [TT]. These are then collapsed into unique sets, in this example giving [CA], C, [CT],
- 73 [TA] and T.
- 74 The first two and wobble position bases are combined to produce candidate ambiguous codons,
- 75 which are scored as described below.
- 76 Three amino acids (leucine, arginine and serine) cannot be simply encoded by codons with fixed
- bases in the first and second positions. (For example, both CTN and TT [AG] encode leucine.)
- 78 For combinations including these more complex residues, the above algorithm is performed for
- 79 each encoding and the results combined.
- 80 Note that CodonGenie returns not only the most "specific" ambiguous codons, that is, the codons
- 81 that provide the fewest DNA variants whilst encoding all target amino acids. Providing results
- 82 that include less specific ambiguous codons, which may also encode additional amino acids,
- 83 allows the user to perform a trade-off between library size and codon specificity, depending on
- 84 the experimental objective. A smaller library is generally advantageous for screening purposes,
- but may contain codons that are unfavoured by the target host organism.

86 Scoring

- 87 The goal of the scoring scheme is to preferentially rank the most efficient ambiguous codons.
- 88 That is, the ambiguous codons that encodes all of the required amino acids while minimising the
- 89 encoding on non-desired amino acids.
- The score for an ambiguous codon is therefore defined as the mean of the value, v_i , of each of the
- 91 codons that it encodes. For codons that encode required amino acids, v_i is the ratio of the
- 92 frequency of the codon f_i and the frequency of the most frequent synonymous codon f_i for the
- 93 amino acid that it encodes. For codons that encode non-required amino acids, v_i is zero.

94 score =
$$\frac{1}{|C|} \sum_{i \in C} v_i$$
, where

95
$$v_i = \begin{cases} \frac{f_i}{\max(\{f_j: j \in S_i\})} & i \in R \\ 0 & i \notin R \end{cases}$$

- 96 $C = \{\text{all variants of ambiguous codon } c\}$
- 97 $A = \{ \text{target amino acids} \}$
- 98 a_i : amino acid encoded by codon $i \in C$
- 99 f_i : codon usage frequency of codon $i \in C$

 $S_i = \{j : a_i = a_i\}$ 100 Set of synonymous codons of codon i 101 $R = \{i \in C : a_i \in A\}$ Set of codon variants of c encoding target amino acids 102 This scoring algorithm thus achieves a principled trade-off between codon specificity, library 103 size and codon favourability (according to the codon usage preferences of the target organism). 104 Web service access CodonGenie also offers a RESTful web service interface, supporting its integration with 105 106 software pipelines. The Design method can be accessed by specifying required amino acids and 107 required host organism (as an NCBI Taxonomy id (Federhen, 2012)) as follows: 108 http://codon.synbiochem.co.uk/codons?aminoAcids=DE&organism=4932 109 Similarly, the Analyse method can be accessed by specifying a variant codon and the required 110 organism: 111 http://codon.synbiochem.co.uk/codons?codon=NSS&organism=4932 112 In both cases, results are returned in ison format. 113 **Distribution** 114 The web application is freely available from http://codon.synbiochem.co.uk. CodonGenie is 115 written in Python (using the Flask framework) and HTML / Javascript (using the Bootstrap and 116 AngularJS libraries) and is packaged as a Docker application for ease of deployment. Source code is available from https://github.com/synbiochem/CodonGenie. 117 **Results and Discussion** 118 119 CodonGenie provides a simple web interface affording two functions: a) the design, and b) the 120 analysis of ambiguous codons. Considering the Design module, the user specifies the 121 combination of amino acids to be encoded and an organism in which the library will be 122 expressed. The codon usage table is automatically extracted from the Codon Usage Database 123 (Nakamura, Gojobori & Ikemura, 2000), which as of January 2017 provided support for 35,799 124 organisms. CodonGenie then calculates suitable ambiguous codons and presents these in an 125 interactive table (see Fig. 1). 126 The Analyse module provides the functionality of checking an existing ambiguous codon. Users 127 specify a variant codon and required host organism, and the results returned indicate which amino acids are encoded along with their codon usage frequency. 128 129 The benefit of CodonGenie can be exemplified by the design of an ambiguous codon to encode 130 non-polar amino acids phenylalanine, leucine, isoleucine, methionine and valine. A simple and

- widely used ambiguous codon to encode this subset is NTN, which equates to 16 DNA variants.
- However, CodonGenie identifies that these same amino acids can be encoded by the DTK codon
- 133 (where D denotes [AGT] and K denotes [GT]) using 6 variants. Selecting DTK therefore means
- fewer enzyme variants need to be screened to test all sequence combinations. This benefit is
- particularly significant when encoding multiple variant codons. For example, when using 3 DTK
- codons the library size is reduced from 4096 (16³) to 213 (6³) combinations.

137 Conclusion

- 138 CodonGenie provides two simple-to-use vet valuable tools that aid the design of variant protein
- libraries in mutagenesis and directed evolution studies. Through both its web and web service
- interfaces, CodonGenie is amenable to future integration with new and existing variant library
- design software tools (Swainston et al, 2014). Its modular and open-source format allows for
- straightforward adaptation to emerging needs in the synthetic biology community, in particular
- the consideration of augmented genetic codes and expanded genetic alphabets (Lajoie et al,
- 144 2013; Zhang, 2017).

145 References

- 146 Currin, A., Swainston, N., Day, P. J., and Kell, D. B. (2014) SpeedyGenes: an improved gene
- 147 synthesis method for the efficient production of error-corrected, synthetic protein libraries for
- directed evolution. *Protein Eng Des Sel.* 27: 273-80.
- 149 Currin, A., Swainston, N., Day, P. J., and Kell, D. B. (2015) Synthetic biology for the directed
- evolution of protein biocatalysts: navigating sequence space intelligently. *Chem Soc Rev.* 44:
- 151 1172-239.
- 152 Currin, A., Swainston, N., Day, P. J., and Kell D. B. (2017) SpeedyGenes: Exploiting an
- 153 Improved Gene Synthesis Method for the Efficient Production of Synthetic Protein Libraries for
- 154 Directed Evolution. *Methods Mol Biol.* 1472: 63-78.
- Federhen, S. (2012) The NCBI Taxonomy database. *Nucleic Acids Res.* 40, D136-43.
- Halweg-Edwards AL, Pines G, Winkler JD, Pines A, Gill RT. (2016) A Web Interface for Codon
- 157 Compression. ACS Synth Biol. 5: 1021-3.
- Jäckel, C., Kast, P., Hilvert, D. (2008) Protein design by directed evolution. *Annu Rev Biophys*.
- 159 37: 153-73.
- Kille, S., Acevedo-Rocha, C.G., Parra, L.P., Zhang, Z.G., Opperman, D.J., Reetz, M.T.,
- 161 Acevedo, J.P. (2013) Reducing codon redundancy and screening effort of combinatorial protein
- libraries created by saturation mutagenesis. ACS Synth Biol. 2: 83-92.
- Lajoie, M.J., Rovner, A.J., Goodman, D.B., Aerni, H.R., Haimovich, A.D., Kuznetsov, G.,

- Lutz, S. (2010) Beyond directed evolution--semi-rational protein engineering and design. *Curr*
- 165 Opin Biotechnol. 21: 734-43.
- 166 Mena, M.A., Daugherty, P.S. (2005) Automated design of degenerate codon libraries. *Protein*
- 167 Eng Des Sel. 18: 559-61.
- Mercer, J.A., Wang, H.H., Carr, P.A., Mosberg, J.A., Rohland, N., Schultz, P.G., Jacobson, J.M.,
- Rinehart, J., Church, G.M., Isaacs, F.J. (2013) Genomically recoded organisms expand
- 170 biological functions. Science. 342: 357-60.
- Nakamura, Y., Gojobori, T., and Ikemura, T. (2000) Codon usage tabulated from the
- international DNA sequence databases: status for the year 2000. Nucl Acids Res. 28: 292.
- 173 Swainston, N., Currin, A., Day, P. J., and Kell, D. B. (2014) GeneGenie: optimized oligomer
- design for directed evolution. *Nucleic Acids Res.* 42: W395-400.
- 175 Zhang, Y., Lamb, B.M., Feldman, A.W., Zhou, A.X., Lavergne, T., Li, L., Romesberg, F.E.
- 176 (2017) A semisynthetic organism engineered for the stable expansion of the genetic alphabet.
- 177 Proc Natl Acad Sci U S A. DOI: 10.1073/pnas.1616443114. [Epub ahead of print].

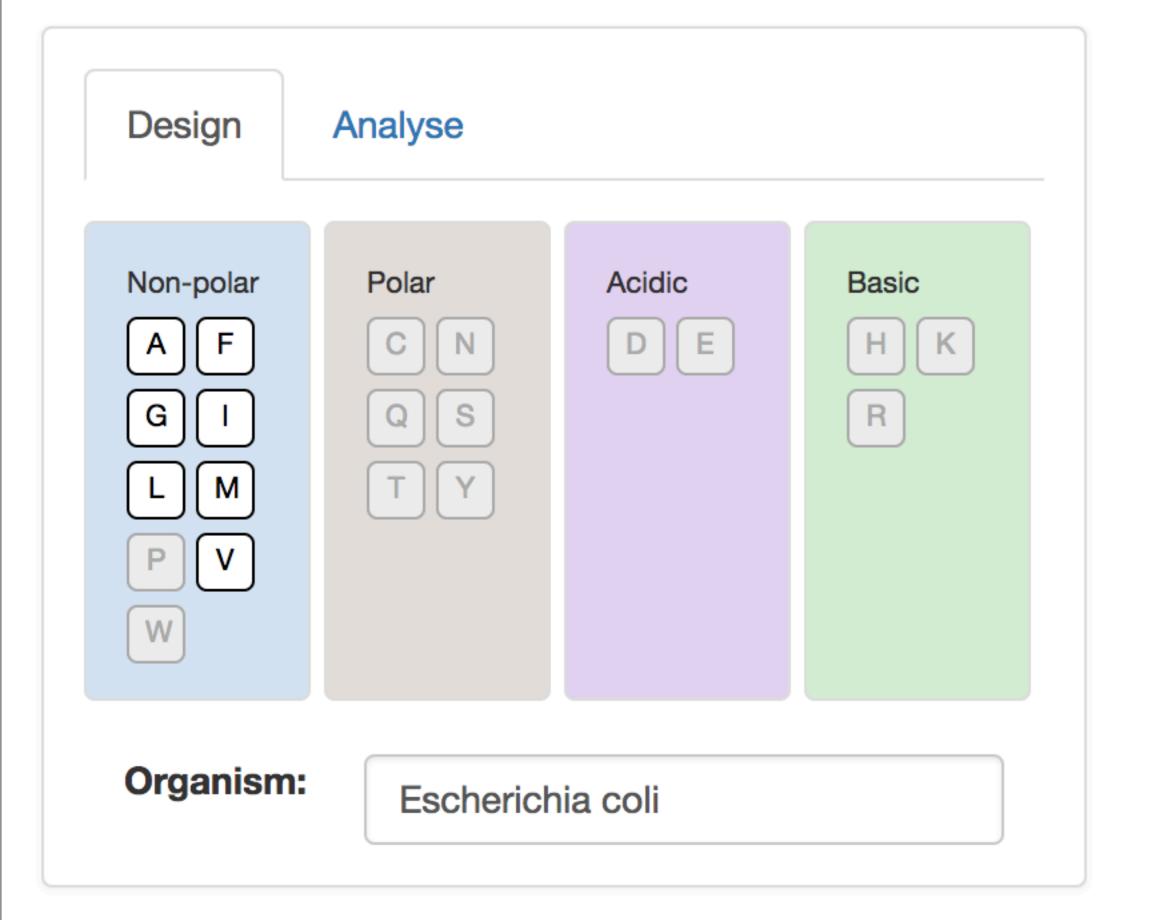
Figure 1(on next page)

CodonGenie Design interface

Users specify required amino acid combinations in the left-hand side panel. (Amino acids are grouped together in the interface in subsets of polar, non-polar, acidic and basic residues. In this example, the non-polar residues *A*, *F*, *G*, *I*, *L*, *M* and *V* have been selected.) Variant codons are listed in the Result panel, ordered by increasing number of Variants and decreasing codon Score (see Materials & Methods). The most specific codons are prioritised (e.g., the preferred codon in the above example, *DBK*, is [*AGT*][*CGT*][*GT*] and therefore encodes 18 DNA variants). Variant codons are shown in grey, with their encodings shown in green, orange and red for required amino acids, additional amino acids and stop codons, respectively. A given variant codon may encode an amino acid multiple times, and this is displayed in the output. For example, the preferred codon *DBK* encodes valine twice (with *GTG* and *GTT*), and these encodings and their organism-specific codon usage frequencies may be visualised through a tooltip.

codon.synbiochem.co.uk

Peer Preprints



CodonGenie

Result				
Codon	Amino acids	GTG (0.29), GTT (0.32)	Variants	Score
DBK	A2 F1 G2 I	L1 M1 V2 C1 R1 S3 T2 W1	18	0.47
DBS	A 2 F 1 G 2 I	L1 M1 V2 C1 R1 S3 T2 W1	18	0.41
NBK	A2 F1 G2 I	L3 M1 V2 C1 P2 R3 S3 T2 W1	24	0.41
NBS	A2 F1 G2 I	L3 M1 V2 C1 P2 R3 S3 T2 W1	24	0.36
DBB	A3 F2 G3 I	2 L1 M1 V3 C2 R1 S5 T3 W1	27	0.45
DBD	A3 F1 G3 I	2 L2 M1 V3 C1 R2 S4 T3 W1 Stop 1	27	0.43
DBV	A3 F1 G3 I	2 L2 M1 V3 C1 R2 S4 T3 W1 Stop 1	27	0.39
DBN	A4 F2 G4 I	3 L2 M1 V4 C2 R2 S6 T4 W1 Stop 1	36	0.42
NBB	A3 F2 G3 I	2 L4 M1 V3 C2 P3 R4 S5 T3 W1	36	0.38
NBD	A3 F1 G3 I	2 L5 M1 V3 C1 P3 R5 S4 T3 W1 Stop 1	36	0.37
NBV	A3 F1 G3 I	2 L5 M1 V3 C1 P3 R5 S4 T3 W1 Stop 1	36	0.33
NBN	A4 F2 G4 I	L6 M1 V4 C2 P4 R6 S6 T4 W1 Stop 1	48	0.36
rJ Preprints https:/	//doi.org/10.7287/peerj.preprints.2797v1	CC BY 4.0 Open Access rec: 9 Feb 2017, publ: 9 Feb 2017		