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Estimating free energy diûerences by computer simulation is useful for a wide variety of
applications such as virtual screening for drug design and for understanding how amino
acid mutations modify protein interactions. However, calculating free energy diûerences
remains challenging and often requires extensive trial and error and very long simulation
times in order to achieve converged results. Here, we present an implementation of the
adaptive integration method (AIM). We tested our implementation on two molecular
systems and compared results from AIM to those from a suite of standard methods. The
model systems tested here include calculating the solvation free energy of methane, and
the free energy of mutating the peptide GAG to GVG. We show that AIM is more eûcient
than standard methods for these test cases, that is, AIM results converge to a higher level
of accuracy and precision for a given simulation time.
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ABSTRACT9

Estimating free energy differences by computer simulation is useful for a wide variety of applications

such as virtual screening for drug design and for understanding how amino acid mutations modify

protein interactions. However, calculating free energy differences remains challenging and often requires

extensive trial and error and very long simulation times in order to achieve converged results. Here, we

present an implementation of the adaptive integration method (AIM). We tested our implementation on

two molecular systems and compared results from AIM to those from a suite of standard methods. The

model systems tested here include calculating the solvation free energy of methane, and the free energy

of mutating the peptide GAG to GVG. We show that AIM is more efficient than standard methods for

these test cases, that is, AIM results converge to a higher level of accuracy and precision for a given

simulation time.
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INTRODUCTION20

Measuring free energy differences using computer simulations can be computationally expensive, yet is21

useful for many different applications (see e.g., Steinbrecher and Labahn (2010); Chodera et al. (2011);22

Mobley et al. (2012); Zhan et al. (2013); Miller et al. (2014); Petukh et al. (2015); Zhan and Ytreberg23

(2015); Wichman et al. (2016); Cournia et al. (2017); Hossain et al. (2019); Aminpour et al. (2019)).24

Specific examples include determining protein conformational preferences, virtual screening for drug25

design or drug discovery (Steinbrecher and Labahn, 2010; Chodera et al., 2011; Zhan and Ytreberg,26

2015; Śledź and Caflisch, 2018; Aminpour et al., 2019; Zhang et al., 2019). Of specific relevance to the27

current study is that free energy calculations allow prediction of how amino acid mutations may modify28

protein-protein binding (Zhan et al., 2013; Miller et al., 2014; Petukh et al., 2015; Wichman et al., 2016;29

Geng et al., 2019). We are particularly interested in developing and implementing efficient methods30

for calculating free energy differences and using them to understand how amino acid mutations modify31

protein-protein and protein-substrate interactions.32

For this study, we have implemented the adaptive integration method (AIM) introduced by Fasnacht33

et al. (2004) for use in the GROMACS (Berendsen et al., 1995) molecular dynamics simulation package.34

Though there are many free energy methods for molecular systems (see e.g., Lyubartsev et al. (1996);35

Gonçalves and Stassen (2004); Kofke (2005); Shirts et al. (2007); Chodera and Shirts (2011); Klimovich36

et al. (2015)), in previous studies AIM has shown promise to provide high quality, precise and efficient37

estimates of binding free energies(Ytreberg et al., 2006; Kaus et al., 2014; Kaus and Mccammon, 2015).38

AIM is an adaptive sampling method that continuously improves the estimate for free energy during the39

simulation by using Metropolis Monte Carlo to sample λ space (λ defines progress along the reaction40

pathway). The algorithm automatically increases sampling in regions along the reaction pathway, wherever41

there is a need.42

In order to compare to other free energy methods we used the Python tool, alchemical-analysis.py43

(Klimovich et al., 2015), part of the Pymbar package (Shirts and Chodera, 2008). The alchemical-44

analysis tool takes the output from molecular dynamics simulations and estimates the free energy using45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27935v1 | CC BY 4.0 Open Access | rec: 4 Sep 2019, publ: 4 Sep 2019



some standard methods, including the Bennett acceptance ratio, multistate Bennett acceptance ratio,46

thermodynamic integration and exponential averaging. The most substantial difference between these47

methods and AIM is that they all expect equilibrium sampling of configurations for each value of λ . This48

is achieved via fixed λ standard molecular dynamics simulations, in contrast to the Monte Carlo λ moves49

used in AIM.50

For the current study we chose two molecular systems that have well-documented results and are51

important starting points for biomolecular free energy studies. First, we calculated the solvation free52

energy of methane. Simulations were performed and the free energies were calculated using the standard53

methods provided by alchemical-analysis. Simulations were also performed using AIM and results54

compared to standard simulations. Using the lessons learned from the methane system, we then calculated55

the free energy of mutating GAG to GVG in water. For both systems, we found that AIM produces free56

energy estimates that are within statistical uncertainty of standard methods but with greater efficiency57

(i.e., more accurate for a given simulation time).58

METHODS59

For this study we performed alchemical free energy simulations where the system is changed from a60

reference state to an end state by constructing a reaction pathway that modifies, adds or removes atoms.61

Such alchemical simulations are non-physical, i.e., the simulation does not represent what could occur62

naturally. Since the free energy is a state variable, it is independent of the path taken, and we may provide63

any path we wish. To perform these simulations the reaction pathway is divided into many separate,64

non-physical, λ states between a reference state and an end state. The λ states represent the progress65

along the reaction pathway as the reference state transforms into the end state.66

Like most methods used to calculate free energies we start from the free energy identity,

F =U 2T S� (1)

where U is the potential energy, T is the temperature and S is the entropy of the system. For free energy

differences we generalize the formulation of the change in free energy by separating calculations into two,

non-overlapping, thermodynamic end states, A and B, at constant system temperature T ,

∆F c ∆FA³B = FB 2FA = ∆U 2T ∆S� (2)

∆F is the change in free energy, ∆U is the change in potential energy and ∆S is the change in entropy of

the system. According to statistical mechanics, the free energy difference between the two end states, A

and B, of the system is the log of the ratio of the partition functions,

∆F =2kBT ln
Z[UB(�x)]

Z[UA(�x)]
� (3)

Here, kB is the Boltzmann constant and Z[U(�x)] is the partition function for the energy states UA(�x) and

UB(�x), where�x is the vector of configuration coordinates. The partition function is given by

Z[U(�x)] =
∫

exp(2βU(�x)) dx� (4)

and β = 1
kBT

.67

Computationally, we calculate free energy differences between end states by performing molecular

dynamics simulations along a reaction pathway of intermediate states, defined by λ , such that,

0 f λ f 1� (5)

This pathway connects the two end states of the system. In the case of poor overlap, where the end states68

may be separated by a high energy barrier, |UB 2UA| k kBT , this pathway mitigates the otherwise very69

slow convergence of free energy estimates (Shirts et al., 2007). Care should be taken when choosing70

intermediate states such that there is adequate overlap in the conformation space between the end states71

(Shirts et al., 2007; Klimovich et al., 2015). For our simulations the number of λ values and time per λ72

were chosen through extensive trial and error (more on this below).73
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The method of exponential averaging (Zwanzig, 1954) starts from Eq. (3) above and then adding and

subtracting exp(2βU(�x)) from the integral in the partition function of the numerator we end up with the

final relationship,

∆Fi j =2kBT ln�exp(2β∆Ui j(�x))�λi
� (6)

where ∆Fi j is the free energy between λi and λ j and �·�λi
represents an average of the equilibrium74

configuration for λi. Unlike some other methods, exponential averaging has an exact solution since it75

is only used to evaluate the difference between two states. However, it is the least efficient method and76

should not be used if difference in potential energies are much larger than kBT Shirts and Pande (2005).77

In addition, exponential averaging can be noisy, biased and dependent on the tails of the distribution of λ78

states (Bruckner and Boresch, 2011; Shirts and Pande, 2005).79

For thermodynamic integration (TI) we estimate the free energy by first looking at the derivative of

Eq. (1) with respect to λ ,

∂F

∂λ
=

〈

∂U

∂λ

〉

λ

� (7)

This differential equation, Eq. (7), can then be integrated to give,

∆F =
∫ 1

λ=0

〈

∂Uλ (�x)

∂λ

〉

λ

dλ (8)

where the �·�λ notation represents the ensemble average at a given intermediate state, λ . The free energy80

is estimated by numerically integrating Eq. (8) after running equilibrium simulations at each intermediate81

λ state. Since numerical integration is required, TI can be biased by the chosen method of integration.82

Some of that bias can be removed by using cubic-spline interpolation or more complex integration83

estimators(Shirts and Pande, 2005; Shyu and Ytreberg, 2009).84

The Bennett (Bennett, 1976) and multistate (Shirts and Chodera, 2008) Bennett acceptance ratio (BAR

and MBAR) methods are far more efficient than exponential averaging and are commonly used to avoid

the shortcomings of other methods (Shirts and Pande, 2005; Ytreberg et al., 2006). BAR and MBAR

typically achieve the same statistical precision as TI with fewer λ states unless the integrand for TI is

very smooth (Shirts and Mobley, 2013; Ytreberg et al., 2006). The complete derivation can be found in

Bennett’s paper (Bennett, 1976) but the premise is; for sufficiently large samples ni of Ui and n j of U j,

∆F(i ³ j) = kBT ln
� f (∆Ui j +C)� j

� f (∆U ji 2C)�i

+C� (9)

C is a shift constant,

C = kBT ln
n j

ni

� (10)

and f (x) is the Fermi function,

f (x) =
1

1+ exp(βx)
� (11)

Equation (9) is the ratio of canonical averages of two different potentials Ui and U j acting on the same85

configuration space meaning it requires information from two neighboring states. However, this limitation86

is not too much of a concern with a trivial coordinate transformation or when using dummy coordinates in87

alchemical simulations. MBAR, an extension of BAR, differs in that it takes data from more than two88

states hence the name ”multistate”.89

AIM is similar to TI in that numerical integration of Eq. (8) is performed; the key difference is how

the averages �∂U/∂λ �λ are obtained. AIM uses Metropolis Monte Carlo to move in λ space and ordinary

running averages are calculated at each λ value. In AIM, a random move from λold to λnew is accepted

with probability

min{1�exp(2β (Unew 2Uold)+β (Fnew 2Fold)} (12)

where Unew 2Uold is the difference in the potential energy for the old and new λ values. Fnew 2Fold is the90

estimated free energy difference based on the current running averages of ∂U/∂λ .91
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Implementation92

AIM was implemented in GROMACS as an expanded ensemble calculation. That is, the Hamiltonian93

must be calculated along with its derivative, and an expanded ensemble step must be performed for every94

dynamics step. In GROMACS, nstexpanded is the number of integration steps between attempted95

λ moves changing the system Hamiltonian in expanded ensemble simulations. This value must be a96

multiple of nstcalcenergy, the number of steps before calculating the system energy, but can be97

greater or less than nstdhdl, the number of steps before calculating ∂U/∂λ (referred to as dHdλ in98

GROMACS documentation). For a detailed explanation of all technical terms see reference Abraham99

et al. (2016). The GROMACS package was further altered to print out the ∂U/∂λ averages computed by100

AIM to the log file when AIM is used as the lmc-mover.101

AIM requires the ∂U/∂λ value from every dynamics step to be stored regardless of whether a102

move in λ space is attempted. Since ∂U/∂λ is only calculated at each step where free energies are103

calculated, every nstdhdl step, we set nstexpanded = nstdhdl = nstcalcenergy = 1 for AIM104

simulations. This further implies that lmc-stats functions were not used during AIM simulations105

because those functions modify the Hamiltonian which is not needed for AIM.106

For the implementation of AIM with GROMACS we follow the outline given in our previous study107

Ytreberg et al. (2006).108

1. Start the simulation from an equilibrated configuration at λ=0 and perform one molecular dynamics109

step.110

2. Randomly choose a trial move in λ space. For example, if our λ spacing is 0.05, a move from111

λ=0.35 to 0.4 or 0.3 may be attempted but not to 0.45.112

3. Calculate the difference in potential energy between the trial and current λ values.113

4. Estimate the free energy difference between the trial and current λ values using the running averages114

of ∂U/∂λ and the trapezoidal rule.115

5. Accept λ trial with probability given in Eq. (12).116

6. If the move is accepted then λ is updated to the trial value, otherwise the simulations stays at the117

current λ .118

7. The running average of ∂U/∂λ is updated.119

Simulation Details120

All simulations described in this paper were performed using the molecular dynamics package GROMACS121

5.1.4. The simulations were carried out at 300 K and solvated in a dodecahedron box with TIP3P waters.122

The molecule was parameterized using the OPLS (Optimized Potential for Liquid Simulations) force123

field (Jorgensen et al., 1996). The OPLS force field was chosen for this study because it is known to124

perform well on small molecules (Shirts et al., 2003). In future studies, we anticipate using AIM on125

protein systems where other force fields are more appropriate such as AMBER (Salomon-Ferrer et al.,126

2013) and CHARMM (Mackerell et al., 2001). Since all molecular dynamics force fields have similar127

form and number of parameters, it is expected that the performance of AIM would not depend on the128

force field chosen.129

For the GAG to GVG mutations, Na+ and Cl- ions were added to keep the simulation box neutral and130

reach a physiologically relevant 150 mM salt concentration. Energy minimization was performed using131

steepest descent for 1000 steps. The system was then equilibrated using simulated annealing for 1000 ps132

to heat the system from 100K to 300K. For production simulations, electrostatic interactions were handled133

by Reaction field with a cut-off of 0.9 nm, Potential-shift-Verlet modifier and Verlet cutoff scheme. Van134

der Waals interactions were handled by twin range cutoffs with neighbor list cutoff of 1.15 nm and van135

der Waals cutoff of 0.9 nm. The hydrogen bonds were constrained with the Shake algorithm, allowing for136

a 2 fs time step. Long range dispersion corrections for energy and pressure were applied.137

For the standard methods we ran fixed λ alchemical simulations. That is, an equal amount of138

simulation time was spent at each λ value. For AIM we ran expanded ensemble simulations. During139

these simulations we first take a molecular dynamics step, then make a trial move in λ space. That is, for140

AIM the amount of time spent at each λ value is determined by the algorithm.141
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In order to determine the best distribution of intermediate λ states we followed a simple strategy: (i)142

Conduct short simulations with a small set of intermediates. (ii) Generate a plot comparing slope values143

between AIM and fixed λ (iii) Determine the locations of curvature in the estimate of the free energy. (iv)144

Increase the density of intermediate states in locations of high curvature. (v) Repeat until all areas of high145

curvature have been well explored.146

Methane and GAG to GVG Solvation Free Energy147

The first system used here, methane in water, is detailed in systematic studies of force fields and the148

free energies of hydration of amino acid side chain analogs Sun et al. (1992); Lyubartsev et al. (1996);149

Chodera and Shirts (2011); Paliwal and Shirts (2011).150

For the GAG to GVG mutation the PMX (Gapsys et al., 2015) software package was used to construct151

the tri-peptide mutation. Using PMX, we generated the hybrid protein structure and topology for152

simulations of the chosen mutation, alanine to valine.153

For both of these systems, we calculated the free energy for decoupling the Lennard-Jones interactions154

between the atomic sites of the molecule of interest in water. For fixed λ simulations, separate equilibrium155

simulations of equal length were run in order to represent each of the intermediate λ states. The same156

values for λ were used in both fixed λ and AIM expanded ensemble simulations. For fixed λ simulations157

the free energy was estimated using an external tool, alchemical-analysis.py. AIM estimates were158

calculated using both the trapezoidal rule and cubic-spline. All methods and code are available upon159

request.160

RESULTS161

Methane162

After conducting short simulations, generating plots to determine locations of high curvature and in-163

creasing λ density in those regions, we averaged eight trial simulations of 100 ps per λ for separate λ164

distributions (see Fig. 1). We found, by progressively increasing the λ density between λ = 0.5 and λ =165

1.0, that a distribution of 31 λ values gave us a dense enough distribution to properly compare AIM to166

fixed λ methods for the methane simulations.167

Fig. 2 is a violin plot used to visualize the distribution and probability densities over the eight trials168

for each method as a function of simulation time per value of λ . A violin plot combines a box plot and169

a density plot to show the shape of the distribution around the mean. The thick black bar in the center170

represents the interquartile range, the white dot is the median and the thin black line going vertically171

through the middle represents the upper and lower adjacent values. Reading a violin plot is similar to172

reading a density plot. The thicker parts represent high frequency values and the thinner parts represent173

low frequency values. The advantage of a violin plot over a box plot is that we are able to view the174

underlying distribution of the data.175

In Fig. 2, for 31 λ values at 100 ps per λ , the slower convergence of MBAR leads to two separate176

distributions of converging points. At 500 ps the other methods are beginning to show signs of convergence,177

however, we see that AIM is forming a second distribution and the width of the distribution of the other178

methods has not condensed or flattened along the horizontal axis, suggesting convergence has not yet179

occurred for any of the methods. Despite this, the average of the methods are in agreement within180

uncertainty (variance in the mean of the estimated free energy). At 1 ns per λ all methods are similarly181

converged, indicating the longer simulation times has reduced the variance from the mean.182

GAG to GVG Mutation183

For the GAG to GVG mutation we first tested a distribution of 41 λ values averaged over 8 trial simulations184

of 1 ps and 100 ps per λ ; see Fig. 3. By reviewing the smoothness of the function we concluded that 41185

λ values was sufficient and continued the simulations for 1 ns per λ . Fig. 4 shows distribution of the186

convergence over time for each method. We see that AIM has mostly converged at 100 ps per λ and all187

methods have similarly converged for 1 ns per λ .188

DISCUSSION189

In the limit of infinite sampling, all rigorous methods (i.e., statistical mechanics-based methods), performed190

properly with the same force-field and parameters, will yield the same result within uncertainty. For fixed191
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λ simulations the sampling time is typically the same for each λ state. Sampling time must be increased192

whenever convergence has not been achieved. However, if bias is introduced by using an insufficient193

number of λ values in regions of high curvature, increased sampling leads to radical convergence problems194

(Shyu and Ytreberg, 2009; Steinbrecher and Labahn, 2010). If the curvature of the underlying free energy195

slope valuess is large, averaging over a state space that is not dense enough to fully describe the state196

function propagates this bias requiring significantly increased sampling time to achieve convergence. For197

TI, the bias will persist even for infinite sampling. In addition, increasing sampling time may not be198

realistic when dealing with limited computational resources. Paliwal and Shirts (2011) make a detailed199

argument to why convergence may not be possible for all systems due to hard limitations in computational200

resources.201

In particular, both TI and AIM are calculating the same slope averages and should agree very well for202

simple systems and reasonably long simulation times. However, due to the fact that AIM spends more203

time in some regions, we should not expect the approximation of AIM to exactly match TI with similar204

sampling time until the number of λ values has been sufficiently increased in high curvature regions.205

Once we have properly chosen the λ values then reasonably long simulations should lead to highly similar206

results between these two methods.207

Since AIM is a Monte Carlo approach, the approximation of a given intermediate state is adaptively208

expanded whenever a better approximation of the state is needed. This allows AIM to more efficiently209

sample λ space compared to fixed λ simulations. AIM is able to smooth the underlying free energy210

function by spending more time at points with large curvature. This means that AIM requires fewer λ211

states to estimate the free energy of a system because the overall variance of the free energy estimate is212

minimized by adjusting the sampling for each λ state.213

The observant reader may note that AIM violates detailed balance since the acceptance criterion214

contains the free energy estimates that are updated continuously. AIM does however obey detailed balance215

asymptotically. As simulation time increases, the average free energy differences between λ values reach216

an equilibrium and detailed balance is satisfied.217

CONCLUSION218

In this report we have implemented the adaptive integration method (AIM) for calculating free energy219

differences in GROMACS and applied it to two molecular systems. We have shown agreement within220

statistical uncertainty between AIM and a suite of standard fixed λ methods for methane solvation and an221

GAG to GVG mutation. We have also shown that AIM is more efficient than the other tested methods.222

That is, for a given amount of simulation time, AIM has a higher level of accuracy and precision compared223

to other methods.224

Further, we found that running longer simulations with too few intermediate λ states generated225

results that were inconsistent between methods. The density and sampling convergence of the λ states226

directly influences the agreement between all the tested methods. Since some states will contribute227

disproportionately to the variance of the estimate, we found that generating short test simulations of228

different λ densities before attempting longer simulations is advisable.229

ACKNOWLEDGMENTS230

Support for this research was provided by the National Science Foundation (DEB 1521049 and OIA231

1736253) and the Center for Modeling Complex Interactions sponsored by the National Institutes of232

Health (P20 GM104420). Computer resources were provided in part by the Institute for Bioinformatics233

and Evolutionary Studies Computational Resources Core sponsored by the National Institutes of Health234

(P30 GM103324).235

REFERENCES236

Abraham, M., van der Spoel, D., Lindahl, E., and Hess, B. (2016). GROMACS User Manual version237

5.1.4.238

Aminpour, M., Montemagno, C., and Tuszynski, J. A. (2019). An overview of molecular modeling for239

drug discovery with specific illustrative examples of applications. Molecules, 24(9).240

Bennett, C. H. (1976). Efficient Estimation of Free Energy differences from Monte Carlo Data. Journal241

of Computational Physics, 22:245–268.242

6/12PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27935v1 | CC BY 4.0 Open Access | rec: 4 Sep 2019, publ: 4 Sep 2019



Berendsen, H. J., van der Spoel, D., and van Drunen, R. (1995). GROMACS: A message-passing parallel243

molecular dynamics implementation. Computer Physics Communications, 91(1-3):43–56.244

Bruckner, S. and Boresch, S. (2011). Efficiency of alchemical free energy simulations. I. A practical245

comparison of the exponential formula, thermodynamic integration, and Bennett’s acceptance ratio246

method. Journal of Computational Chemistry, 32(7):1303–1319.247

Chodera, J. D., Mobley, D. L., Shirts, M. R., Dixon, R. W., Branson, K., and Pande, V. S. (2011).248

Alchemical free energy methods for drug discovery: Progress and challenges. Current Opinion in249

Structural Biology, 21(2):150–160.250

Chodera, J. D. and Shirts, M. R. (2011). Replica exchange and expanded ensemble simulations as Gibbs251

sampling: Simple improvements for enhanced mixing. Journal of Chemical Physics, 135(19):0–15.252

Cournia, Z., Allen, B., and Sherman, W. (2017). Relative Binding Free Energy Calculations in Drug253

Discovery: Recent Advances and Practical Considerations. Journal of Chemical Information and254

Modeling, 57(12):2911–2937.255

Fasnacht, M., Swendsen, R. H., and Rosenberg, J. M. (2004). Adaptive integration method for Monte256

Carlo simulations. Physical Review E, 69(5):56704.257

Gapsys, V., Michielssens, S., Seeliger, D., and De Groot, B. L. (2015). pmx: Automated protein258

structure and topology generation for alchemical perturbations. Journal of Computational Chemistry,259

36(5):348–354.260

Geng, C., Xue, L. C., Roel-Touris, J., and Bonvin, A. M. (2019). Finding the ∆∆G spot: Are predic-261

tors of binding affinity changes upon mutations in protein–protein interactions ready for it? Wiley262

Interdisciplinary Reviews: Computational Molecular Science, (December 2018):1–14.263
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Figure 1. Different λ densities for methane solvation free energy calculations. Eight trial

simulations of 100 ps per λ for 11, 21 and 31 λ values. This shows how the number of λ values were

chosen to effectively compare AIM to fixed λ simulations. The circles indicate the region where the λ
density needed to be increased.
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Figure 2. Violin plot showing methane solvation results for 31 λ values averaged over eight trials. A violin plot combines a box plot and a density plot to

visualize the distribution and probability density. The graphic shows all methods have similarly converged at 1 ns per λ . AIM and AIM-CUBIC converge earlier than

other methods at 750 ps per λ .
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Figure 3. Different simulation times for alanine to valine mutation free energy calculations. Eight

trial simulations of 41 λ values at 1 ps, 100 ps and 1 ns per λ . Note the smoothness of AIM versus fixed

λ simulations. AIM requires less samples than fixed λ simulations to smooth the free energy function.
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Figure 4. Violin plot showing alanine to valine mutation results for 41 λ values averaged over eight trials. The graphic shows all methods have similarly

converged at 1 ns per λ . AIM and AIM-CUBIC converge more rapidly than other methods and are mostly converged at 100 ps per λ
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