

A preliminary bird list from Río Luis, Veraguas provides further insight into an avian suture zone in Caribbean Panama Jessica F McLaughlin¹, Jorge Luís Garzón², Oscar G. López Ch.², Matthew J Miller¹ ¹Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma. 2401 Chautauqua Ave. Norman OK, 73072 ² Smithsonian Tropical Research Institute Bird Collection, Apartado Postal 0843-03092, Panamá, Republic of Panama Corresponding Author: Jessica McLaughlin 2401 Chautauqua Ave. Norman OK, 73072 USA Email address: jfmclaughlin@ou.edu

Abstract 30 31 32 We present a preliminary list of birds collected on the Caribbean coast of the province of Veraguas, 33 Panama. Here, we found birds not known from the area, instead they were believed to range limits ending 34 either east or west of our collection site. These include: Cnipodectes subbrunneus, Juliamyia julie, 35 Gymnopithys bicolor bicolor, Mionectes (oleagineus) affinis, and western phylospecies of Malacoptila 36 panamensis and Xenops minutus. Our results reaffirm that the coast of Veraguas is an important suture 37 zone between Mesoamerica and South America avifaunas along the Caribbean coast of Panama. 38 39 Presentamos una lista preliminar de aves colectado en la costa caribeña de la provincia de Veraguas, 40 Panamá. Aquí, encontramos aves no conocido de la zona, dado a que sus límites de rango conocidos 41 terminaron o el este o el oeste de nuestro sitio de colecta. Estos incluye: Cnipodectes subbrunneus, 42 Juliamyia julie, Gymnopithys bicolor bicolor, Mionectes (oleagineus) affinis, y las phyloespecies 43 occidentales de Malacoptila panamensis y Xenops minutus. Nuestros resultados confirman que la costa 44 de Veraguas es una zona de sutura importante entre la avifauna de Mesoamérica y Sudamérica en la 45 costa caribeña de Panamá. 46 47 48 Several bird species replace each other in the Caribbean lowlands of Panama. Examples include *Manacus* 49 manakins, Glaucis and Anthracothorax hummingbirds, Jacana waders, Oncostoma flycatchers, and 50 Ramphocelus tanagers. Avian taxonomic turnover becomes even more widespread when phylogeographic 51 species are considered. Here, examples include *Mionectes* flycatchers (11), *Cantorchilus* (6) and 52 Henicorhina wrens (1), Arremon sparrows (9), and Cyanocompsa buntings (4). In fact, abrupt turnover 53 occurs in many faunal groups, which allowed Bagley and Johnson (2) to map the location of suture zones 54 for insects, freshwater fish, and herpetofauna. However, no precise suture zone was indicated for birds, 55 perhaps due to the fact that turnover appears to occur broadly across western to eastern Caribbean 56 - Panama. 57 Gaps in sampling provide another reason for the inability to pin down an exact avian suture zone in 58 Panama. While the avifauna of Panama is one of the most well-documented in the Neotropics (18, 22– 59 25), few ornithological surveys of Caribbean Veraguas have been undertaken. This was largely due to 60 difficulty of access, as no roads descended to the Caribbean lowlands from the continental divide, and 61 coastal access has been difficult because of a lack of suitable anchorage along the Caribbean Veraguas 62 coast (21). Thus, only a few documented ornithological expeditions have explored this region (18).

63	Over the last five years, the government of Panama has begun construction of a new road (Carretera				
64	Guabal-Río Luis-Calovébora; Figure 1) from the town of Santa Fé on the continental divide in Veraguas				
65	to Calovébora on the Caribbean coast. This opens up opportunities for further study of the birds of the				
66	Caribbean coast of Veraguas. From 29 - 31 July 2018, we collected birds along this new road in				
67	preparation for more intensive expeditions in the area focusing on turnover within and among bird species				
68	in the region.				
69	We established a single field site (lat: 8.598, long: -81.206) near the town of Río Luis. Vegetation at this				
70	site consists of disturbed mature pluvial forest. We used mist-nets exclusively to collect birds. On the				
71	final half day we used playback to target a few focal widespread species for comparative genomics work.				
72	In total we collected 80 specimens representing 29 species, as follows:				
73					
74	Threnetes ruckeri				
75	Thalurania colombica				
76	Phaethornis longirostris				
77	Phaethornis striigularis				
78	Juliamyia julie				
79	Amazilia tzacatl				
80	Chalybura urochrysis				
81	Malacoptila panamensis				
82	Xenops minutus				
83	Dendrocincla fuliginosa				
84	Glyphorhynchus spirurus				
85	Thamnophilus atrinucha				
86	Epinecrophylla fulviventris				
87	Poliocrania exsul				
88	Gymnopithys bicolor				
89	Phaenostictus mcleannani				
90	Mionectes (oleagineus) affinis				
91	Cnipodectes subbrunneus				
92	Onychorhynchus coronatus				
93	Manacus vitellinus				
94	Cantorchilus nigricapillus				
95	Henicorhina leucosticta				
96	Ramphocaenus melanurus				

97	Myiothlypis fulvicauda			
98	Mitrospingus cassinii			
99	Tachyphonus delatrii			
100	Saltator maximus			
101	Sporophila americana			
102	Sporophila funerea			
103	Arremon aurantiirostris			
104	Arremon conirostris			
105				
106	Three taxa show westward range extensions. We collected two Brownish Twistwing (Cnipodectes			
107	subbrunneus) on 29 and 30 July (STRIBC:JFM024, JFM043). Previously, the westernmost extent of this			
108	species was generally accepted to be just west of the Canal Zone, with records from Chepo and Barro			
109	Colorado Island (24) and El Uracillo, Coclé (16). On further examination of the literature, one record			
110	does exist from Punta Alegre, Bocas del Toro (12). However, this and our two Veraguan birds are the			
111	only specimens known from west of the previous known limit (G. Angehr, pers. comm.).			
112				
113	A female Violet-bellied Hummingbird (<i>Juliamyia julie</i> ; STRIBC: JFM032) was collected on 29 July.			
114	This species was previously only known from as far west as El Uracillo (23). Although 19th century			
115	records exist for Costa Rica and Calovébora (which is due north of Río Luis), both are generally			
116	considered to be in error (17, 19, 23).			
117				
118	Finally, we collected four specimens of Bicolored Antbird (Gymnopithys bicolor) which are assignable to			
119	the nominate subspecies. Olson et al (12) suggest that turnover between this taxon and <i>olivacens</i> likely			
120	occurs somewhere between the Valiente Peninsula and Almirante; our record is consistent with this.			
121				
122	At the same time, three taxa show easternmost range extensions of phylogenetic species (which may			
123	represent biological species. The first is Mionectes [oleagineus] affinis (STRBIC: JFM056, JFM067,			
124	JFM080). Three distinct mitochondrial lineages of Mionectes oleagineus sensu lato occur in Panama (8,			
125	11). The affinis taxon, which ranges from western Panama to southeastern Mexico, differs notably in			
126	plumage, bill shape, and song from other Panamanian oleagineus (MJM pers. obs.), and likely represents			
127	a separate species. The presence of affinis at this site is particularly surprising, given that specimens from			
128	Santa Fé, Veraguas, refer to the <i>lutescens</i> subspecies, which is more closely related to some Amazonian			
129	populations than it is to assimilis. This extraordinarily sharp divide in such a small geographic space –			

130 approximately 22 km – reinforces that this region is key to understanding the generation of cryptic 131 variation across Panama. 132 133 Based on mtDNA sequences, two phylogenetic species of Malacoptila panamensis occur in eastern and 134 western Panama, respectively, These more or less agree with the *inornata* (sw Mexico to W Panama) and 135 nominate (C Panama to NW Colombia) subspecies traditionally recognized (13, 23). Mitochondrial DNA 136 sequences from our Río Luis specimen (STRIBC:JFM074) clusters with sequences from Bocas del Toro, 137 and not sequences from Colón east to Darién provinces. This agrees with genome-wide DNA markers (J 138 McLaughlin unpublished data). 139 140 Likewise, distinct phylogenetic species of *Xenops minutus* occur in western and eastern Panama, which 141 refer to the *ridgwayi* and *littoralis* subspecies. The type species of *ridgwayi* is from Tocumen and 142 Wetmore (1972) defines this subspecies to occur from eastern Panamá province westward to the Costa 143 Rican border. Remsen (14) considers this subspecies to occur northwest to Nicaragua. Subspecies 144 littoralis is generally thought to range from eastern Panamá province through Darién to NW Ecuador 145 (24). However, Harvey and Brumfield (7) found that a bird from El Copé, Coclé clusters both in 146 mitochondrial and genome-wide data with birds from eastern Panamá. Our Caribbean Veraguas bird has 147 mtDNA that clusters with birds from Colón to Darién, but most genome-wide markers cluster with birds 148 from Bocas del Toro (JF McLaughlin unpublished data). Thus, we can say that the genetic break between 149 these phylogenetic species likely occurs in Caribbean Veraguas. suggesting that phenotypic variation 150 between subspecies is decoupled from underlying genomic variation across this divide. 151 152 While our survey of the avifauna of the Río Luís area was brief and incomplete, the specimens recovered 153 reinforce the notion that Caribbean Veraguas is an important suture zone where a "Mesoamerican" bird 154 fauna meets the avifauna of eastern Panama and South America. This continental-level turnover may at 155 least partially explain the exceptionally high levels of beta-diversity observed in many Panamanian 156 ecological assemblages (3, 5, 10). At the same time, we call for urgent ornithological investigation of this 157 area. The same road which has opened up this area for ornithological surveys will also likely be 158 accompanied by the degradation and destruction of habitat through forest fragmentation, potentially 159 leading to declines in the local avifauna (15, 20). Thus, the next few years represent a critical window in 160 which to study this area. 161 162 163

164				
165				
166				
167	D	ata Accessibility		
168	A	dataset (DS-RLUIS) has been created in the Barcode of Life Database (BOLD;		
169	ht	tp://v3.boldsystems.org/) with the mitochondrial DNA sequences used in this project. A DOI for this		
170	da	taset has been requested from BOLD.		
171				
172				
173				
174				
175				
176	Acknowledgements			
177	This project was supported by the Sam Noble Museum and the Sutton Scholarship Fund at the University			
178	of	Oklahoma. Thanks to George Angehr for sharing bird distribution data.		
179				
180	References			
181	<u>1</u> .	Aguilar C., De Léon L. F., Loaiza JR, McMillan W. O., Miller M. J. 2016. Extreme sequence		
182		divergence between mitochondrial genomes of two subspecies of White-breasted Wood-wren		
183		(Henicorhina leucosticta, Cabanis, 1847) from western and central Panamá. Mitochondrial DNA.		
184		27:956–57		
185	2.	Bagley J. C., Johnson J. B. 2014. Phylogeography and biogeography of the lower Central American		
186		Neotropics: diversification between two continents and between two seas. Biol. Rev. Camb. Philos.		
187		Soc. 89:767–90		
188	3.	Basset Y., Cizek L., Cuénoud P., Didham R. K., Guilhaumon F., et al. 2012. Arthropod diversity in a		
189		tropical forest. Science. 338:1481–84		
190	4.	Bryson R. W. Jr, Chaves J., Smith B. T. 2014. Diversification across the New World within the "blue"		
191		cardinalids (Aves: Cardinalidae). J. Biogeogr. 41: 587–599.		
192	5.	Condit R., Pitman N., Leigh E. G. Jr, Chave J., Terborgh J., et al. 2002. Beta-diversity in tropical		
193		forest trees. Science. 295:666–69		

- 194 6. González M. A., Eberhard J. R., Lovette I. J., Olson S. L., Bermingham E. 2003. Mitochondrial DNA
- phylogeography of the bay wren (Troglodytidae: *Thryothorus nigricapillus*) complex. *Condor*.
- 196 105:228–38
- 197 7. Harvey M. G., Brumfield R. T. 2015. Genomic variation in a widespread Neotropical bird (*Xenops*
- 198 *minutus*) reveals divergence, population expansion, and gene flow. *Mol. Phylogenet. Evol.* 83:305–16
- 199 8. Loaiza J. R., Aguilar C., De León L. F., McMillan W. O., Miller M. J. 2016. Mitochondrial genome
- organization of the Ochre-bellied Flycatcher, *Mionectes oleagineus*. *Mitochondrial DNA*. 27:890–91
- 201 9. Lopez K., Angeli C., Aguilar C., Loaiza J. R., De León L. F., et al. 2016. Extreme mitogenomic
- divergence between two syntopic specimens of Arremon aurantiirostris (Aves: Emberizidae) in central
- Panama suggests possible cryptic species. *Mitochondrial DNA Part A*. 27:3451–53
- 204 10. Miller M. J. 2014. A distinctive avian assemblage (Aves: Passeriformes) in Western Darién, Panama
- is uncovered through a disease surveillance program. Rev. Biol. Trop. 62:711–17
- 206 11. Miller M. J., Bermingham E., Klicka J., Escalante P., do Amaral F. S. R., et al. 2008. Out of
- Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest
- 208 flycatcher. *Proc. Biol. Sci.* 275:1133–42
- 209 12. Olson S. L. 1993. Contributions to Avian Biogeography From the Archipelago and Lowlands of Bocas
- 210 Del Toro, Panama. Auk. 11:100–108
- 211 13. Rasmussen P. C., Collar N. J., 2002. Family Bucconidae (Puffbirds). In Handbook of the Birds of the
- World, ed J. del Hoyo, A. Elliot, J. Sargatal. Vol 7. Barcelona: Lynx Edicions
- 213 14. Remsen J. V. 2003. Family Furnariidae (Ovenbirds). In Handbook of the Birds of the World, ed J del
- 214 Hoyo, A Elliot, DA Christie. Vol 8. Barcelona: Lynx Edicions
- 215 15. Renjifo L. M. 1999. Composition changes in a subandean avifauna after long-term forest
- fragmentation. Conserv. Biol. 13:1124–39
- 217 16. Ridgely R. S., Gwynne J. A. 1992. A Guide to the Birds of Panama, with Costa Rica, Nicaragua, and
- 218 *Honduras*. Princeton, NJ: Princeton University Press. 2nd ed.
- 219 17. Schuchmann K. L. 1999. Family Trochilidae (Hummingbirds). In Handbook of The Birds of the
- World, ed J. del Hoyo, A. Elliot, J. Sargatal. Vol 5. Barcelona, Spain: Lynx Edicions
- 221 18. Siegel D. C., Olson SL. 2008. The Birds of the Republic of Panama, Part 5. Gazetteer and
- 222 Bibliography, Vol. 5. Shipman, VA: Buteo Books
- 223 19. Slud P. 1964. The birds of Costa Rica: distribution and ecology. Bulletin of the AMNH; v. 128
- 224 20. Stotz D. F., Fitzpatrick J. W., Parker T. A., Moskovits D. K. 1996. Neotropical birds: ecology and
- *conservation.* Chicago, IL, USA: The University of Chicago Press
- 226 21. United States Hydrographic Office. 1902. The Navigation of the Gulf of Mexico and Caribbean Sea.
- *Vol. 2.* Washington, DC: Government Printing Office. 4th ed.

228

240

229 Rynchopidae (Skimmers), Vol. 1. Washington, DC: Smithsonian Institution Press 230 23. Wetmore A. 1968. The Birds of the Republic of Panama, Part 2. Columbidae (Pigeons) to Picidae 231 (Woodpeckers), Vol. 2. Washington, DC: Smithsonian Institution Press 232 24. Wetmore A. 1972. The Birds of the Republic of Panama, Part 3. Passeriformes: Dendrocolaptidae 233 (Woodcreepers) to Oxyruncidae (Sharpbills), Vol. 3. Washington, DC: Smithsonian Institution Press 234 25. Wetmore A., Pasquier R. F., Olson S. L. 1984. The Birds of the Republic of Panama, Part 4. 235 Passeriformes: Hirundinidae (Swallows) to Frigillidae (Finches), Vol. 4. Washington DC: 236 **Smithsonian Institution Press** 237 238 Figure 1: Map of the sampling locality (indicated by the star). Black line represents the Carretera Guabal-239 Río Luis-Calovébora, shown at its extent in August 2019.

22. Wetmore A. 1965. The Birds of the Republic of Panama, Part 1. Tinamidae (Tinamous) to