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Abstract

We point out complications inherent in biodiversity inventory metrics when applied to large-scale
datasets. The number of samples in which a species is detected saturates, such that crucial numbers of
detections of rare species approach zero. Any rare errors can then come to dominate species richness
estimates, creating upward biases in estimates of species numbers. We document the problem via
simulations of sampling from virtual biotas, illustrate its potential using a large empirical dataset (bird
records from Cape May, New Jersey, USA), and outline the circumstances under which these problems
may be expected to emerge.
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19 Abstract

20 We point out complications inherent in biodiversity inventory metrics when applied to large-

21 scale datasets. The number of samples in which a species is detected saturates, such that crucial 

22 numbers of detections of rare species approach zero. Any rare errors can then come to dominate 

23 species richness estimates, creating upward biases in estimates of species numbers. We 

24 document the problem via simulations of sampling from virtual biotas, illustrate its potential 

25 using a large empirical dataset (bird records from Cape May, New Jersey, USA), and outline the 

26 circumstances under which these problems may be expected to emerge.

27

28 Introduction

29 Biodiversity measurements have important implications for conservation efforts (Sousa-

30 Baena, Garcia & Peterson, 2014). Biodiversity metrics provide information about community 

31 composition, numbers of species, and similarity or dissimilarity of species composition among 

32 sites (Colwell & Coddington, 1994), and can allow researchers to separate well-inventoried sites 

33 from partially-inventoried sites for macroecological analyses (Lobo et al., 2018). Biodiversity 

34 inventories have been implemented at scales ranging from local to global (Moreno & Halffter, 

35 2000; Ballesteros-Mejia et al., 2013), to evaluate and understand biotic responses to changing 

36 environmental conditions.

37 Tracking species richness in biodiversity inventories was originally achieved via visual 

38 assessment of asymptotic behavior of species accumulation curves (Karr, 1980), and then with 

39 the quantitative assist of non-linear regressions (Clench, 1979; Soberón & Llorente, 1993). 
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40 However, for the past 20+ years, non-parametric estimators of numbers of species have been 

41 used to estimate species richness, particularly a set of estimators based on sampling theory 

42 (Chao, 1987). Diverse data origins and variable data quality pose significant challenges for such 

43 analyses, particularly when data are drawn from publicly accessible databases, rather than 

44 collected individually by the researcher (Soberón et al., 1996; Lobo, 2008).

45 However, those same publicly accessible databases offer exciting opportunities for novel 

46 analyses (e.g., Cameron et al., 2018; Peterson et al., 2015). Primary biodiversity data connect a 

47 particular species with a place and a point in time (Sullivan et al., 2014), and availability of such 

48 data records has grown massively, now exceeding 109 records (e.g., Global Biodiversity 

49 Information Facility, http://www.gbif.org, serving 1,017,227,764 records as of 22 Aug 2018). 

50 Although these data are heavily biased in terms of their spatial and temporal distributions, being 

51 concentrated massively in Europe and North America and a few other, scattered regions (Yesson 

52 et al., 2007; Peterson & Soberón, 2018), the promise of genuine, macroscale, synthetic insights 

53 remains, and is growing. 

54 In this contribution, we report on a complication in application of the customary statistics 

55 for measuring species richness (Colwell & Coddington, 1994) to very large-scale (e.g., 106 

56 records or larger) biodiversity incidence datasets (i.e., records only of presence, and not of 

57 abundance). Biodiversity datasets have long been of modest dimensions only, and the field has 

58 been built on metrics and methods equipped for those dimensions. In the course of studies of 

59 avifaunal change over recent decades in North America that are pending publication, we noted 

60 that species richness estimates are affected significantly by what would seem to be negligible 

61 numbers of errors among the real data records (see Fig. 1, for an example from a site that is 

62 sampled massively by birdwatchers). We present a brief conceptual summary and a 

63 demonstration of the problem via a simple simulation; we conclude with an exploration of how 

64 such problems can be avoided or mitigated.

65

66 Conceptual background

67 The problem of estimating species richness from samples has been approached via 

68 methods that can be separated into three groups according to the statistical approach used to 

69 derive a species richness estimator: (1) extrapolating species accumulation curves to their 

70 asymptotes (Clench, 1979), (2) fitting parametric distributions of relative abundances (Efron & 

71 Thisted, 1976), or (3) using nonparametric techniques based on distribution of individuals among 

72 species (or the distribution of species among samples) (Colwell & Coddington, 1994; Colwell, 

73 2013; Chao & Chiu, 2016). We focus on asymptotic versions of these methods sensu  Chao and 

74 Chiu (2016), as we are interested in full inventories of species present at sites; see discussion in 

75 Peterson and Slade (1998). Two kinds of data are used in these richness studies: incidence data, 

76 in which only presences and absences are recorded for each species and each sample, and 

77 abundance data, in which numbers of individuals of each species are recorded within each 

78 sample (Gotelli & Colwell, 2011). Abundance data can always be converted to incidence data, 

79 whereas the reverse is not generally possible.
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80 The nonparametric approach has been preferred greatly, since it does not make 

81 assumptions about underlying distributions of abundances or detection rates of species (Chao & 

82 Shen, 2004; Chao & Chiu, 2016). We focus on three nonparametric species richness estimators 

83 based on replicated incidence data that estimate numbers of species actually present at a site but 

84 not observed in the reference sample. All of the estimators correct observed richness (which is by 

85 default a lower bound for a species richness estimator) by adding a term estimating the number 

86 of species present but not detected based on numbers of species represented in one sample 

87 (uniques), two samples (duplicates), or a few samples only (Gotelli & Colwell, 2011; Colwell et 

88 al., 2012).

89 The reference sample for replicated incidence data consists of a species-by-sample matrix 

90 in which each element (mij) corresponds to either the presence or absence of species i in sample j. 

91 The number of columns in this matrix, T, is the number of sampling units in the sample; the 

92 number of rows is the observed number of species, Sobs. Qk is the number of species present in 

93 exactly k sites of the sample, so the number of species present in the assemblage but not included 

94 in the sample (undetected species) is Q0, the number of species unique to a single sample is Q1, 

95 the number of duplicates is Q2, and so on. 

96 Chao (1984) originally derived an estimator of species richness Sobs for abundance based 

97 data that is now called Chao1, which she later recast for incidence data (Chao, 1987). This latter 

98 estimator, now called Chao2, is

99

100 (1)ÿÿ/ÿý2 = { ÿýÿý + [
ÿ 2 1ÿ ]ý2

1

2ý2
,  ÿÿ ý2 > 0ÿýÿý + [

ÿ 2 1ÿ ]
ý1(ý1 2 1)

2(ý2 + 1)
,  ÿÿ ý2 = 0�,

101

102 where T is the sample size available for the overall calculation. The first expression of equation 

103 (1) reflects the classic Chao2 estimator; however, this estimator is undefined when Q2 = 0. The 

104 second expression in equation (1) is a corrected form that is always obtainable and defined.

105 A second estimator of interest, the incidence coverage-based estimator (ICE), is based on 

106 the concept of sample coverage: the proportion of the total number of incidences in a set of 

107 sampling units that belong to the species represented in the sample. Sample coverage is a 

108 measure of the information available regarding occurrence of relatively rare species in the 

109 sample (Chao & Chiu, 2016): its estimator depends on the complement of the proportion of 

110 singletons, in relation to the total number of incidences of the infrequent species (Colwell, 1994). 

111 A third type of species richness estimator is based on the statistical method of jackknifing, a bias 

112 reduction technique involving removing subsets of the data and recalculating the estimator with 

113 the reduced sample (Chao & Chiu, 2016). Finally, we explored the method developed by Chiu 

114 and Chao (2016) for microbial molecular diversity data to account for inflation of numbers of 

115 singletons by sequencing errors (akin to identification errors); this method estimates the true 

116 value of Q1 based on Q2, Q3, and Q4, and uses the adjusted value in asymptotic diversity 
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117 estimates. It is important to notice that this method defaults to the classic Chao2 estimator when 

118 both Q3, and Q4 are equal to zero, otherwise the estimator of Q1 (the true number of uniques) 

119 would be undefined. Therefore, its application is only for a certain window of conditions. 

120 Note that, for each of the estimators described above, the estimator does not take 

121 advantage of the full frequency distribution of detections for species in an inventory effort4

122 indeed, this partial use of the frequency distribution is the focus of this contribution. Three of 

123 these estimators, as well as their corresponding variances and confidence intervals, can be 

124 computed using EstimateS (Colwell & Elsensohn, 2014) and a new version implemented in R 

125 (Chao & Chiu, 2016); the final estimator can be computed using the R version only. We used 

126 EstimateS (version 9.1.0; Colwell & Elsensohn, 2014) for the older three nonparametric 

127 estimators, as that platform is that which has seen the greatest use by the biodiversity 

128 community, and the R version for the latter estimator.

129

130 Materials & Methods

131 We developed a simple simulation based on large samples from a virtual community of 

132 100 <real= species, by using a log-normal distribution of mean abundances, with parameters µ = 

133 1.5 and  = 2.0 (the mean and standard deviation of the variable9s natural logarithm, ÿ
134 respectively). An initial simulation served to illustrate how crucial values (Q1, Q2, etc.) approach 

135 zero as the frequency distribution of detections of species shifts to higher frequencies of 

136 observation, and saturates beyond the few detections on which the inventory estimators focus. 

137 Then, to simulate effects of very rare errors in the form of misidentifications or incorrect 

138 geographic coordinates on inventory results for sites, in a second phase of simulation, we added 

139 10 <error= species that were designed to mimic occasional, rare errors; this latter set of species 

140 had a mean abundance 6 orders of magnitude lower than the 100 real species. To understand 

141 sensitivity to distributional assumptions, we also explored log-normal distributions of 

142 abundances with parameters µ = 0.3 and  = 1.2 and µ = 1.0 and  = 0.5, and gamma ÿ ÿ
143 distributions with parameters  = 1.8 and  = 1.0,  = 2.5 and  = 2.0, and  = 3.0 and  = 1.2 ÿ ÿ ÿ ÿ ÿ ÿ
144 (where  is the shape parameter, and  is the scale parameter).ÿ ÿ
145 We sampled occurrences of the 100 real species in R version 3.2.3 (https://www.r-

146 project.org/) (R Core Team, 2015). To avoid recycling samples and consequent serial 

147 dependency among samples, we created independent random samples for each sample size (5, 7, 

148 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 

149 samples). We used default settings of EstimateS (Colwell & Elsensohn, 2014) to calculate the 

150 Chao2, ICE, jackknife1, and jackknife2 estimators for the 100 replicates x 21 numbers of 

151 samples = 2100 simulated populations. Next, we used customized scripts in Python 2.7.11 to 

152 separate individual replicate result sets from the combined EstimateS output files, and to select 

153 and isolate the final lines from each replicate, to create a final table of results from each 

154 simulated population. All code for these analyses is available at 

155 http://hdl.handle.net/1808/25686.

156
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157 Results

158 The simulation results showed clearly that the estimators converged well on the true 

159 value (100 species) in the error-free simulations, and that Q1 and Q2 approached zero in 

160 increasingly large samples (Fig. 2). The effects of adding the very rare <error= species were also 

161 quite clear: early samples lacked error species entirely, as they were just too rare to show up in 

162 relatively small samples. Only late in the simulation, after 400-1000 replicates, did these species 

163 begin to appear in the analysis datasets (red bars in Fig. 2).

164 The results of the first phase of the simulation showed that, with ~150 samples, estimates 

165 of numbers of species in the community settled at 100 species, which is the correct number of 

166 species (Fig. 3, top). However, when rare species were introduced at minuscule abundances 

167 compared to the <real= species, even though the results settled initially on the correct answer of 

168 100 species, later4when the rare species begin to appear4a consistent upward bias was noted 

169 (Fig. 3, bottom). 

170 The Chiu and Chao (2016) method showed consistent underestimation of true species 

171 numbers for modest numbers of days of sampling (Fig. 4), although this bias disappeared with 

172 large sample sizes. At modest sampling levels, although analyses of the simulated data with error 

173 better approximated the true number of species (100; Fig. 4), the consistent underestimation in 

174 error-free analyses suggests that this outcome may represent a balance between downward bias 

175 in error-free estimates and upward bias introduced by the errors. 

176 The remaining estimators showed behavior similar to that of Chao2: ICE, Jackknife1 (first-

177 order), and Jackknife2 (second-order) analyses, in the first simulation phase, settled on 100 

178 species at ~100 samples, but in the second phase were biased upwards markedly by 150-250 

179 samples (see Supporting Information). Finally, we explored different abundance distributions for 

180 the simulation4indeed, in all log-normal and gamma distributions that we assessed, biases were 

181 clear, just as in the results we have presented above.

182

183 Discussion

184 This contribution centers on how inventory statistics need to evolve in the face of larger 

185 and larger magnitudes of biodiversity data sets. That is, we have shown that any errors in the 

186 data (e.g., misidentifications, misspellings), even at very minor frequencies, can easily end up 

187 dominating the estimation process with the common and long-used nonparametric estimators, 

188 such as Chao2; the older species accumulation curve approach also would clearly overestimate 

189 numbers, given that <error= species would appear as species documented in the inventory. These 

190 biodiversity inventory statistics are important, offering crucial additional information to the 

191 process of biotic inventories; therefore, updating and amending these approaches to approaches 

192 that are less vulnerable to bias, or at least being cognizant of the potential for problems in 

193 estimation for big(ger) datasets, is important.

194 What solutions are available to a researcher with a big data set and the desire to develop 

195 detailed analyses of species richness and inventory completeness? Quite simply, a diversity of 

196 types of errors is found in pretty much every large-scale biodiversity dataset (Lamb et al., 2009), 
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197 and large-scale datasets (see, e.g., Fig. 1) will by nature have more such errors, at least on an 

198 absolute scale. A crucial first step is that of reducing spurious and erroneous species names in the 

199 dataset (Chapman, 2005). Such names may be misspellings, which can be detected easily by 

200 comparison of observed species lists with authority lists (Gueta & Carmel, 2016); this sort of 

201 error is well-known to inflate species richness estimates in inventories (Sousa-Baena, Garcia & 

202 Peterson, 2013). However, these names may also be real names chosen by accident from 

203 controlled pick-lists4such errors may be very hard to detect owing to the fact that they are valid 

204 names, but just not represented at the site in question. Similar contrasts in detectability of 

205 different error types have recently been documented for ecological niche modeling and species 

206 distribution modeling (Simões & Peterson, 2018).

207 Finally, and particularly for the case of birds and a few other taxa for which species are 

208 well documented, a third class of problems regarding species names may arise. Specifically, rare 

209 visitors, often termed vagrants, are valid species names, and the species may genuinely be 

210 present at the site at some (rare) point in time (see Fig. 1). However, depending on the specific 

211 definition of the biota under consideration, these species may not be relevant. That is, detection 

212 and documentation of such species depends on continuous, intensive presence of observers or 

213 collectors, and also on the presence of the <experts= who will be experienced enough to detect 

214 and report such records, and whose records of such species will be believed and accepted. Such 

215 dependencies will easily create biases that may make certain sites appear richer in species, when 

216 in actuality they are richer only in high-level observers (Dittmann & Lasley, 1992). More 

217 generally, this point serves to indicate that biotic inventories need to be defined carefully in 

218 terms of a particular point or span of time and space.

219 The method presented by Chiu and Chao (2016) was developed for application to 

220 microbial molecular diversity data to account for inflation of singletons by sequencing errors, 

221 which is closely akin to problems created by identification errors in species inventories. This 

222 method estimates the true value of Q1, based on Q2, Q3, and Q4, and uses the adjusted value in 

223 asymptotic diversity estimates. This estimator, in our simulation-based assessments, 

224 underestimated true species numbers in the absence of error, but estimated the true species 

225 number closely when errors were introduced4as such, the Chiu-Chao estimator may offer a 

226 useful solution to the problems identified in this contribution for biodiversity inventory 

227 estimates. 

228

229 Conclusions

230 In summary, in this note, we point out and document a complication with application of 

231 the commonly used species inventory statistics, as biodiversity data sets grow to be large. The 

232 base observation is that fauna sizes are finite, but sampling effort can grow without limit, which 

233 shifts distributions of frequencies of observations of species towards larger and larger numbers4

234 this phenomenon has the effect of rarefying the numbers of relatively rare species that inform 

235 inventory statistics. Two processes are involved: (1) estimators depend on the frequencies of 

236 detection of the rarer species, which decline to nil in very large datasets; and (2) erroneous 
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237 reports come to dominate the estimation process because errors are rare and real species 

238 accumulate much larger numbers of observations, such that estimates can come to be based 

239 entirely on noise rather than on signal. The first point is a simple consequence of massive-scale 

240 sampling of finite biotas; the second, however, derives from the dependence of inventory 

241 statistics on information from rare species. Solutions to these problems must involve detailed 

242 cleaning and quality control of data, and careful definition of the relevant species pool that is 

243 under study. Exploration of new estimators that take into account species with greater numbers 

244 of records or that correct for biases in Q1 (Chiu & Chao, 2016)4may provide solutions to these 

245 problems.

246

247 Acknowledgements

248 We thank the University of Kansas Ecological Niche Modeling Group for their support 

249 and interest in the course of this project. We thank Jorge Soberón for a helpful review of the 

250 manuscript. We also thank Anne Chao for leadership in this field, and for willingness to provide 

251 comment and resources necessary for this project.

252

253

254 References

255 Ballesteros-Mejia L, Kitching IJ, Jetz W, Nagel P, Beck J. 2013. Mapping the biodiversity of 

256 tropical insects: Species richness and inventory completeness of African sphingid moths. 

257 Global Ecology and Biogeography 22:5863595. DOI: 10.1111/geb.12039.

258 Cameron EK, Martins IS, Lavelle P, Mathieu J, Tedersoo L, Gottschall F, Guerra CA, Hines J, 

259 Patoine G, Siebert J, Winter M, Cesarz S, Delgado-Baquerizo M, Ferlian O, Fierer N, 

260 Kreft H, Lovejoy TE, Montanarella L, Orgiazzi A, Pereira HM, Phillips HRP, Settele J, 

261 Wall DH, Eisenhauer N. 2018. Global gaps in soil biodiversity data. Nature Ecology & 

262 Evolution 2:1042. DOI: 10.1038/s41559-018-0573-8.

263 Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian 

264 Journal of Statistics 11(4):2653270.

265 Chao A. 1987. Estimating the population size for capture-recapture data with unequal 

266 catchability. Biometrics 43:7833791. DOI: 10.2307/2531532.

267 Chao A, Chiu C-H. 2016. Species richness: estimation and comparison. Wiley StatsRef: Statistics 

268 Reference Online:1326.

269 Chao A, Shen TJ. 2004. Nonparametric prediction in species sampling. Journal of Agricultural, 

270 Biological, and Environmental Statistics 9:2533269.

271 Chapman AD. 2005. Principles of data quality (Version 1.0). Copenhagen, Denmark: Report for 

272 the Global Biodiversity Information Facility. Retrieved from 

273 https://doi.org/10.15468/doc.jrgg-a190

274 Chiu C-H, Chao A. 2016. Estimating and comparing microbial diversity in the presence of 

275 sequencing errors. PeerJ 4:e1634. DOI: 10.7717/peerj.1634.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27965v1 | CC BY 4.0 Open Access | rec: 17 Sep 2019, publ: 17 Sep 2019



276 Clench H k. 1979. How to make regional lists of butterflies: some thoughts. Journal of the 

277 Lepidopterists9 Society 33:2163231.

278 Colwell RK. 2013. EstimateS: Statistical estimation of species richness and shared species from 

279 samples. Available at: http://purl.oclc.org/estimates.

280 Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL, Longino JT. 2012. Models 

281 and estimators linking individual-based and sample-based rarefaction, extrapolation and 

282 comparison of assemblages. Journal of Plant Ecology 5:3321. DOI: 10.1093/jpe/rtr044.

283 Colwell RK, Coddington JA. 1994. Estimating terrestrial biodiversity through extrapolation. 

284 Philosophical Transactions of the Royal Society of London B 335:101-118.

285 Colwell RK, Elsensohn JE. 2014. EstimateS turns 20: statistical estimation of species richness 

286 and shared species from samples, with non-parametric extrapolation. Ecography 37:6093

287 613. DOI: 10.1111/ecog.00814.

288 Dittmann DL, Lasley GW. 1992. How to document rare birds. Birding 24:1453159.

289 Efron B, Thisted R. 1976. Estimating the number of unseen species: How many words did 

290 Shakespeare know? Biometrika 63:4353447. DOI: 10.1093/biomet/63.3.435.

291 Gotelli NJ, Colwell RK. 2011. Estimating species richness. In: Magurran A, McGill B eds. 

292 Biological diversity: frontiers in measurement and assessment. Oxford, UK: Oxford 

293 University Press, 39354.

294 Gueta T, Carmel Y. 2016. Quantifying the value of user-level data cleaning for big data: A case 

295 study using mammal distribution models. Ecological Informatics 34:1393145. DOI: 

296 10.1016/j.ecoinf.2016.06.001.

297 Karr JR. 1980. Geographical variation in the avifaunas of tropical forest undergrowth. The Auk 

298 97:2833298.

299 Lamb EG, Bayne E, Holloway G, Schieck J, Boutin S, Herbers J, Haughland DL. 2009. Indices 

300 for monitoring biodiversity change: Are some more effective than others? Ecological 

301 Indicators 9:4323444. DOI: 10.1016/j.ecolind.2008.06.001.

302 Lobo JM. 2008. Database records as a surrogate for sampling effort provide higher species 

303 richness estimations. Biodiversity and Conservation 17:8733881. DOI: 10.1007/s10531-

304 008-9333-4.

305 Lobo JM, Hortal J, Yela JL, Millán A, Sánchez-Fernández D, García-Roselló E, González-

306 Dacosta J, Heine J, González-Vilas L, Guisande C. 2018. KnowBR: An application to 

307 map the geographical variation of survey effort and identify well-surveyed areas from 

308 biodiversity databases. Ecological Indicators 91:2413248. DOI: 

309 10.1016/j.ecolind.2018.03.077.

310 Moreno CE, Halffter G. 2000. Assessing the completeness of bat biodiversity inventories using 

311 species accumulation curves. Journal of Applied Ecology 37:1493158. DOI: 

312 10.1046/j.1365-2664.2000.00483.x.

313 Peterson AT, Navarro-Sigüenza AG, Martínez-Meyer E, Cuervo-Robayo AP, Berlanga H, 

314 Soberón J. 2015. Twentieth century turnover of Mexican endemic avifaunas: Landscape 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27965v1 | CC BY 4.0 Open Access | rec: 17 Sep 2019, publ: 17 Sep 2019



315 change versus climate drivers. Science Advances 1:e1400071. DOI: 

316 10.1126/sciadv.1400071.

317 Peterson AT, Slade N. 1998. Extrapolating inventory results into biodiversity estimates and the 

318 importance of stopping rules. Diversity and Distributions 4:953105. DOI: 

319 10.1046/j.1365-2699.1998.00021.x

320 Peterson AT, Soberón J. 2018. Essential biodiversity variables are not global. Biodiversity and 

321 Conservation 27:127731288.

322 R Core Team. 2015. R: A language and environment for statistical computing. Vienna, Austria: 

323 R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.

324 Simões M, Peterson AT. 2018. Utility and limitations of climate-matching approaches in 

325 detecting different types of spatial errors in biodiversity data. Insect Conservation and 

326 Diversity. DOI: 10.1111/icad.12288.

327 Soberón J, Llorente J. 1993. The use of species accumulation functions for the prediction of 

328 species richness. Conservation Biology 7:4803488. DOI: 10.1046/j.1523-

329 1739.1993.07030480.x.

330 Soberón J, Llorente J, Benitez H. 1996. An international view of national biological surveys. 

331 Annals of the Missouri Botanical Garden, 83(4):5623573. DOI:10.2307/2399997

332 Sousa-Baena MS, Garcia LC, Peterson AT. 2013. Completeness of digital accessible knowledge 

333 of the plants of Brazil and priorities for survey and inventory. Diversity and Distributions 

334 20:3693381. DOI: 10.1111/ddi.12136.

335 Sousa-Baena MS, Garcia LC, Peterson AT. 2014. Knowledge behind conservation status 

336 decisions: Data basis for <Data Deficient= Brazilian plant species. Biological 

337 Conservation 173:80389. DOI: 10.1016/j.biocon.2013.06.034.

338 Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, Damoulas T, Dhondt AA, 

339 Dietterich T, Farnsworth A, Fink D, Fitzpatrick JW, Fredericks T, Gerbracht J, Gomes C, 

340 Hochachka WM, Iliff MJ, Lagoze C, La Sorte FA, Merrifield M, Morris W, Phillips TB, 

341 Reynolds M, Rodewald AD, Rosenberg KV, Trautmann NM, Wiggins A, Winkler DW, 

342 Wong W-K, Wood CL, Yu J, Kelling S. 2014. The eBird enterprise: an integrated 

343 approach to development and application of citizen science. Biological Conservation 

344 169:31340. DOI: 10.1016/j.biocon.2013.11.003.

345 Yesson C, Brewer PW, Sutton T, Caithness N, Pahwa JS, Burgess M, Gray WA, White RJ, 

346 Jones AC, Bisby FA, Culham A. 2007. How global is the global biodiversity information 

347 facility? PLOS ONE, 2(11), e1124. DOI:10.1371/journal.pone.0001124

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27965v1 | CC BY 4.0 Open Access | rec: 17 Sep 2019, publ: 17 Sep 2019



Figure 1
Example of an intensively sampled site, Cape May National Wildlife Refuge, NJ, USA.

This example shows how the frequency histogram of number of detections per species
reûects large numbers of observations of a ûnite biota. This histogram summarizes
12,144,561 records for the site, and 436 species detected. We have identiûed the species
having the lowest frequencies of detection, among which can be noted several species that
are probably not occurring there naturally, such as Anser anser, Eupsittula canicularis, and
Melopsittacus undulatus, all of which are likely there as escapes from captivity.
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Figure 2
Summary of frequencies of species in inventory samples used in simulation exercises.

The great bulk of these samples had large numbers of detections (the tall bars along the left
and back of the ûgure). Note that by 50-100 days of sampling, no samples are left in the 1-2
detections categories that feed into the Chao2 estimator analyses. Note also the appearance
of rare species in the analysis (red bars at front right) when samples became very large.
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Figure 3
Summary of the two phases of simulation results.

Graphics show simulation of accumulation of species in simulated inventories, showing the
scatter of individual inventory simulations (black circles) and the median of results (red line).
Top: 100 real species, with no error species included. Bottom: 100 real species, with 10 rare
species included to simulate errors in identiûcation or geographic references.
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Figure 4
Exploration of the estimation method of Chiu and Chao (2016), which takes into account
Q1, Q2, Q3, and Q4.

Note that, at larger sample sizes, the Chiu-Chao estimator (blue points) defaults to the Chao2
estimator (green points; Chiu and Chao 2016). We provide (top panel) the results for Chao2
(no error) for purposes of comparison, and then the results from the new estimator in
simulations without (middle panel) and with (bottom panel) errors included.
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