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Background. Ipomoea cairica (L.) Sweet is a destructive invasive weed in South China but
rarely infected with pathogens in nature. Its pathogen resistance mechanism is largely
unknown at present. Some non-pathogenic isolates of Fusarium oxysporum and Fusarium
fujikuroi are prevalent on many plant species and function as pathogen resistance inducers
of host plants. The objective of the present research is to investigate whether the
symbiosis between the both fungi and I. cairica is present, and thereby induce pathogen
resistance of I. cairica. Methods. Through ûeld investigation, we explored the occurrence
rates of F. oxysporum and F. fujikuroi on leaf surfaces of I. cairica plants in natural habitats
and compared their abundance between healthy leaves and leaves infected with
Colletotrichum gloeosporioides, a natural pathogen. With artiûcial inoculation, we assessed
their pathogencity to I. cairica and study their contribution of pathogen resistance to I.
cairica against C. gloeosporioides. Results. We found that F. oxysporum and F. fujikuroi
were widely epiphytic on healthy leaf surfaces of I. cairica in sunny non-saline, shady non-
saline and sunny saline habitats. Their occurrence rates reached up to 100%. Moreover,
we found that the abundance of F. oxysporum and F. fujikuroi on leaves infected with C.
gloeosporioides were signiûcantly lower than that of healthy leaves. With artiûcial
inoculation, we empirically conûrmed that F. oxysporum and F. fujikuroi were non-
pathogenic to I. cairica. It was interesting that colonization by F. fujikuroi, F. oxysporum
alone and a mixture of both fungi resulted in a reduction of C. gloeosporioides infection to
I. cairica accompanied by lower lesion area to leaf surface area ratio, increased H2O2

concentration and salicylic acid (SA) level relative to the control. However, NPR1
expression, chitinase and ³ -1,3-glucanase activities as well as stem length and biomass of
I. cairica plant only could be signiûcantly improved by F. oxysporum and a mixture of both
fungi but not by F. fujikuroi. In addition, as compared to colonization by F. oxysporum and
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a mixture of both fungi, F. fujikuroi induced signiûcantly higher jasmonic acid (JA) level but
signiûcantly lower ³ -1,3-glucanase activity in leaves of I. cairica plants. Thus, our ûndings
indicated the symbiosis of epiphytic fungi F. fujikuroi and F. oxysporum facilitated the
ûtness of I. cairica via the induced systemic resistance of host plant against C.
gloeosporioides. F. oxysporum played a dominant role in inducing pathogen resistance of I.
cairica. Its presence alleviated the antagonism of the JA signaling on SA-dependent ³ -1,3-
glucanase activity and enabled I. cairica plants to maintain relatively higher level of
resistance against C. gloeosporioides.
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24 Abstract

25 Background. Ipomoea cairica (L.) Sweet is a destructive invasive weed in South China but 

26 rarely infected with pathogens in nature. Its pathogen resistance mechanism is largely unknown 

27 at present. Some non-pathogenic isolates of Fusarium oxysporum and Fusarium fujikuroi are 

28 prevalent on many plant species and function as pathogen resistance inducers of host plants. The 

29 objective of the present research is to investigate whether the symbiosis between the both fungi 

30 and I. cairica is present, and thereby induce pathogen resistance of I. cairica.

31 Methods. Through field investigation, we explored the occurrence rates of F. oxysporum and F. 

32 fujikuroi on leaf surfaces of I. cairica plants in natural habitats and compared their abundance 

33 between healthy leaves and leaves infected with Colletotrichum gloeosporioides, a natural 

34 pathogen. With artificial inoculation, we assessed their pathogencity to I. cairica and study their 

35 contribution of pathogen resistance to I. cairica against C. gloeosporioides.

36 Results. We found that F. oxysporum and F. fujikuroi were widely epiphytic on healthy leaf 

37 surfaces of I. cairica in sunny non-saline, shady non-saline and sunny saline habitats. Their 

38 occurrence rates reached up to 100%. Moreover, we found that the abundance of F. oxysporum 

39 and F. fujikuroi on leaves infected with C. gloeosporioides were significantly lower than that of 

40 healthy leaves. With artificial inoculation, we empirically confirmed that F. oxysporum and F. 

41 fujikuroi were non-pathogenic to I. cairica. It was interesting that colonization by F. fujikuroi, F. 

42 oxysporum alone and a mixture of both fungi resulted in a reduction of C. gloeosporioides 

43 infection to I. cairica accompanied by lower lesion area to leaf surface area ratio, increased H2O2 

44 concentration and salicylic acid (SA) level relative to the control. However, NPR1 expression, 
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45 chitinase and ³-1,3-glucanase activities as well as stem length and biomass of I. cairica plant 

46 only could be significantly improved by F. oxysporum and a mixture of both fungi but not by F. 

47 fujikuroi. In addition, as compared to colonization by F. oxysporum and a mixture of both fungi, 

48 F. fujikuroi induced significantly higher jasmonic acid (JA) level but significantly lower ³-1,3-

49 glucanase activity in leaves of I. cairica plants. Thus, our findings indicated the symbiosis of 

50 epiphytic fungi F. fujikuroi and F. oxysporum facilitated the fitness of I. cairica via the induced 

51 systemic resistance of host plant against C. gloeosporioides. F. oxysporum played a dominant 

52 role in inducing pathogen resistance of I. cairica. Its presence alleviated the antagonism of the 

53 JA signaling on SA-dependent ³-1,3-glucanase activity and enabled I. cairica plants to maintain 

54 relatively higher level of resistance against C. gloeosporioides.

55 Introduction

56 Fungal epiphytes are a group of microbes which colonize the surface of the plants and 

57 establish various relationships with their hosts. These associations range from epiphytic 

58 commensals, mutualistic symbionts to pathogens (Kowalski et al., 2015). Fusarium oxysporum 

59 and Fusarium fujikuroi are polytypic species complex with anamorphs in Fusarium, which are 

60 prevalent on the leaf, stem, root, seed and inflorescence surfaces of many economically-

61 important plants such as Ananas comosus (Dianese et al., 1981), Ipomoea batatas (Clark, Hoy & 

62 Nelson, 1995) and Oryza sativa (Choi et al., 2018). Some isolates within F. fujikuroi species can 

63 trigger gibberellin-induced bakanae disease of O. sativa (Hwang et al., 2013), pitch canker of 

64 Pinus spp. (Herron et al., 2015), stalk rot of Zea mays and Sorghum bicolor (Leslie, 1995) and 

65 crown disease of oil palm (Hafizi, Salleh & Latiffah, 2013). However, it was reported that the 
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66 isolates of F. fujikuroi and F. oxysporum were entirely nonpathogenic and avirulent to their hosts, 

67 such as A.comosus (Dianese et al., 1981), O. sativa (Choi et al., 2018; Amatulli et al., 2010) and 

68 Glycine max (Lanubile et al., 2015). It is known that many pathogenic and nonpathogenic F. 

69 oxysporum or F. fujikuroi isolates elicited the systemic acquired resistance (SAR) or induced 

70 systemic resistance (ISR) of their plant hosts to confer resistance against a broad spectrum of 

71 pathogens (Patil et al., 2011; Veloso & Díaz 2012; Miyaji et al., 2017; Mati� et al., 2016). 

72 Pathogen resistance is induced through the accumulation of salicylic acid (SA) or jasmonic acid 

73 (JA) (Mandal, Mallick & Mitra, 2009; Chen et al., 2018; Jogaiah et al., 2018) and the expression 

74 of non-expressor of pathogenesis-related genes-1 (NPR1) as well as pathogenesis-related (PR) 

75 proteins (Stein et al., 2008; Nic-Matos et al., 2017; Ali et al., 2017). Cytosolic hydrolytic 

76 enzymes such as ³-1,3-glucanases and chitinases are members of PR1 proteins (Fagoaga et al., 

77 2001; Park et al., 2004), and exert inhibitory effects on the fungal growth through degrading 

78 chitin and glucan in the cell wall of pathogenic fungi (Balasubramanian et al., 2012; Vieira et al., 

79 2010). In addition, the accumulation of reactive oxygen species (ROS) such as H2O2 is frequently 

80 involved in the defense responses, which may kill pathogens directly (Lin & Ishii, 2009). 

81 Ipomoea cairica (L.) Sweet is native to tropical Africa and is causing a serious invasive 

82 ecological problem in South China (Huang et al., 2009). This weed usually occurs in non-arable 

83 lands, wastelands, forests edges and farmlands where it invades the original diverse community 

84 which is always reduced to a monoculture (Li et al., 2012). I. cairica is scarcely infected with 

85 pathogens in nature. Only a disease symptom caused by Colletotrichum gloeosporioides was 

86 observed sporadically on I. cairica plants in previous field investigations (Lin & Liu, 2010). 
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87 Owing to the lack of pathogens, I. cairica obtains high fitness and overwhelming competitive 

88 advantage in new habitats compared with local co-occurring species, and is causing secondary 

89 invasion to stressed habitats (Liu et al., 2016). The successful invasion of I. cairica into 

90 mangrove wetland in the coastal areas (Liu et al., 2012) and its potential risk to mangrove 

91 wetland has remained largely unknown. To help prevent the invasive expansion of I. cairica, it is 

92 important to understand its mechanisms of pathogen resistance which to date remain relatively 

93 unknown.

94 Considering the omnipresence of F. oxysporum and F. fujikuroi on the surface of plants in 

95 natural surroundings and their roles in inducing plant pathogen resistance, we hypothesized that 

96 the occurrence of F. oxysporum or F. fujikuroi on leaves might be involved in the antagonistic 

97 character of I. cairica against plant pathogen. The objectives of the present study were therefore 

98 to elucidate the following questions: (q) Whether F. oxysporum or F. fujikuroi widely occur on 

99 the leaf surface of I. cairica in the field; (q) Whether there is different abundance of F. 

100 oxysporum or F. fujikuroi between leaves infected with C. gloeosporioides and healthy leaves; 

101 (s) If the former two questions are positive then whether F. oxysporum or F. fujikuroi can 

102 induce the pathogen resistance of I. cairica against C. gloeosporioides.

103 Materials & methods

104 The occurrence rate and abundance of F. oxysporum and F. fujikuroi on leaves of I. 

105 cairica in the field

106 To investigate the occurrence of epiphytic F. oxysporum and F. fujikuroi, sunny saline, 

107 sunny non-saline and shady non-saline habitats with I. cairica were selected for leaf sampling. 
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108 The saline habitat was located in intertidal zones of Yakou village, Zhongshan city 

109 (22°28'1.03''N, 113°32'42.56''E). The non-saline habitat was located in Huitong village, Zhuhai 

110 city (22°21'26.60''N, 113°30'46.18''E). The linear distance between the saline and non-saline 

111 habitats is about 20 km. In each habitat, five I. cairica populations covering more than 50 m2 

112 were selected as sample plots. Distances between sample plots are more than 500 m. In each 

113 sample plot, three sample sites covering about 4 m2 were selected randomly. In each sample site, 

114 three healthy leaves of I. cairica were excised and pooled together as a sample, then stored in a 

115 sterile plastic ziplock bag and returned to the laboratory. A total of 45 samples (3 habitats × 5 

116 sample plots × 3 sample sites) were used for analyzing the occurrence rate of F. oxysporum and 

117 F. fujikuroi. 

118 Each sample was dipped into 75 ml of sterile distilled water contained in a 250 ml sterile 

119 conical flask. The conical flask was set on a shaker (IKA, Staufen, German) at 170 rpm for 60 

120 min. The resulting suspension (200 ¿l) was plated onto sterile potato-dextrose agar (PDA) 

121 contained in a sterile petri dish. The plating was performed in triplicate. Control treatments only 

122 contained sterile water and PDA. All plates were incubated in dark at 26# for 15 days. Plates 

123 were checked daily and each emerging fungal colony was transferred onto a fresh PDA until 

124 axenic cultures were obtained. These fungal cultures were used to identify F. oxysporum and F. 

125 fujikuroi according to methods of Nirenberg & O'Donne (1998), Hafizi, Salleh & Latiffah, 

126 (2013). The value 1 and 0 indicated the presence or absence of F. oxysporum and F. fujikuroi, 

127 respectively on each sample. These values were used to assess the occurrence of F. oxysporum 

128 and F. fujikuroi.
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129 In addition, the abundance of F. oxysporum and F. fujikuroi on I. cairica in the field was 

130 compared between healthy leaves and leaves infected with C. gloeosporioides. In Huitong 

131 village, Zhuhai city, three sample plots covering more than 100 m2 were selected for leaf 

132 sampling. Six healthy leaves and equal number of infected leaves of I. cairica were collected 

133 from each sample plot and separately stored in a sterile plastic ziplock bag as a healthy and 

134 infected sample, then returned to the laboratory for further analysis. After weighing of each 

135 sample, fungal isolation, purification and identification of F. oxysporum and F. fujikuroi were 

136 performed using the above methods. The colony-forming units (CFU) of F. oxysporum and F. 

137 fujikuroi were recorded. The abundance of F. oxysporum and F. fujikuroi was expressed as CFU 

138 per gram fresh weight (FW). 

139 Pathogencity identification of F. oxysporum and F. fujikuroi 

140 In order to identify the pathogencity of F. oxysporum and F. fujikuroi to I. cairica, with 

141 artificial inoculation, the lesion areas caused by the two fungi were compared with a positive 

142 control and a negative control. The positive control was inoculated with C. gloeosporioides, a 

143 natural pathogen of I. cairica. The negative control was sprayed with sterile potato-dextrose 

144 liquid medium.

145 Plant materials

146 Two hundred cuttings (10 cm length, 3 mm diameter) each with two healthy leaves were 

147 clipped from an I. cairica population in the field in Huitong village, Zhuhai city. These cuttings 

148 were cultivated with sterile Hoagland nutrient solution for a week. 

149 Fungi materials 
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150 Fungal isolates identified as F. oxysporum and F. fujikuroi in the previous experiments were 

151 subcultivated on fresh PDA and used as experiment materials. C. gloeosporioides was isolated 

152 directly from leaves of I. cairica infected with C. gloeosporioides in the field. Briefly, leaf spot 

153 were excised from infected leaf and transferred on sterile PDA contained in a sterile petri dish, 

154 and then incubated in dark at 26#. Subsequent process of fungal purification was similar to that 

155 of F. oxysporum and F. fujikuroi. The identification of C. gloeosporioides was based on the 

156 method of Weir, Johnston & Damm (2012). 

157 Twenty days old cultures of F. oxysporum, F. fujikuroi and C. gloeosporioides were used for 

158 preparation of their respective conidial suspensions. Briefly, the mycelia were transferred to 200 

159 ml of sterile potato-dextrose liquid medium contained in a 250 ml sterile conical flask, which 

160 was then sealed with parafilm, shaken repeatedly and incubated in dark at 26#. After 24 h, the 

161 fungal suspension was filtered with three layers of sterile gauze to obtain the conidial suspension. 

162 Conidial concentration of each fungal species was determined using hemocytometer and 

163 photonic microscope (Nikon, Tokyo, Japan), then adjusted to 1×107 ml-1 with sterile potato-

164 dextrose liquid medium. 

165 Pathogencity assessment

166 Thirty two cuttings of I. cairica were selected for assessing pathogencites of F. oxysporum, 

167 F. fujikuroi and C. gloeosporioides. The leaf surface was sterilized by cleaning twice with the 

168 degreased cotton immersed by 75% (v/v) ethanol. These cuttings were divided evenly into four 

169 groups including three treatments and one control. Thus, each treatment was repeated eight times. 

170 One hour later, the three treatments were inoculated with conidial suspension of F. oxysporum, F. 
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171 fujikuroi and C. gloeosporioides, respectively. Inoculation volume of conidial suspension on 

172 each leaf was 2.5 ml. Leaves in the control group were sprayed with an equal volume of sterile 

173 potato-dextrose liquid medium. All inoculated cuttings were then cultivated with sterile 

174 Hoagland nutrient solution in sterile illuminating incubator at 28±1# with a 14/10 h photoperiod 

175 (cool- white neon tube (200 µmol m32 s-1). The relative humidity in the illuminating incubator 

176 was maintained at 75%-80%. After 7 days, all cuttings were harvested, and then the inoculated 

177 leaves of each cutting were photographed with a digital camera. Total number of pixel of lesions 

178 and pixels of the whole leaf were measured with Adobe Photoshop CS6 software (Adobe System 

179 Inc., San Jose, CA, USA). The lesion area ratio was calculated as the % of the whole leaf area. 

180 Plant pathogen resistance induced by F. oxysporum, F. fujikuroi alone and in a mixture 

181 One hundred and twenty cuttings of I. cairica were divided evenly into four groups 

182 including three treatments and one control. The leaf surface was sterilized as above. One hour 

183 later, three treatments were pre-inoculated with the conidial suspension of F. oxysporum, F. 

184 fujikuroi alone or a mixture of both fungi, respectively. The conidial suspension of the fungal 

185 mixture of the two species was prepared with an equal volume of conidial suspension of F. 

186 oxysporum and F. fujikuroi. Pre-inoculation volume of conidial suspension on each leaf was 2.5 

187 ml. The leaves in the control group were sprayed with an equal volume of sterile potato-dextrose 

188 liquid medium. All cuttings were then cultivated with sterile Hoagland nutrient solution in sterile 

189 illuminating incubator at 28±1#with a 14/10 h photoperiod (cool- white neon tube (200 µmol 

190 m32 s-1). The relative humidity in the illuminating incubator was maintained at 75%-80%. After 3 

191 days, these cuttings were removed and inoculated with 2.5 ml of conidial suspension of C. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27956v1 | CC BY 4.0 Open Access | rec: 11 Sep 2019, publ: 11 Sep 2019



192 gloeosporioides per leaf, then returned to illuminating incubator. After 15 days, these cuttings 

193 were harvested. 

194 Growth parameter determination: Stem length, biomass and lesion area ratio

195 The stem length of five random replicates was measured from the harvested cuttings of each 

196 treatment and the control group. Each cutting was then clipped into small pieces and dried at 

197 75# in a drying oven for 10 h to weigh the biomass. A further five random replicates of 

198 harvested cuttings from each treatment and the control were sampled to determine the lesion area 

199 ratio according to the method described above. 

200 Physiological characteristics measurement

201 Four random replicates of the harvested cuttings in each treatment and the control group 

202 were sampled to determine H2O2 concentration, ³-1,3-glucanase and chitinase activity. The leaf 

203 was excised from each cutting of I. cairica, deveined and stored at -80#. 

204 H2O2 was extracted according to the method of Ferguson, Watkins & Harman (1983). The 

205 deveined leaf (0.2 g FW) was homogenized in 5 ml cold acetone in a mortal. The extract and 

206 washings were centrifuged (4,000 rpm) at 4# for 10 min. The supernatant was used to measure 

207 H2O2 concentration by modification of the method of Brennan & Frenkel (1977). One milliliter 

208 of the supernatant was added to 250 ¿l of 50 mg ml-1 Ti(SO4)2 in concentrated H2SO4. The 

209 solution was shaken, followed by the addition of 2 ml concentrated NH4OH and thoroughly 

210 mixed. After centrifugation (20 min at 4,000 rpm), the supernatant was discarded and the 

211 precipitate washed repeatedly with 4 ml acetone until the supernatant was colorless. The 

212 precipitate was solubilized in 4 ml 2 N H2SO4. The absorbance of the obtained solutions was 
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213 recorded at 415 nm against a water blank. The concentration of H2O2 in the extracts was 

214 determined by comparing the absorbance against a standard curve representing 0 - 80 ¿mol ml-1 

215 H2O2.

216 The extraction of ³-1, 3-glucanase and chitinase was based on the method of Magnin and 

217 Robert (2007). Deveined leaf (0.2 g FW) was homogenized in 5 ml cold sodium acetate buffer, 

218 PH 5.0 containing 1mmol dithiothreitol and 10 mg phenylmethysulfonyl fluoride in a cold mortal. 

219 The crude extracts were centrifuged at 4,000 rpm for 50 min at 4# and supernatants were used 

220 in enzymatic activity assays.

221 ³-1,3-glucanase activity was measured according to the method of de la Cruz et al. (1995). 

222 The reaction was started by mixing 200 ¿l of crude extracts and 200 ¿l of laminarin (1 mg ml-1). 

223 The mixture was incubated at 37# for 30 min, followed by the addition of 2 ml of DNS reagent 

224 (Sangon Biotech Co., Ltd., Shanghai, China), then boiled for 5 min. Enzyme and substrate blank 

225 were also included. The absorbance of the obtained solution was recorded at 600 nm. A standard 

226 curve was established with 0 to 80 mg ml-1 glucose. A unit of ³-1,3-glucanase activity was 

227 defined as the amount of enzyme catalyzing the release of 1 ¿mol of glucose equivalent per 

228 minute. 

229 Chitinase activity was measured according to the method of Chen & Lee (1995). The 

230 mixture containing 400 ¿l of crude extracts and 400 ¿l of colloidal chitin (10 mg ml-1) was 

231 incubated at 37# for 1 h, followed by the addition of 1.5 ml of DNS reagent, then boiled for 5 

232 min. Enzyme and substrate blank were also included. The absorbance of the obtained solution 

233 was recorded at 530 nm. A standard curve was established with 0 - 1 mg ml-1 N-
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234 acetylglucosamine (NAG). A unit of chitinase activity was defined as the amount of enzyme 

235 catalyzing the release of 0.5 ¿mol of NAG equivalent per hour. 

236 Hormone measurement

237 Nine harvested cuttings in each treatment and the control group were sampled to determine 

238 SA and JA. Leaves of three cuttings in each treatment or the control group were cut into pieces 

239 and pooled together as a sample, stored at -80#. Thus, each treatment was repeated 3 times.

240 SA and JA were extracted following the method of Engelberth et al. (2003), with some 

241 modification. Frozen leaves in each sample were weighed and ground in liquid nitrogen to a fine 

242 powder. Extraction was done by adding 10 ml of methanol and transferring the mixture to a 50 

243 ml centrifuge tube, then set on a shaker at 300 rpm for 2 h. After centrifugation at 4,000 for 5 

244 min, the supernatant was transferred to another centrifuge tube and concentrated under a flow of 

245 nitrogen gas. The residue was reconstituted with 1 ml of methanol, then was filtered through a 

246 0.2-¿m-Teflon filter into an autosamper vials. 

247 According to the method of Ratzinger et al. (2009), with some modification, an AB Sciex 

248 Qtrap® 5500 LC/MS/MS system (AB Sciex, Foster City, CA, USA) with multiple reaction 

249 monitoring mode was used to quantify SA and JA. The sample was injected onto a reverse-phase 

250 column PAK C18-ARC (150 × 2.0 mm, 3 ¿m, Shiseido, Tokyo, Japan) kept at 25# and eluted 

251 isocratically with the mobile phase consisting of 5 mM ammonium acetate (mobile phase A) and 

252 acetonitrile (mobile phase B) at a flow rate of 0.3 ml min-1. The injection volume was 0.2 ¿l. The 

253 eluate was subjected to positive electrospray ionization, and the ions were detected using the 

254 following mass transitions: SA m/z 137.0³ m/z 93; JA m/z 209.0³ m/z 59.0.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27956v1 | CC BY 4.0 Open Access | rec: 11 Sep 2019, publ: 11 Sep 2019



255 The external standard working fluids for calibration curves were established with 2 - 100 ng 

256 ml-1 of SA and JA in methanol. The standards of SA and JA were purchased from ZZBIO Co., 

257 Ltd (Shanghai, China). 

258 Real-time RT-PCR analysis of NPR1 expression

259 Three replicates of the harvested cuttings in each treatment and the control group were 

260 sampled to analyse NPR1 expression. Total RNA was extracted from leaves using Total RNA 

261 Purification Reagent Kit (Sangon Biotech Co., Ltd., Shanghai, China) according to 

262 manufacturer9s instructions. First strand cDNA was synthesized from 1 ¿g of total RNA using 

263 Reverse Transcription System (DaAn Gene Co., Ltd., Guangzhou, China) according to the 

264 manufacturer9s instructions. The actin gene was used as a reference gene. Based on NPR1 and 

265 actin gene mRNA sequences of homogenous species Ipomoea nil and Ipomoea batatas deposited 

266 in GenBank, NPR1 primers (59- CTTCAGGAGCGTATTTAGTGG-39 and 59- 

267 AAAACAGTCACTACGGCATCA-39) and actin gene primers (59- 

268 GCGGATAGAATGAGCAAGG-39 and 59- GAGCCTCCAATCCAGACAC-39) of I. cairica 

269 were designed respectively by Primer3 software (Applied Biosystems, 

270 http://fokker.wi.mit.edu/primer3/input.htm). 

271 Real-time PCR reactions were conducted with 10 ng of cDNA, 200 nM of each primer, 10 

272 ¿l of the SYBR green master mix (TaKaRa, Dalian, China) and double distilled water (ddH2O) 

273 in a final volume of 20 ¿l. In the negative control, cDNA was replaced by ddH2O. Reactions 

274 were performed on an ABI PRISM 7500HT Sequence Detection System (Applied Biosystems, 

275 Foster City, CA, USA). The program used for real-time PCR was as follow: 10 s at 95#, 45 
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276 cycles of 5 s at 95#, 30 s at 53# and 34 s at 72#. Two replicates of real-time PCR reactions 

277 were performed for each sample.

278 The melting curve analysis was performed to verify the sensitivity and specificity of real-

279 time PCR. After the real-time PCR finished, Ct number was extracted for both actin gene and 

280 NPR1 gene with auto baseline and manual threshold. The relative expression of NPR1 gene and 

281 actin gene were calculated according to the 2-�Ct method provided by Schmittgen & Livak (2008). 

282 � Ct = CtNPR1 2 Ctactin.

283 Data analysis

284 Statistical analysis was performed on SPSS 16.0 software (IBM, Chicago, IL, USA) using 

285 one-way analysis of variance (ANOVA) followed by LSD9s post-hoc test. The values were 

286 expressed as the means ± standard errors and P values þ0.05 were considered statistically 

287 significant.

288 Results

289 Occurrence rate of F. fujikuroi and F. oxysporum in the field

290 In the field, the occurrence rates of F. fujikuroi and F. oxysporum on the surfaces of healthy 

291 leaves did not vary amongst habitats occupied by I. cairica. F. fujikuroi and F. oxysporum 

292 always coexisted, and their occurrence rates were 100±0.00% on I. cairica.

293 Comparison of F. oxysporum and F. fujikuroi abundance between infected and healthy 

294 leaves of I. cairica in the field

295 In the field, the abundance of F. oxysporum (df = 2, P = 0.000) and F. fujikuroi (df = 2, P = 

296 0.000) on the surfaces of healthy leaves of I. cairica was significantly higher than that of C. 
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297 gloeosporioides infected leaves, respectively (Fig. 1). 

298 The pathogencity of F. oxysporum and F. fujikuroi to I. cairica

299 Inoculation with F. oxysporum and F. fujikuroi did not cause lesions on the leaves of I. 

300 cairica, whereas inoculation with C. gloeosporioides led to obvious infection symptom. The 

301 lesion area ratio caused by C. gloeosporioides was 2.11±0.48% and significantly higher than that 

302 of inoculation with F. oxysporum and F. fujikuroi in addition to the negative control (df = 7, P = 

303 0.000). The results showed that F. oxysporum and F. fujikuroi were non-pathogens of I. cairica.

304 Effects of pre-inoculation with F. oxysporum, F. fujikuroi alone and a mixture of both on 

305 growth parameters of I. cairica infected with C. gloeosporioides

306 Compared to the control, pre-inoculation with F. oxysporum (df = 4, P = 0.02), F. fujikuroi 

307 (df = 4, P = 0.03) alone and in a mixture (df =4, P = 0.02) significantly reduced leaf lesion area 

308 ratio of I. cairica plants caused by C. gloeosporioides (Fig. 2C). Moreover, pre-inoculation with 

309 F. oxysporum and mixture of both fungi significantly increased the stem length (F. oxysporum: 

310 df = 4, P = 0.000; mixture of both fungi: df = 4, P = 0.000; Fig. 2A) and biomasses (F. 

311 oxysporum: df = 4, P = 0.000; mixture of both fungi: df = 4, P = 0.000; Fig. 2B) of I. cairica 

312 plants. However, the two growth parameters were not promoted by pre-inoculation with F. 

313 fujikuroi (biomass: df = 4, P = 0.220, Fig. 2B; stem length: df = 4, P = 0.103, Fig. 2C), and 

314 significantly lower than that of I. cairica plants inoculated with F. oxysporum and mixture of 

315 both fungi (biomass: df = 4, P = 0.000, Fig. 2B; stem length: df = 4, P = 0.000, Fig. 2C).  

316 Effects of pre-inoculation with F. oxysporum, F. fujikuroi alone and a mixture of both on 

317 physiological characteristics of I. cairica infected with C. gloeosporioides
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318 F. oxysporum (df = 3, P = 0.000), F. fujikuroi (df = 3, P = 0.011) alone and as a mixture (df 

319 = 3, P = 0.002) significantly increased H2O2 concentration in leaves of I. cairica plants infected 

320 with C. gloeosporioides, compared with the control (Fig. 3A). Furthermore, pre-inoculation with 

321 F. oxysporum and mixture of both fungi significantly improved ³-1,3-glucanase (F. oxysporum: 

322 df = 3, P = 0.000; mixture of both fungi: df = 3, P = 0.004; Fig. 3B) and chitinase activites (F. 

323 oxysporum: df = 3, P = 0.002; mixture of both fungi: df = 3, P = 0.011; Fig. 3C) in leaves, 

324 whereas pre-inoculation with F. fujikuroi did not enhance the two enzymes activities (³-1,3-

325 glucanase activity: df = 3, P = 0.511, Fig. 3B; chitinase activity: df = 3, P = 0.106, Fig. 3C). ³-

326 1,3-glucanase activity (Fig. 3B) in leaves pre-inoculated with F. fujikuroi was significantly lower 

327 than that in leaves pre-inoculated with F. oxysporum (df = 3, P = 0.002) and mixture of both 

328 fungi (df = 3, P = 0.014).     

329 Effects of pre-inoculation with F. oxysporum, F. fujikuroi alone and a mixture of both on 

330 hormone contents and NPR1 expression in leaves of I. cairica infected with C. 

331 gloeosporioides

332 In contrast with the control, pre-inoculation with F. oxysporum (df =2, P = 0.002), F. 

333 fujikuroi (df =2, P = 0.004) alone and a mixture of both (df =2, P = 0.005) significantly elevated 

334 SA contents in leaves of I. cairica plants infected with C. gloeosporioides (Fig. 4A). Moreover, 

335 except for pre-inoculation with mixture, pre-inoculation with F. oxysporum (df =2, P = 0.011) 

336 and F. fujikuroi (df =2, P = 0.000) significantly enhanced JA contents in leaves (Fig. 4B). JA 

337 content in leaves pre-inoculated with F. fujikuroi was significantly higher than that in leaves pre-

338 inoculate with F. oxysporum (df = 2, P = 0.038) and mixture of both fungi (df = 2, P = 0.005). 
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339 Furthermore, in contrast with the control, pre-inoculation with F. oxysporum (df = 2, P = 0.030) 

340 or a mixture of both fungi (df = 2, P = 0.012) significantly upgraded NPR1expression of leaves 

341 infected with C. gloeosporioides (Fig. 4C). However, there was no significant upgrade following 

342 pre-inoculation with F. fujikuroi in NPR1 expression (df = 2, P = 0.232, Fig. 4C).

343 Discussion

344 The occurrence, abundance and pathogen resistance attributes of F. oxysporum and F. 

345 fujikuroi

346 Symbiosis between plants and microbes is a very common ecological relationship. Host 

347 plants obtain diverse benefits from the symbiosis involving the improvement of nutrition 

348 availability (Bertolazi et al., 2019), yields (Xia et al., 2016) and tolerance against abiotic as well 

349 as biotic stresses (Daneshkhah, Grundler & Wieczorek, 2018; Song et al., 2015). In this study, 

350 the occurrence rates of F. oxysporum and F. fujikuroi on leaf surface of I. cairica reached up to 

351 100% regardless of habitat. The results indicated that the symbiosis between F. oxysporum, F. 

352 fujikuroi and I. cairica was established naturally in habitats and was considerably stable. 

353 Moreover, with artificial inoculation, we found that F. oxysporum and F. fujikuroi were not 

354 pathogenic to I. cairica, conversely, they enhanced pathogen resistance of I. cairica against C. 

355 gloeosporioides and significantly reduced lesion area ratio of leaves (Fig. 2C). Previous studies 

356 have shown that pathogen resistance of plants can be induced by F. oxysporum and F. fujikuroi 

357 (Patil et al., 2011; Veloso & Díaz, 2012). Interestingly, under natural conditions, the abundance 

358 of F. oxysporum and F. fujikuroi on healthy leaves was significantly higher than that of C. 

359 gloeosporioides infected leaves (Fig. 1). The results further suggested that the health of I. cairica 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27956v1 | CC BY 4.0 Open Access | rec: 11 Sep 2019, publ: 11 Sep 2019



360 plants was relevant to high abundance of symbiotic F. oxysporum and F. fujikuroi. Since I. 

361 cairica first invaded Hong Kong as an exotic species in 1912 (Yuan et al., 2019), it has 

362 experienced an invasive history spanning 100 years in China. Saikkonen et al. (2016) reported 

363 that symbiosis was the outcome of long-term co-evolution between microbes and host plants. To 

364 our knowledge, the symbiosis between microbes and I. cairica was first reported in the present 

365 study. Thus, it is not clear whether the symbiosis between F. oxysporum, F. fujikuroi and I. 

366 cairica is inherent in its native location or established afterwards via co-evolution in the invasive 

367 regions. Nevertheless, our findings suggested that the symbiosis had important ecological 

368 significance in enhancing the fitness of I. cairica via reducing pathogen pressure of C. 

369 gloeosporioides in nature.

370 Physiological mechanism of pathogen resistance induced by F. oxysporum and F. 

371 fujikuroi

372 H2O2 is a kind of ROS. When plants are attacked by pathogens, hypersensitive responses 

373 will be elicited and H2O2 will be accumulated in plants (Lin & Ishii, 2009). As H2O2 may directly 

374 kill pathogens at infection sites (Lin & Ishii, 2009), we inferred that significant increase of H2O2 

375 concentration in leaves of I. cairica induced by F. oxysporum, F. fujikuroi alone and a mixture of 

376 both fungi (Fig. 3A) might have strengthened inhibitory effects on C. gloeosporioides at 

377 infection sites and prevented further expansion of leaf lesion, resulting in significantly less lesion 

378 area ratio relative to the control (Fig. 2C). In addition, H2O2 also can be employed as a signal 

379 molecule to mediate the levels of downstream signal of SA and JA (Ren & Dai, 2012) and 

380 induces pathogen resistance of plants (Keshavarz-Tohid et al. 2016; Deng et al., 2016). In our 
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381 study, significantly increased SA and JA contents (Figs. 4A and 4B) in leaves of I. cairica pre-

382 inoculated with F. oxysporum, F. fujikuroi alone and mixture should be relevant to H2O2 

383 accumulation in leaves (Fig. 3A).

384 SA and JA are important signaling molecules in plant defense responses. Through signaling 

385 transduction, SA and JA signaling mediates NPR1 expression (Stein et al., 2008; Nic-Matos et al., 

386 2017; Ali et al., 2017), further eliciting distinct sets of resistance gene expression. SA signaling 

387 involves PR genes encoding PR proteins including ³-1,3-glucanase and chitinase (Stein et al., 

388 2008). JA signaling involves some genes encoding defense-related proteins, such as defensin 

389 (Tiwari et al., 2017; Sarkar, Jana & Sikdar, 2017; Brown et al., 2003). Previous studies have 

390 shown that non-pathogenic F. oxysporum and F. fujikuroi induce up-regulated PR1 genes 

391 expression (Veloso & Díaz, 2012) and activities of chitinase and ³-1,3-glucanase (Fuchs, 

392 Moënne-Loccoz & Défago, 1997; Patil et al., 2011) and improve pathogen resistance of plant 

393 hosts. However, our results showed that, in contrast to the control, although F. oxysporum and F. 

394 fujikuroi alone and in mixture induced significantly higher SA contents in leaves of I. cairica 

395 (Fig. 4A), the transmission efficiency of SA signaling between the three treatments was largely 

396 different. Colonization by F. fujikuroi failed to transmit SA signaling and did not up-regulate 

397 NPR1 expression (Fig. 4C), chitinase and ³-1,3-glucanase activities (Figs. 3B and 3C), whereas 

398 colonization by F. oxysporum and the mixture of both fungi successfully transmitted SA 

399 signaling, significantly up-regulated NPR1 expression (Fig. 4C), chitinase and ³-1,3-glucanase 

400 activities (Figs. 3B and 3C). Interestingly, compared with F. oxysporum and the mixture of both 

401 fungi, F. fujikuroi induced significantly higher JA content but significantly lower ³-1,3-
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402 glucanase activity in leaves of I. cairica plants (Figs. 3B and 4B). The results showed that 

403 excessive JA content in I. cairica plants induced with F. fujikuroi antagonized SA signaling 

404 defense pathway and suppressed SA-dependent ³-1,3-glucanase activity. Previous studies have 

405 suggested JA signaling cross-talk with SA signaling defense pathways via NPR1 (Spoel et al., 

406 2003; Withers & Dong, 2016) antagonizes SA signaling and suppresses SA-dependent genes 

407 expression (Kachroo et al., 2001). Therefore, our findings showed that F. oxysporum played a 

408 dominant role in inducing pathogen resistance of I. cairica against C. gloeosporioides because its 

409 presence alone or coexistence with F. fujikuroi alleviated the antagonism of JA signaling on SA-

410 dependent ³-1,3-glucanase activity. 

411 It is well known that ³-1,3-glucanase inhibit fungal growth through degrading glucan in the 

412 cell wall of pathogenic fungi (Balasubramanian et al., 2012; Vieira et al., 2010). In our study, 

413 compared to the control and F. fujikuroi treatment, with higher ³-1,3-glucanase activities (Fig. 

414 3B), I. cairica plants induced with F. oxysporum and a mixture of both fungi strengthened 

415 pathogen resistance against C. gloeosporioides and achieved greater stem length and biomass 

416 (Figs. 2A and 2B), facilitating fitness under the pathogen pressure. 

417 Conclusions

418 In natural habitats, healthy leaves of I. cairica plants established stable symbiosis with non-

419 pathogenic F. fujikuroi and F. oxysporum and had a higher abundance of the both fungi relative 

420 to C. gloeosporioides infected leaves. Although F. fujikuroi and F. oxysporum could induce 

421 pathogen resistance of I. cairica against C. gloeosporioides, F. oxysporum played a dominant 

422 role in inducing pathogen resistance. Its presence alleviated the antagonism of JA on the SA 
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423 signaling defense pathway and enabled I. cairica plants to maintain relatively higher level of 

424 resistance against C. gloeosporioides.

425 The interactions between plants and symbiotic microbes have been well studied in plant 

426 invasion ecology (Shearin et al., 2018). Some microbial symbionts have been identified as 

427 drivers in successful plant invasions owing to their plant growth promoting effects (Dai et al., 

428 2016). The results obtained in the present study provide new evidence that epiphytic F. fujikuroi 

429 and F. oxysporum act as pathogen resistance inducers of the invasive plant I. cairica. However, 

430 in this study, we only targeted the selected epiphytic F. fujikuroi and F. oxysporum to explore 

431 their contributions of pathogen resistance to I. cairica, which might have overlooked other 

432 microbial symbionts associated with pathogen resistance against C. gloeosporioides. Therefore, 

433 future works should systematically investigate the overall symbiotic microbial community 

434 (endophytes and epiphytes) of I. cairica, screen microbial species functioning as plant pathogen 

435 resistance inducers, and thereby extend the study of ecological and physiological mechanisms 

436 inducing pathogen resistance. In addition, in relation to the management and control of I. cairica, 

437 the disruption of the symbiosis between I. cairica and mutualistic microbes might provide a 

438 potentially effective strategy.
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Figure 1
Comparison of F. oxysporum and F. fujikuroi abundance between infected and healthy
leaves of I. cairica.

The leaf infected naturally by C. gloeosporioides in the ûeld was deûned as infected leaf.
Healthy leaf had no any disease symptom. Each value is the mean ± standard error of three
replicates. Error bars indicate standard errors. Diûerent letters above error bars indicate
signiûcant diûerence (Pþ0.05) as determined by LSD test. CFU: Colony-forming units; FW:
Fresh weight.
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Figure 2
Eûects of pre-inoculation with F. oxysporum, F. fujikuroi alone and a mixture of both on
growth parameters of I. cairica infected with C. gloeosporioides.

(A) Stem length; (B) Biomass; (C) Lesion area ratio. Each value is the mean ± standard error
of ûve replicates per treatment. Error bars indicate standard errors. Diûerent letters above
error bars indicate signiûcant diûerence (Pþ0.05) as determined by LSD test.
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Figure 3
Eûects of pre-inoculation with F. oxysporum, F. fujikuroi alone and a mixture of both on
physiological characteristics of I. cairica infected with C. gloeosporioides.

(A) H2O2 concentration; (B) ³ -1,3-glucanase activity; (C) Chitinase activity. Each value is the

mean ± standard error of four replicates per treatment. Error bars indicate standard errors.
Diûerent letters above error bars indicate signiûcant diûerence (Pþ0.05) as determined by
LSD test. FW: Fresh weight.
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Figure 4
Eûects of pre-inoculation with F. oxysporum, F. fujikuroi alone and a mixture of both on
hormone contents and NPR1 expression in leaves of I. cairica infected with C.
gloeosporioides.

(A) Salicylic acid (SA) content; (B) Jasmonic acid (JA) content; (C) Non-expressor of
pathogenesis-related genes-1 (NPR1) expression. Each value is the mean ± standard error of
three replicates per treatment. Error bars indicate standard errors. Diûerent letters above
error bars indicate signiûcant diûerence (Pþ0.05) as determined by LSD test. FW: Fresh
weight.
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