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Abstract 36 

 37 

The significance of mutualisms between eukaryotic hosts and microbes extends from the 38 

organismal to the ecosystem level, and mutualistic symbioses underpin the health of Earth’s most 39 

threatened marine ecosystems. Despite rapid growth in research on host-associated microbes 40 

(microbiomes), very little is known about their interactions for the vast majority of marine host 41 

species. We outline research priorities to broaden our current knowledge of host-microbiome 42 

interactions and how they shape marine ecosystems. We argue that this research frontier will 43 

allow us to predict responses of species, communities, and ecosystems to stressors driven by 44 

human activity, and inform future management and mitigation. 45 

 46 

Introduction 47 

 48 

The marine environment is home to a dazzling diversity of macroscopic organisms including 49 

plants, animals, brown algae (e.g., giant kelp), and others. Most of these taxa do not function 50 

entirely on their own but are covered, inside and out, with communities of microorganisms, also 51 

known as microbiomes [1]. There can be many types of functional interactions between hosts 52 

and their microbiomes. Here, we discuss mutualistic symbioses (long-term, persistent 53 

interactions between organisms where all partners benefit; see Box 1 for key terminology and 54 

concepts important for the discussion). Studies of marine organisms have provided many 55 

important examples of mutualistic symbioses, such as those in the bobtail squid [2], scleractinian 56 

corals, [3], sponges [4], shipworms [5], and chemosymbiotic invertebrates [6]. The work on most 57 

of these systems has been focused on a few specific host-associated microbial taxa in which a 58 

mutualistic role could be studied and tested in detail. However, recently there has been an 59 

explosion of studies of complex microbiomes with many different microbial species, rather than 60 

just one or a few microbes at a time [7]. Such studies have concluded that microbiomes strongly 61 

influence the function of their hosts [8]. In turn, the hosts play important roles in the structure 62 
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and function of diverse marine habitats [8,9] and mediate marine ecosystem-level responses to 63 

environmental change [10,11].  64 

 65 

Here, we report on the challenges and opportunities in studies of marine eukaryote-microbiome 66 

mutualisms. First, we highlight the limited extent of known ecosystem functions of host-67 

associated marine microbes. Second, we outline ways in which comparative and experimental 68 

studies across hosts and habitats could be integrated to show how microbial symbioses contribute 69 

to host evolution, resilience, and conservation strategies. We list outstanding questions in 70 

ecology and evolution that could be addressed by expanding the phylogenetic and ecological 71 

breath of host-associated microbiome studies, including all possible mutualistic interactions 72 

throughout the microbiome, and we give specific examples of how these questions could be 73 

answered. There is strong empirical evidence and new consensus that biodiversity (i.e., the 74 

diversity of organisms and their interactions) pervasively influences the functioning of Earth’s 75 

ecosystems, including increasing productivity [12,13]. However, this research has focused 76 

almost exclusively on macro-organisms. Because microbial symbionts are integral parts of most 77 

living organisms (i.e., an extended phenotype [14]), broadening our understanding of how 78 

microbial symbionts contribute to host performance and adaptability is essential.  79 

 80 

How microbial symbiosis impacts marine ecosystem functioning 81 

 82 

Foundations of productive ecosystems. Ecosystem engineers such as corals, deep-sea mussels, 83 

and hydrothermal vent tubeworms contribute to primary productivity and create the structural 84 

habitats and nutrient resources that are the foundation of their respective ecosystems [15]. All of 85 

these taxa engage in mutualistic nutritional symbioses with microbes. There are many examples 86 

of marine nutritional mutualisms where microbes enable hosts to utilize resources or substrates 87 

otherwise unavailable to the host alone. Such symbioses have been described in detail in reduced 88 

and anoxic sediments (e.g., lucinid clams, Stilbonematid nematodes, and gutless oligochaetes) 89 

and hydrothermal vents (e.g., the giant tube worm Riftia pachyptila or Bathymodiolus deep-sea 90 

mussels) [8]. Many foundational species of marine macroalgae are vitamin auxotrophs (for 91 

example, half of more than 300 surveyed species were unable to synthesize cobalamin), and their 92 

productivity depends on provisioning from their epiphytic bacteria [16]. On coral reefs, 93 
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Epulopiscium bacteria in the guts of surgeonfishes produce enzymes that allow their hosts to 94 

digest complex polysaccharides, enabling the host fish to feed on tough, leathery red and brown 95 

macroalgae [17]. This trophic innovation has facilitated niche diversification among coral reef 96 

herbivores. Surgeonfishes are critical to the functioning of Indo-Pacific coral reefs, as they are 97 

among the only fishes capable of consuming large macroalgae that bloom in the wake of 98 

ecosystem disturbance and suppress coral recovery [18].  99 

 100 

Reproduction, development, and interaction networks. Extending beyond nutritional symbioses, 101 

symbionts can alter the reproduction, development, and growth of their hosts. Specific bacterial 102 

strains in marine biofilms often directly control the recruitment of planktonic larvae and 103 

propagules, either by inhibiting settlement or by serving as a settlement cue [19,20]. For 104 

example, the settlement of zoospores from the green alga Ulva intestinalis onto the biofilms of 105 

specific bacteria is mediated by their attraction to the quorum sensing molecule, acyl-homoserine 106 

lactone, secreted by the bacteria [21]. Classic examples of marine host-microbe developmental 107 

dependence include the observation that algal cultures grown in isolation exhibited abnormal 108 

morphologies [22] and the subsequent discovery of morphogenesis-inducing compounds, such as 109 

thallusin, secreted by epiphytic bacterial symbionts [23]. Bacteria are also known to influence 110 

the growth of marine plants, macroalgae, and phytoplankton by secreting phytohormones such as 111 

indole acetic acid and cytokinin-type hormones [24–26]. In the marine choanoflagellate 112 

Salpingoeca rosetta both multicellularity and reproduction are triggered by specific bacterial 113 

cues, offering a view into the origins of bacterial control over animal development (reviewed by 114 

Woznica and King [27]). Perhaps the best studied example of intimate host-microbe interactions 115 

controlling animal development is the Hawaiian bobtail squid Euprymna scolopes [28]. It lives 116 

in a mutualistic symbiosis with the bioluminescent bacteria Aliivibrio fischeri. The bacteria are 117 

fed a sugar and amino acid solution by the host and in return provide bioluminescence for 118 

camouflage and possibly also for attracting prey [2]. This mutualism with microbes provides a 119 

selective advantage for the squid in predator-prey interactions. Bioactive compounds produced 120 

by symbiotic bacteria often play a role in chemical defense for the host, as demonstrated in 121 

several species of bryozoans [29], sponges [30], molluscs [31], and ascidians [32]. In some 122 

cases, symbiotically produced defense compounds are acquired and sequestered by specialized 123 
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predators, as recently described in the sea slug Elysia rufescens, which acquires microbial 124 

symbiotically produced kahalalide toxins from its algal prey Bryopsis [33].  125 

 126 

Biofouling and microbial community assembly. Some host-associated microbes produce 127 

compounds that prevent biofouling and regulate microbiome assembly and maintenance in many 128 

marine organisms, including sponges, macroalgae, and corals [34]. For example, tropical corals 129 

harbor diverse bacteria in their surface mucus layer that produce quorum-sensing inhibitors and 130 

other antibacterial compounds as a defense against colonization and infection by potential 131 

microbial pathogens. Epiphytic bacteria of marine macroalgae excrete a diverse chemical arsenal 132 

capable of selectively shaping further bacterial colonization and deterring the settlement of 133 

biofouling marine invertebrates such as bryozoans [24,35]. As in corals, these diverse, 134 

microbially-secreted compounds include not only bactericidal and bacteriostatic antibiotics, but 135 

also compounds like halogenated furanones, cyclic dipeptides, and acyl-homoserine lactone 136 

mimics that disrupt bacterial quorum sensing and inhibit biofilm formation [36]. While these 137 

prior examples illustrate how the microbiomes can protect hosts from surface colonization, a 138 

similar phenomenon has also been observed internally in the shipworm Bankia setacea, where 139 

symbionts produce a boronated tartrolon antibiotic thought to keep the wood-digesting cecum 140 

clear of bacterial foulants [37].  141 

 142 

Biogeochemical cycling. Host-associated microbiomes also influence biogeochemical cycling 143 

within ecosystems with cascading effects on biodiversity and ecosystem processes. For example, 144 

microbial symbionts comprise up to 40% of the biomass of their sponge hosts. Through a process 145 

termed the “sponge-loop”, they convert dissolved organic carbon released by reef organisms into 146 

particulate organic carbon that can be consumed by heterotrophic organisms, helping explain 147 

Darwin’s paradox; i.e., how highly productive coral reef ecosystems exist within otherwise 148 

oligotrophic tropical seas [38]. Some sponge symbionts likely also play a significant role in the 149 

marine phosphorus cycle by sequestering nutrients in the form of polyphosphate granules in the 150 

tissue of their host [39]. The sulfur-oxidizing gill endosymbionts of lucinid clams contribute to 151 

primary productivity through chemosynthesis and facilitate the growth of seagrasses, important 152 

foundation species, by lowering sulfide concentrations in tropical sediments [40]. 153 

Gammaproteobacterial symbionts of lucinid clams and Stilbonematid nematodes were also 154 
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recently shown to be capable of nitrogen fixation (bacterial symbiont genomes encode and 155 

express nitrogenase genes [41]), highlighting the role of symbiotic microbes in nutrient cycling 156 

in shallow marine systems. Many macroalgal-associated bacteria are specifically adapted to 157 

degrade complex algal polysaccharides (e.g., fucoidan, porphyran, and laminarin [42,43]) and 158 

modify both the quality and quantity of organic carbon supplied to the ecosystem [44,45]. 159 

Previously unrecognized metabolic innovations of marine microbial symbioses that are 160 

ecologically important are discovered regularly [46]. Kentron (a clade of Gammaproteobacteria 161 

found in association with ciliates) nourish their ciliate hosts in the genus Kentrophoros and 162 

recycle waste products from their hosts into biomass [47]. This symbiosis provides a 163 

counterexample to textbook descriptions of chemosymbiotic bacteria that make most of their 164 

biomass from fixing either CO2 or methane. 165 

 166 

Environmental tolerance and resilience. Individual taxa within the microbiome can also help 167 

hosts withstand a wide range of environmental conditions, including those predicted under 168 

scenarios of climate change. For example, in the marine nematode Litoditis marina species 169 

complex, members of the bacterial microbiome are hypothesized to confer broad tolerance to 170 

temperature and salinity ranges among the cryptic species (i.e., distinct species that are 171 

morphologically very similar to each other) [48]. In oxygen-depleted deep-sea environments, 172 

bacterial symbionts associated with foraminifera appear to confer tolerance to hypoxia through 173 

varying metabolic pathways such as oxidizing hydrogen sulfide to detoxify the surrounding 174 

water [49]. In cultures of the filamentous brown alga Ectocarpus, the microbiome has been 175 

found to play an essential role in their adaptation to changes in salinity [50].  176 

 177 

These examples demonstrate the importance of host-associated microbiomes for the functioning 178 

of present and future ocean ecosystems. Yet, such studies are few and efforts to link diversity 179 

and dynamics of complex marine microbiomes to organismal and ecosystem function promise 180 

important new insights. The role of symbiosis in ecosystem-level responses to change remains 181 

ripe for exploration, and indeed requires tools and approaches that consider entire microbiomes 182 

at once rather than one or a few symbiotic microbes.  183 

 184 

Example outstanding questions: The influence of microbiomes in a changing ocean 185 
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 186 

Humans are altering the ocean environment and ecosystems by way of climate change, 187 

overexploitation, and pollution [51,52]. Knowledge about host-associated microbiomes may 188 

prove important in informing conservation in the face of change. Here we discuss how we can 189 

quantify the adaptive potential of host-microbe populations, and how this adaptation may affect 190 

ecosystem functions.  191 

 192 

How can microbial symbioses influence host adaptation in a changing ocean? 193 

 194 

Global change creates new environments and new conditions. Whether and how marine species 195 

adapt to change may depend on their microbiomes. Host-associated microbes can be treated as 196 

extended host phenotypes if host and microbe show a concerted adaptive response [53]. Vertical 197 

transmission of symbiotic microbes to the offspring is expected to stabilize the association 198 

between a given host and microbe, thereby making phenotypic traits of the host-microbe 199 

interaction potentially heritable. This stabilization could in turn drive adaptive evolution of host-200 

microbe interactions if it allows host populations to adapt to new ecological niches or persist in a 201 

changing environment [14,54,55]. In contrast, horizontal transmission of symbiotic microbes 202 

generally requires some form of selective host filtering of beneficial symbionts and/or host 203 

sanctioning of detrimental symbionts and cheaters in order to align host and microbial interests 204 

and coordinate their adaptive responses [56]. Nevertheless, horizontally acquired bacterial 205 

symbionts have more opportunity to exchange genes with environmental bacteria and thereby 206 

increase their adaptive potential [57]. The acquisition of novel symbionts has been postulated as 207 

a novel form of phenotypic plasticity that could potentially assist foundational seagrass and 208 

macroalgal species acclimatize to a changing climate [58]. 209 

 210 

In most host-symbiont relationships where both kinds of transmission are possible, increasing 211 

levels of horizontal transmission will tend to decouple host and microbial interests, and vertical 212 

transmission will tend to bind them [59,60]. Understanding the role of microbial symbionts in the 213 

adaptive capacity of host populations requires transgenerational, functional, and comparative 214 

studies [54]. One source of novel insight into the mechanisms of adaptive evolution in microbial 215 

symbioses comes from comparative analyses of populations that recently radiated or diverged 216 
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through allopatric speciation events. Phylogenomic, transcriptomic, and metabolomic analyses of 217 

microbial symbionts associated with closely related sister species that are genetically isolated 218 

into contrasting environments holds the potential to uncover genes that coevolved with the host 219 

and other genes that diverged due to the changing environmental conditions [61]. The latter may 220 

shed light on the adaptability of host-microbe systems in a changing environment [62]. 221 

 222 

Several geological events offer opportunities to reveal drivers of adaptive evolution of hosts and 223 

their microbiomes. One model event is the formation of the Isthmus of Panama, which presents 224 

an unrivalled opportunity to study processes of diversification and adaptation in marine animals. 225 

Approximately 3 million years ago (Ma), after a previous ~20 million years (Myr) of tectonic 226 

and volcanic activity, the Isthmus of Panama formed a land bridge between North and South 227 

America, which prevented water from flowing between the tropical Atlantic and Pacific oceans 228 

[63]. Ocean currents became constricted and previously contiguous host populations and their 229 

associated microbiomes became isolated into the Tropical Eastern Pacific and Caribbean Sea 230 

(Figure 1, [63,64]). As the Caribbean and Pacific split, environments in the Caribbean changed 231 

from nutrient-rich and seasonally-variable [65] to stable and oligotrophic, which ultimately led to 232 

Caribbean-wide extinction events [65]. Caribbean survivors were well-adapted to low nutrient 233 

conditions and often radiated in response to the relatively-recent proliferation of Caribbean coral 234 

reefs [63]. Populations on both sides of the isthmus became physically isolated and followed 235 

separate eco-evolutionary dynamics in distinct environments [64]. The relatively recent 236 

emergence of islands (e.g., Marquesas, Hawai’i or the Galapagos islands among others) presents 237 

similar natural events that can be used to study the coevolution of marine hosts and their 238 

associated microbes [66]. Animal communities on these islands, both terrestrial and coastal 239 

marine, include species that range from old to recent endemics (with or without sister species 240 

across barriers to dispersal), divergent populations, and populations that are still able to exchange 241 

genes across biogeographic barriers [67].  242 

 243 

A great advantage of the Panamanian model system is the wealth of well-calibrated phylogenetic 244 

data available for a range of marine taxa (Fig. 1, [64,67]). For example, the numerous species 245 

pairs of snapping shrimps (genus Alpheus) that emerged through trans-isthmian vicariance (more 246 

than 10 pairs identified so far) have been used as a model system for understanding the genetic 247 
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and behavioral consequences of allopatric isolation. Extensive taxonomic and molecular work 248 

has identified a correlation between the timing of divergence and habitat use, whereby pairs 249 

occurring in shallower mangroves and intertidal habitats diverged later than pairs occurring in 250 

deeper coral reef habitats [68,69]. We hypothesize that parallel changes occurred to the 251 

microbiome at the taxonomic, functional or genomic level, driven by habitat and environment. 252 

Extending comparative analyses of microbiomes to species of urchins, porcelain crabs, snails, 253 

clams, and fishes, among others, across the Isthmus of Panama offers promise in revealing 254 

general processes of adaptive evolution (e.g., loss/gains of genes in microbial genomes) and 255 

unveiling the relative contribution of vertical and horizontal transmission in marine host 256 

communities [70]. Moreover, overlaying data on microbial taxonomic and genomic composition 257 

on host phylogenies will help identify which microbes are tightly associated with the host, their 258 

mode of transmission, and their genomic features [71,72]. Ultimately, these comparative 259 

analyses should help identify and ultimately predict the short- and long-term responses of marine 260 

host-microbiome assemblages to ongoing environmental changes. 261 

 262 

How can we use marine host-microbe symbiosis studies to inform conservation?  263 

 264 

Human activities have been directly affecting the composition of natural microbiomes. Examples 265 

include the introduction of pathogens as well as non-native species and their microbial symbionts 266 

[73] and environmental contamination with antimicrobials in offshore farms [74]. Conventional 267 

aquaculture practices often promote high numbers of diverse bacteria, some of them symbionts 268 

and some pathogens, which in combination with the use of antibiotics can develop into hotspots 269 

for horizontal gene transfer [75] and consequent dissemination of antibiotic resistance [74]. The 270 

composition of host-associated microbiomes can also be modified by other stressors, such as 271 

elevated seawater temperatures associated with global climate change or the locally discharged 272 

water from power plants [76], oil spills [77], and contamination with heavy metals from mining 273 

activities [78], with potential effects on host biology. Mitigation strategies that make use of host-274 

associated microbiomes by direct bioaugmentation (i.e., enriching the environment with specific 275 

microbes) or through the biostimulation of specific metabolisms to enhance host resistance and 276 

recovery, have been promising, but are still rare. For example, corals exposed to high 277 

temperatures were significantly more resistant to bleaching when inoculated with a consortium 278 
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of microorganisms isolated from native healthy host corals [79]. Jin Song et al. (2019) 279 

summarized and discussed examples of successful probiotics used to promote animal health and 280 

conservation in the wild [80].  281 

 282 

Effective microbially-based mitigation will benefit from a thorough understanding of the identity 283 

and physiology of beneficial microbes and the attributes of healthy microbiomes. To this end, the 284 

most successful trials of microbiome engineering considered niche specific traits and the 285 

manipulation of stable and native groups, rather than the use of generic microbial cocktails [81].  286 

Nevertheless, manipulative approaches can succeed even without knowing the detailed 287 

mechanisms a priori, as long as a rigorous experimental design is applied, which can eventually 288 

lead to the discovery of key strains and mechanisms [82]. From the perspective of applied 289 

ecosystem recovery, the most promising focal organisms are keystone and foundational 290 

organisms and their associated microbiomes. Efforts to quantify and compare the net effects of 291 

microbiome functions across multiple hosts and contexts (e.g., health status, life-stage, and 292 

habitat) are critical to advancing our understanding of the roles of microbiomes for hosts and 293 

ecosystems [83]. As an example, microbiomes specific to different developmental stages in 294 

tropical corals suggest that different microbiomes serve distinct, specific roles throughout host 295 

life cycles [84]. One frontier for future studies of microbiomes is understanding the degree to 296 

which important functional roles can be maintained in non-optimal environmental conditions, 297 

and whether diverse communities of transient microbes may allow hosts to broaden their realized 298 

ecological niche [85]. Describing and understanding the organizing principles of microbiome 299 

assembly and maintenance is critical for effective microbial-based mitigation strategies. 300 

Studying shifts in microbiome taxonomic composition and functional diversity in organisms that 301 

experience drastic seasonal or thermal shifts (e.g., temperate organisms or species living in 302 

intertidal zones) will help identify these principles [7,86]. For example, the microbiome of the 303 

temperate coral Astrangia poculata resembles a diseased tropical coral microbiome in the winter 304 

months, during host quiescence, and it transitions in the spring to a community dominated by 305 

taxa that continue to be present throughout the year [87]. This seasonal shift represents an 306 

opportunity to identify the molecular basis of microbiome assembly within an animal host. Such 307 

complex interactions among microbial species and their hosts can be informed by theory and 308 

empirical generalizations in community ecology developed primarily from studies of 309 
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macroorganisms, including succession, community assembly, metacommunities, multi-trophic 310 

interactions, disturbance, and restoration [7].  311 

 312 

The role of microbiomes and the influence of host life stage and other external parameters on 313 

microbial functions is still poorly understood in most marine systems. To use microbiomes for 314 

informing management and conservation, we need background data on the natural dynamics of 315 

host-associated microbiomes across ecosystems. Well-replicated studies across spatial and 316 

temporal scales (i.e., encompassing natural variation) and mesocosm experiments can help define 317 

the core microbiome and its flexibility in the face of environmental variations [88]. For example, 318 

a long-term study of corals showed that environmental perturbations can lead to transitions from 319 

stable to unstable community states, where diseased hosts show higher (and random) variation in 320 

microbial community composition compared to healthy individuals [89]. These results indicate 321 

that increased alpha-diversity in host-associated microbial communities in individual hosts does 322 

not always translate into healthier systems, and that a highly variable microbial assemblage is 323 

correlated to host vulnerability. Moreover, environmental stressors can compromise or eliminate 324 

beneficial microbe species that need to be replaced by beneficial, or at least neutral, microbes to 325 

passively prevent the spread of diseases.  326 

 327 

Integration of information across hosts for an ecosystem-level understanding of the roles of 328 

microbial symbionts 329 

 330 

Future progress in research on host-symbiont interactions --and indeed on ecosystem functioning 331 

generally-- depends on adopting an entire microbiome perspective and expanding the scope of 332 

inquiry beyond single host taxa and individuals. First, this will require a broad comparative 333 

approach to identify similarities and differences across marine host species within a phylogenetic 334 

framework, especially with respect to their physiologies, microbiome profiles, and habitat 335 

distributions. Second, studies of terrestrial hosts and microbiomes can inform research priorities 336 

and generate hypotheses to be tested in marine environments [55,90]. Thus, we see great value in 337 

building a framework of broad collaborative networks. To promote such broad and collaborative 338 

efforts and to allow for transparent and reproducible research, we encourage researchers to share 339 

protocols, data, metadata, workflows (particularly data manipulation; i.e., transformation and 340 
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quality filtering), and software. Collaborative efforts are more sustainable, and ultimately more 341 

productive, if we credit online resource generators, share data and workflows, and acknowledge 342 

others [91].  343 

 344 

Identifying the factors that promote the contribution of microbial symbionts to host adaptability 345 

is fundamentally important to understanding ecological and evolutionary processes as well as 346 

predicting the response of populations, species and communities in a changing environment. Key 347 

localities (e.g., the Isthmus of Panama) can provide model systems to test hypotheses about the 348 

roles of marine host-associated microbiomes for ecosystem functioning. The biggest payback 349 

will likely come from a focus on taxa that have disproportionately large roles in the ecosystem, 350 

including dominant, foundation, and keystone species. We recommend special focus on how 351 

horizontally transferred microbes play critical roles in the hosts’ ability to respond to 352 

environmental change. Together these research directions will enhance our ability to predict how 353 

climate change, invasion by non-native species, food-web disruption, and environmental 354 

contamination will play out, and inform practical strategies for directly assisting marine 355 

conservation in novel ways. 356 

 357 

BOX 1. Terminology used to discuss communities of microbes and their interactions with 358 

hosts.  359 

 360 

Following are key terms and concepts that we use in this paper (see also [92]).   361 

 362 

Microbiome and microbiota.  363 

We use microbiome to refer to a community of microbes (organisms too small to see without the 364 

aid of a microscope) found at a specific place and/or a specific time. We avoid using the term 365 

microbiota, which has a complicated history (see [92]). Ideally, the place and/or time should be 366 

specified when discussing the microbiome. For example, “the seagrass microbiome” is the total 367 

of microbial communities found in association with seagrass and “the seagrass root microbiome” 368 

would be those microbial communities found in/on the roots of seagrass. We also consider host-369 

associated microbiomes broadly to include any and all kinds of microbes (e.g., bacteria, archaea, 370 

microbial eukaryotes or viruses), which can be transient or persistent, and have variable 371 
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functional impacts from beneficial to unimpactful to detrimental. Microbiomes can inhabit the 372 

external and internal surfaces of virtually every eukaryote, from microscopic unicellular diatoms 373 

to macroscopic organisms such as kelp, coral, seagrass, cephalopods, and vertebrates [88]. 374 

 375 

Symbiosis. 376 

We use symbiosis here in the broad sense meaning a long-term, persistent relationship between 377 

two or more organisms in which at least one of them benefits. Symbioses come in three 378 

subcategories: in mutualism, both partners benefit; in parasitism, one partner benefits and the 379 

other is harmed; in commensalism, one partner benefits and the other is unaffected. In many 380 

discussions of microbes or microbial communities living in and on a host organism, it is 381 

frequently assumed that the microbe is benefitting in some way and the question then becomes, 382 

“What is the effect on the host?” If the host benefits, this is a mutualism, if the host is unaffected 383 

this is a commensalism, and if the host is harmed this is a parasitism. It is important to note that 384 

these categories are fluid in that the type of interaction between two species is often conditional 385 

and depends on many factors including genotype (of all partners), environmental conditions, and 386 

developmental stage, among others. 387 

 388 

Health status and microbiomes.  389 

Much of the work on host-associated microbiomes revolves around whether the community of 390 

microbes in some way affects the health status of the host [86]. In some cases, researchers have 391 

used terms like “healthy” or “dysbiotic” or “optimal” to describe a particular microbiome (e.g., 392 

of one individual at one time) or pattern of change documented among particular groups. While 393 

these terms can sometimes be useful in general discussions of microbiomes, they are hard to 394 

define quantitatively or apply, and therefore more likely to confuse than to illuminate in practice. 395 

For example, an “optimal” microbiome could vary between individuals and across environmental 396 

conditions. Similarly, there could be numerous and equivalent alternative stable states, each of 397 

which could be referred to as a “healthy” microbiome, and which include transient or permanent 398 

neutral members and/or active symbiotic players. The inverse of a healthy association is 399 

“dysbiosis”, often suggested to be any change in the composition and or variability of a microbial 400 

community that can cause any negative impact on the host. Generally, we believe such terms 401 

need to be used with extreme caution (see a useful discussion of this topic in [93]).  402 
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 403 

Ecosystem functions. 404 

Ecosystem functions or processes are generally considered to be aggregate fluxes of energy or 405 

materials [13]. Ecosystem function has also sometimes been defined as the joint effects of all 406 

processes, including fluxes of energy and chemical compounds, that sustain an ecosystem over 407 

time and space through biological activities [94]. Generally, ecosystem functioning depends 408 

disproportionately on a small subset of species in the system. These include particularly 409 

foundation species, dominant sessile invertebrates, plants or algae that provide physical structure 410 

and have a strong role in structuring the community [95]; and keystone species, taxa that have a 411 

large effect on other species that is disproportionate to their own relatively low abundance, and 412 

which if they were removed would drastically change the ecosystem. Resilience is the capacity 413 

of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering 414 

quickly. Another form of response is evolutionary adaptation where species change genetically 415 

to adapt to a new environment. Over several generations, and through the process of natural 416 

selection, physical and behavioral features of organisms may adapt to function better in the new 417 

environment. If hosts and their associated microbes change in concert, this is termed coevolution. 418 

Moreover, when two co-evolving organisms also undergo speciation, this can lead to the 419 

formation of new species; i.e., co-speciation and co-diversification. 420 
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Figure 1. Formation of the Isthmus of Panama split two oceans creating a natural 431 

experiment to explore general processes of host-microbe evolution. (A) Panmictic 432 

populations of hosts and their microbiomes living under similar environmental conditions 433 

became (B) physically isolated when the land bridge formed between North and South America. 434 

Well-calibrated phylogenetic data are available for marine animal hosts such as clams, fishes, 435 

porcelain crabs, snapping shrimps, and urchins. (C) Example of sister species isolated by the 436 

Isthmus of Panama (left: Eastern Pacific, right: Caribbean): fish, Abudefduf saxatilis and 437 

Abudefduf troschelii; clams, Ctena mexicana and Ctena distinguenda; and shrimps, Alpheus 438 

panamensis and Alpheus formosus. Photo credit: fish, Ross Robertson (A. saxatilis) and A. 439 

troschelii from Wikimedia Commons, Hectonichus [CC BY-SA 3.0 440 

(https://creativecommons.org/licenses/by-sa/3.0)]; clams, Laetitia G.E Wilkins and Benedict 441 

Yuen; shrimps, Arthur Anker. 442 
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