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Abstract 1 

 As the cost of DNA sequencing continues to fall, more individuals are opting to undergo 2 

genomic testing in the absence of a clinical indication. Testing asymptomatic individuals for 3 

unsuspected conditions is not new to the medical and public health communities. However, the 4 

application of screening principles to inherited diseases with unknown prevalence in an 5 

unselected (low risk) test population raises unique challenges. This paper examines the effect of 6 

disease prevalence on the positive predictive value of a test result. Many inherited conditions 7 

have very low prevalence in an unselected population, which increases the probability that some 8 

likely pathogenic variants may be false positives. In situations where the adverse impact of a 9 

false positive result is significant, laboratories should address this issue by either increasing the 10 

interpretive specificity of the test, performing a clinical confirmatory test to establish the 11 

presence of disease, or restricting the test to a population with increased disease prevalence. 12 

Here, we review the statistical concepts relevant to screening tests, apply these concepts to 13 

genetic disease screening, create a model to estimate prevalence and positive predictive value, 14 

and provide a framework for further discussion. 15 

  16 

Key words: genetic screening, epidemiologic methods, clinical validity, positive predictive 17 

value, clinical test validation 18 

 19 

Introduction 20 

Imagine that you are a clinician and a patient brings you a genetic screening report for inherited 21 

conditions. The individual has a positive result for an inherited cancer syndrome but does not 22 

have a personal or family history of this disorder. How should you advise this patient? 23 

 24 

Clinical DNA sequencing for inherited diseases has typically been performed in specialized 25 

genetics laboratories that focus primarily on sequence-based tests intended for individuals 26 

suspected of having a genetic condition. In the scenario above, the patient has had a screening 27 

test. Screening tests are intended to identify the presence of an as-yet-undiagnosed disease in 28 

individuals without signs or symptoms. (Maxim et al., 2014; Trevethan, 2017)  The prior 29 

probability of disease in this setting is often quite low and, therefore, the possibility of false 30 

results may be quite high.  31 

  32 

We are now entering an era in which DNA sequencing is carried out in different populations for 33 

different purposes. (Figure 1) This commentary explains the statistical origin of potential false 34 

positive results when screening asymptomatic individuals for rare conditions, and why it is 35 

necessary to know the prevalence of the condition and the positive predictive value (PPV) of a 36 

test in the intended target population. We apply these general concepts to genetic diseases, 37 

propose a model to estimate PPV in the absence of concrete prevalence data, and offer options to 38 

mitigate the risk of false positive results in genetic screening tests.  39 

 40 

General Principles of Clinical Test Design 41 

 42 

The design of laboratory tests begins with an intended use statement, which describes what the 43 

assay is testing, the testing technology, why the test is performed, acceptable sample types, and 44 

who is or is not an appropriate test subject. (Jennings et al., 2009) The intended use guides the 45 
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laboratory director’s choice of technologies and informs the sensitivity/specificity trade-off used 46 

to determine the most appropriate cut-off between a “positive” and “negative” result. 47 

(Supplemental Figure 1) In addition, the intended use helps the physician order the appropriate 48 

test for a particular clinical question. During test development, a clinical validation study is 49 

typically conducted by performing the new test on samples from patients confirmed to have the 50 

disease by a “gold standard” or index test and patients confirmed to be free of the disease. 51 

Ideally, the new test will discriminate between these cohorts perfectly; in practice there will be 52 

false positive and false negative results. Although it is critical to establish the analytical validity 53 

of a test, the more salient metric for test optimization is clinical validity. (Table 1) Clinical 54 

validity reflects the test’s ability to properly categorize those with the disease as positive (clinical 55 

sensitivity) and those without the disease as negative (clinical specificity). (Maxim et al., 56 

2014)  In this commentary, we focus on clinical validity. Furthermore, when we use the term 57 

“confirmatory test” we are referring to a “gold standard” or index test that confirms the presence 58 

or absence of the condition (Supplemental Table 1), not the presence or absence of a genetic 59 

variant (orthogonal technical confirmation). 60 

  61 

As mentioned above, clinical sensitivity and specificity are determined using a reference cohort 62 

during test development. The predictive values, in contrast, provide the post-test probability of 63 

disease for an individual. (Screening (medicine) - Wikipedia 2005) Predictive values address the 64 

probability that a person with a positive result has the condition (positive predictive value or 65 

PPV) or that the person with a negative result does not have the condition (negative predictive 66 

value or NPV). (Trevethan, 2017) Unlike sensitivity and specificity, PPV and NPV will vary 67 

depending on the prevalence of the disease in the test population. (Figure 2) In the clinic, the 68 

PPV and NPV are more useful than sensitivity and specificity since in practice the 69 

presence/absence of disease is unknown in the individual prior to testing. (Akobeng, 2007)  70 

  71 

Estimates of PPV and NPV can be used during test development to determine the most 72 

appropriate cut-off threshold between a positive result and negative result as appropriate for the 73 

test’s intended use. Sliding the cut off towards higher specificity will result in fewer false 74 

positives, while sliding the cut-off toward higher sensitivity will decrease the possibility of false 75 

negatives. (Supplemental Figure 1) The optimal cut-off will vary based on the intended 76 

use.  When designing a screening test, the extent to which true positive and true negative results 77 

are medically desirable and the extent to which false positive and false negative results are 78 

tolerable or even acceptable must be weighed. (Trevethan, 2017) Considerations include the 79 

immediate and long-term burden on the healthcare system, the treatability of the condition, 80 

psychosocial effects, and the potential over-utilization of diagnostic procedures or surveillance. 81 

(Maxim et al., 2014; Trevethan, 2017)   82 

  83 

If a screening test produces a significant number of false positives, the cost of managing the false 84 

positives may outweigh the potential benefits of identifying the true positives. For example, 85 

recommending a lifetime of increased surveillance for breast cancer has both cost and risk. The 86 

more mammograms a woman undergoes, the more likely she will have a false positive result. 87 

This will result in unnecessary invasive follow-up tests. The chance of a false positive result after 88 

one mammogram is 10%, depending on age. Younger women are more likely to have a false 89 

positive result than older women. After 10 yearly mammograms, the chance of having a false 90 

positive is 50-60%.(“Mammogram Accuracy - Accuracy of Mammograms”) Without data to 91 
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support the safety and efficacy of that intervention, the screening may do more harm than good. 92 

There are many examples where interventions assumed to have benefit resulted in considerable 93 

harm.(Maxim et al., 2014; Trevethan, 2017) False negatives, on the other hand, could result in a 94 

missed opportunity for early detection.  95 

  96 

To appreciate the fact that a screening test with high sensitivity and specificity can still have a 97 

low PPV if the prevalence of the disease in the test population is sufficiently low (Figure 2), 98 

consider the following examples: 99 

  100 

● HIV screening test in sub-Saharan Africa →Most positives are true positives because the 101 

prevalence of HIV is high. 102 

● HIV screening test in rural Canada →Most positives are false positives because the 103 

prevalence of HIV is low. 104 

● Fecal occult blood test in people over 80 years old → Most positives are true positives 105 

because the prevalence of colon cancer is high.  106 

● Fecal occult blood test in people under 20 years old → Most positives are false positives 107 

because the prevalence of colon cancer is low. 108 

 109 

If a test has a 100% clinical sensitivity and 95% clinical specificity, then: 110 

● For disease prevalence of 10%, the positive predictive value is 69%.  111 

● For disease prevalence of 1.0%, the positive predictive value is 17%.  112 

● For disease prevalence of 0.1%, the positive predictive value is 2%.  113 

 114 

There are three ways to minimize false positives and thereby improve the PPV when designing a 115 

screening test: 1) increase the specificity of the screening test, 2) pair the screening test with a 116 

clinical confirmatory test, 3) employ the screening test in a population with a higher disease 117 

prevalence. Raising the “positive” cut off (i.e., increasing the stringency) will result in fewer 118 

positive results.(Eisenberg, 1995) (Figure 1 and Supplemental Figure 1) If the test was intended 119 

for use in a higher-prevalence setting, one would then have to consider the impact of increased 120 

specificity on the number of false negatives that will result. However, when the prevalence of 121 

disease is very low, increasing the specificity will have only a small effect on sensitivity.  122 

 123 

Genetic Screening 124 

The principles of screening were first published In 1968 by the World Health Organization 125 

(Wilson, Jungner & Health Organization, 1968) and adapted to DNA-based preventive screening 126 

in 2003. (McCabe & McCabe, 2003)  Not all screening tests for inherited diseases available 127 

today were designed using these criteria. Nevertheless, genetic testing in the absence of a clinical 128 

indication is occurring more frequently, such as issuance of secondary reports in the context of a 129 

diagnostic exome (opportunistic screening), elective sequencing paid for by a curious individual, 130 

population screening offered by health systems and employers, and research studies involving 131 

return of results. (Brothers, Vassy & Green, 2019; Lu et al., 2019)  132 

  133 

When screening an asymptomatic population for inherited diseases, the clinical implications of 134 

the results are confounded by uncertainty surrounding both the PPV of the test and the 135 

penetrance of the condition. PPV and penetrance can be confused because they are similar 136 

concepts. An example of the meaning of PPV in the context of a genetic disease is provided in 137 
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Table 1. PPV provides information about FALSE POSITIVE tests. In contrast, penetrance is a 138 

feature of the condition (not the test) and is only applicable to TRUE POSITIVE genetic tests. 139 

  140 

When designing a screening test, it is important to quantify the possibility that a result is a false 141 

positive. Outside of genetics, screening tests are intentionally designed to permit some false 142 

positives to avoid missing true positives. These false positives are tolerated because the standard 143 

practice is to follow a positive screening test with a confirmatory diagnostic test. The diagnostic 144 

confirmatory test is designed to be more specific so that it can identify the false positives 145 

detected by the screen. (Maxim et al., 2014) For genetic tests that do not have a clinical 146 

confirmatory test, this two-step process is not possible, and therefore the specificity of the 147 

screening test itself must be high. 148 

  149 

There are two sources of false positives in genetic testing: analytical and clinical. (Table 1) This 150 

commentary focuses on the clinical sensitivity and specificity: How well does the test detect the 151 

condition when it is present and produce a negative result when the condition is not present as 152 

compared to a gold standard diagnostic test? Ideally, in the test development phase we would 153 

have 1000 samples from individuals known to have the condition and 1000 who do not have the 154 

condition. We could then determine the number of positive results identified by the genetic test 155 

that were false positives at different levels of specificity. Designing a test for inherited disease 156 

syndromes is challenging because a gold standard diagnostic test does not exist for many 157 

diseases.  As a result, the clinical sensitivity and specificity cannot be definitively determined, 158 

although reasonable estimates are possible. 159 

  160 

The clinical specificity of DNA sequencing tests for inherited diseases can be derived from the 161 

level of certainty that the identified variants cause disease. (Adams et al., 2016) When a variant 162 

is classified as "likely pathogenic," there is a possibility that it is not a cause of disease. The 163 

ACMG/AMP variant classification guideline advises that the cut off between positive test result 164 

(ie, clinically actionable) and negative test result is between variant of uncertain significance 165 

(VUS) and likely pathogenic (LP) when testing high-risk individuals. (Richards et al., 2015) In 166 

other words, a clinician should act on pathogenic and likely pathogenic results. They should not 167 

introduce or withhold a therapy based on variants that score below LP.  The authors of the 168 

guideline suggested that the level of confidence in LP should be at least 90%, in which case, 1 in 169 

10 likely pathogenic variants may be false positives, a medically appropriate cut-off when testing 170 

high-risk patients. However, in the absence of empirical data from a gold standard comparator 171 

set, the authors had to estimate the confidence of a likely pathogenic variant truly causing 172 

disease. This confidence level is an estimate of the clinical specificity. (Adams et al., 2016) 173 

(Figure 1) The guideline warns that applying this same cut-off to an asymptomatic test 174 

population may result in an unacceptable number of false positives. (Richards et al., 2015)  175 

 176 

A Model for Estimating the PPV of Genetic Diseases 177 

To use the results of a genetic test effectively the clinician needs to know the PPV of the test, not 178 

just the specificity. Determining the PPV of a test results requires knowledge of the prevalence 179 

of the disease in the test population. For many genetic diseases, we do not know the prevalence 180 

of the condition (or the prevalence of pathogenic variants) in an unselected population because 181 

most genetic studies have been carried out in a population with prior evidence of the disease. 182 
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Nevertheless, it is possible to estimate the expected prevalence of a condition, and thereby 183 

estimate the probability that a “likely pathogenic” variant is a false positive. 184 

      185 

We applied the principles described above to the screening of asymptomatic individuals in an 186 

unselected (low risk) population for autosomal dominant monogenic inherited diseases in order 187 

to approximate the PPV across various disease prevalences. Assumptions in the model: 188 

 189 

● 100% analytical test sensitivity. 190 

● 90% confidence in (the specificity of) a “likely pathogenic” classification using the 191 

ACMG guidelines. In practice, the actual confidence will vary by variant type and 192 

gene/condition. 193 

● 100% confidence in (the specificity of) a “pathogenic” classification. 194 

● ⅓ of all positive results are “likely pathogenic” variants and ⅔ of all positive results are 195 

“pathogenic”.  Together, these compose the “overall positive rate” 196 

● Prevalence of the CDC Tier 1 conditions, which include Hereditary Breast and Ovarian 197 

Cancer Syndrome (HBOC), Lynch syndrome (LS) and Familial hypercholesterolemia 198 

(FH), range from 1/500 to 1/200 in an unselected population. (Murray, M. F.,et al, 2018)  199 

● The overall positive rate used for CDC Tier 1 (Abul-Husn et al., 2016; Manickam et al., 200 

2018) and ACMG Secondary Findings V2.0 (ie, ACMG59TM) is 1.5% and 3.0%, 201 

respectively, with the reported range for overall positive rates of ACMG59TM between 202 

1% and 8.5%. (Dorschner et al., 2013; Olfson et al., 2015; Jamuar et al., 2016; Rego et 203 

al., 2018) (Table 2) 204 

● Prevalence of ACMG59TM and other inherited diseases in an unselected population is not 205 

known but this model assumes a range between 1/10,000 and 1/500. Some may be much 206 

rarer. (Tables 2 and 3) 207 

  208 

The specificity of the test depends on the overall positive rate of the test, the type of variant, the 209 

strength of the gene-disease association, and knowledge of the specific gene/disorder. Adams et 210 

al. assert that the clinical specificity of a “likely pathogenic” variant is 90-95% assuming a pre-211 

clinical (test validation) cohort study that included an equal number of known positive and 212 

negative samples. (Adams et al., 2016)  When the overall positive rate in practice is not 50%, the 213 

clinical specificity should be recalculated. Supplemental Figure 2 provides an example of how 214 

overall positive rate is used in determining specificity. 215 

  216 

Like other models, ours assumes a 90% confidence that a likely pathogenic variant is a true 217 

positive. (Richards et al., 2015; Adams et al., 2016; Tavtigian et al., 2018) In practice there is a 218 

range of specificity that will vary by gene/disease pair as discussed and by variant type. For a 219 

monogenic disorder with a dominant inheritance pattern caused primarily by loss of gene 220 

function from simple variants, the specificity of variant classification will generally decrease for 221 

each of the following functional categories: known pathogenic variants, loss-of-function variants 222 

in relevant gene domains (nonsense and frameshift variants), canonical splice altering variants 223 

and non-canonical splice variants with some functional evidence, missense variants with credible 224 

functional evidence. This trend toward decreasing specificity is due to the inherent complexity of 225 

interpretation and the rate of errors that can occur in applying evidence toward a classification. 226 

Specificity (confidence) will be 100% for well-known pathogenic variants. This will decrease to 227 

below 90% in categories near the end of the list. As with other types of clinical tests, the positive 228 
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rate will increase as more genes and variant types are tested or when less stringent criteria are 229 

used to specify a variant as “positive.” The false positive rate will increase as the overall positive 230 

rate increases. 231 

  232 

The model examines two sets of genetic disorders, the CDC Tier 1 Conditions and the 233 

ACMG59TM, which are currently used to screen asymptomatic individuals. The CDC Tier 1 234 

Conditions were proposed by Murray, et al as conditions for which population screening could 235 

be implemented, provided outcomes were being measured.  (Murray, M. F., et al., 2018) 236 

Importantly, the three CDC tier 1 conditions (HBOC, LS, FH) have been studied in large 237 

unselected populations so that disease prevalences (and penetrance) are established. As a result, a 238 

PPV can be determined. The ACMG has issued recommendations for reporting secondary 239 

findings in clinical exome and genome sequencing. They enumerate 27 conditions (59 genes) 240 

appropriate for inclusion in an opportunistic screen. (Kalia et al., 2017) The general population 241 

prevalence of disease associated with a number of these genes is unknown. While the ACMG 242 

specifies that this set of genes is not appropriate for general screening, several entities are testing 243 

asymptomatic individuals for these 59 genes.  244 

 245 

The estimated PPV for a test with 100% sensitivity and a given specificity at different disease 246 

prevalences that are representative of inherited genetic conditions in the CDC Tier 1 and 247 

ACMG59TM lists are presented in Tables 2 and 3. Note how small changes in specificity can have 248 

a significant impact on PPV when testing for diseases with a low prevalence. The PPV for the 249 

CDC Tier 1 conditions (prevalence 1/200 to 1/500) is in the 80-90% range. (Murray, M. F., et al., 250 

2018) The prevalence of several conditions included in ACMG59TM is less frequent than 251 

1/25,000.(“OMIM Entry - # 145600 - MALIGNANT HYPERTHERMIA, SUSCEPTIBILITY 252 

TO, 1; MHS1”, “OMIM Entry - # 180200 - RETINOBLASTOMA; RB1”, “OMIM Entry - # 253 

193300 - VON HIPPEL-LINDAU SYNDROME; VHL”, “OMIM Entry - # 158350 - COWDEN 254 

SYNDROME 1; CWS1”) Several conditions are so rare that firm epidemiological estimates are 255 

not available. Our model provides PPV estimates for diseases with a prevalence as low as 256 

1/10,000. These conditions require screening 10,000 people in order to detect a single true 257 

positive result. In such low prevalence conditions, a specificity of 99.94% results in a PPV of 258 

only 10%. (Adams et al., 2016)   259 

  260 

When the prevalence for a condition in a population is sufficiently low, the false positive rate for 261 

a test is greater than the prevalence of the condition (the False Positive Paradox).(Ndase et al., 262 

2015; Wikipedia contributors, 2019) In this scenario, more disease-free individuals will test 263 

positive than diseased individuals. As a result, the clinician who is accustomed to evaluating a 264 

positive test result drawn from a high-risk population may erroneously conclude that a positive 265 

test means that the individual is affected, when in fact a false positive is far more likely. At 266 

99.9% specificity, the False Positive Paradox becomes a consideration at a disease prevalence of 267 

1/1000.  At this disease prevalence there will be one false positive for each true positive. If the 268 

specificity is reduced to 99.5%, testing would yield 5 false positives for each true positive. For a 269 

disease prevalence of 1/10,000 a 99.99% specificity results in one false positive for each true 270 

positive. (“Diagnostic Test Calculator”) Only tests with 100% specificity escape this paradox. 271 

  272 

Recommendations to Minimize False Positives in Genetic Screening 273 
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False positives in genetic screening can be minimized by adjusting the “abnormal” cut-off to 274 

increase the specificity and thus maximize PPV. Options include: 275 

 276 

● Increase the specificity by reporting only known pathogenic variants (100% specificity) 277 

● Increase the specificity by reporting known pathogenic variants and high confidence 278 

likely pathogenic variants (high specificity) 279 

● Titrate clinical specificity based on clinical implications and availability of a 280 

confirmatory functional test. (Adams et al., 2016) 281 

  282 

Hereditary breast and ovarian cancer syndrome (HBOC) is an example of a disorder where 283 

titration of clinical specificity might be considered. A very low false positive rate is required 284 

because consideration of risk-reducing surgery is an important management step, increased 285 

surveillance has adverse consequences and high cost, and no confirmatory tests exist to ensure 286 

that a genetic variant is indeed disease-causing. Thus, only carefully curated pathogenic variants 287 

and, perhaps, high confidence truncating variants should be reported in a screening context. In 288 

other cases, inclusion of rare, potentially damaging missense variants may be acceptable, 289 

depending on the specificity of variant selection algorithms for the gene, the spectrum of 290 

pathogenic mutations observed, and the false positive tolerance based on clinical implications of 291 

a positive screening result. (Adams et al., 2016)  292 

  293 

When increasing the stringency, we recommend that laboratories adjust the cut-off between 294 

positive and negative interpretation of results (Lu et al., 2019) rather than adjusting variant 295 

classification, as ACMG (Richards et al., 2015) and others have recommended.(Adams et al., 296 

2016; Murray, 2016) For example, reporting pathogenic and high confidence likely pathogenic 297 

variants as “positive” and lower confidence likely pathogenic variants as “negative” would 298 

accomplish this goal. (Figure 1). Increasing the cut-off adjusts the meaning of the variant for this 299 

particular patient based on their pretest probability, but does not change the classification of the 300 

variant itself.(Lu et al., 2019) And, the risk of confusion in the clinic would be lower if genetic 301 

laboratories adopted the traditional practice of adjusting the positive/negative cut-off when 302 

adjusting test sensitivity and specificity. Note that the impact of this approach on clinical 303 

sensitivity will be negligible given the low prevalence of these conditions, therefore there is 304 

minimal benefit to including the lower confidence novel variants that inherently reduce the 305 

specificity of the screening test. (Eisenberg, 1995; Adams et al., 2016) In addition to increasing 306 

the clinical specificity of the test, there are other approaches that minimize the risk of false 307 

positives. The screening test could be paired with a confirmatory test that has close to 100% 308 

specificity.  Alternatively, the laboratory’s intended use statement could articulate a particular 309 

subpopulation that has a higher prior probability of disease.  310 

  311 

Some laboratories and programs have adjusted their stringency when pre-test probability of 312 

disease is low, while others have not. In the MyCode Community Health Initiative, Geisinger 313 

filters out lower confidence likely pathogenic variants and only reports pathogenic and high 314 

confidence likely pathogenic variants (together called ‘expected pathogenic’ variants) as positive 315 

results. They designate a variant as expected pathogenic on the basis of 1) classification in 316 

ClinVar with a *2 or *3 status, indicating strong evidence for pathogenicity; 2) predicted loss of 317 

function in genes in which loss of function is the mechanism of disease; or 3) both.(Manickam et 318 

al., 2018) Mayo Clinic’s GeneGuide™ only reports a limited list of known pathogenic variants 319 
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as a positive result, despite their ability to detect novel variants. (“Mayo Clinic GeneGuide - 320 

Results,” 2018) Other laboratories have not adjusted their interpretation for an unselected test 321 

population. As a result, there is a possibility of receiving a positive result or a negative result for 322 

the same variant depending on the laboratory performing the test. This underscores the need for 323 

consistent application of screening principles and clear statements of intended use by genetic 324 

laboratories. 325 

  326 

Lastly, we considered whether PPV could be extrapolated from intra-laboratory reclassification 327 

rates, published reclassification rates from high volume laboratories, the reclassification rate in 328 

public variant databases, or from genetic conditions that have a well-established functional 329 

confirmatory test that can serve as the “gold standard.” While reclassification rates for different 330 

laboratories is an important consideration when a physician makes management decisions, we 331 

reasoned that the reclassification rate is not a replacement for a “gold standard” derived test 332 

performance metrics such as PPV. Although there are some genetic conditions that have that 333 

have a “gold standard” comparator, such as hemoglobinopathies or coagulopathies, full gene 334 

sequencing studies in an unselected population have not been published with phenotypic data for 335 

these conditions.  Performance metrics obtained for these gene/condition pairs cannot be 336 

confidently extrapolated to other genes, irrespective of the data. Datasets from high volume 337 

laboratories indicate that reclassification rates are laboratory dependent, based on high-risk 338 

populations, and fluctuate with differences in test volume in each year, the rate at which new 339 

data appears that affect classes of variants, and how many genes were available for testing each 340 

year.(Macklin et al., 2018; Mersch et al., 2018) In contrast, the PPV for an individual 341 

gene/disease pair is dependent on test specificity and the prevalence of the disease in the test 342 

population. Thus, specificity will decrease with an increasing number of likely pathogenic calls 343 

and increasing panel size and decrease with disease prevalence in the test population.  344 

 345 

Conclusion 346 

In summary, it is important for laboratories to optimize tests according to their intended use. A 347 

test employed outside of its intended use may result in an unacceptable number of false results. 348 

In some genetic screening delivery models, there may be a communication separation between 349 

the patient, the ordering physician, and the patient’s primary care provider. For example, some 350 

laboratories allow an independent third-party network of physicians to review an individual’s 351 

health history and order a genetic screening test. By clearly articulating the following in the pre-352 

participation informational collateral, consent, reports, and physician education material, 353 

laboratories can minimize miscommunications: 354 

 355 

● The “intended use” or “purpose of” the test, including whether it is designed for 356 

screening, diagnosis, or monitoring; the specific analyte or condition of interest; the 357 

target test population; the technology used; and how the results should be used. 358 

● The PPV for the gene/condition pair in question in the test population. 359 

● If the test is intended to be used as a screening test, the availability or absence of a 360 

clinical confirmatory test should be noted. 361 

● The spectrum of clinical features of the syndrome and the penetrance of each feature in a 362 

low-risk population, if known, or clearly state that it is not known. 363 
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● A reference to patient management guidelines that have been proven safe and effective in 364 

an asymptomatic population, if available, or clearly state that none exist. 365 

● Participants should be aware that post-test preventive care may not be covered by 366 

insurance. Coverage will depend on the level of evidence for the utility of the 367 

intervention and the type of insurance. For most commercial payers, the presence of a 368 

positive genetic result is sufficient for diagnosis and coverage of the CDC Tier 1 369 

conditions, but the same is not necessarily true for original Medicare or conditions 370 

outside CDC Tier 1. (Health Leaders Media, 2013) 371 

● Laboratories should consider conducting comprehension testing on these limitations 372 

and/or require positive results to be communicated to the patient by a genetic counselor.  373 

  374 

Let’s return to the clinician at the beginning of this review whose patient arrives with an 375 

unsolicited genetic screening test report that is positive. Here are some examples suggesting how 376 

the provider might advise a patient: 377 

 378 

● Result: HBOC, pathogenic variant in BRCA1. The PPV is 100% in both low risk 379 

(unselected population) and high-risk (early onset breast/ovarian families) population. 380 

The risks of breast and ovarian cancer in an unselected cohort appears to be only slightly 381 

less than that observed in high-risk cohorts.(Gabai-Kapara et al., 2014; Akbari, Gojska & 382 

Narod, 2017; Metcalfe et al., 2018) The interventions proven safe and effective for high-383 

risk patients can be applied to individuals from an unselected population. (Manickam et 384 

al., 2018)  Clinical Action: It is appropriate to follow NCCN (National Comprehensive 385 

Cancer Network) management guidelines. The presence of a positive genetic test result 386 

alone meets criteria for most commercial insurance coverage policies for the management 387 

of HBOC. Original Medicare may not cover preventive care. 388 

● Result: HBOC, likely pathogenic variant in BRCA1. The PPV is 80-90% in an 389 

unselected population. A clinical confirmatory test is not available to determine if this is 390 

a true positive. Clinical Action: The appropriate action is undetermined. 391 

● Result: Peutz-Jeghers syndrome (PJS), likely pathogenic variant in STK11. The 392 

prevalence of PJS is less than 1/10,000 and the PPV is under 10% in an unselected 393 

population. A clinical confirmatory test is not available to determine if this is a true 394 

positive. If it is a true positive, the penetrance has not been studied in an unselected 395 

population. Clinical Action: You cannot advise on likelihood of disease in this patient. 396 

Additional surveillance has not been demonstrated to be useful or cost-effective. 397 

Insurance coverage for increased surveillance may be challenged. 398 

● Result: Familial Adenomatous Polyposis (FAP), pathogenic variant in APC. The PPV 399 

is 100%. The person has FAP or attenuated FAP. However, the penetrance of polyposis 400 

for individuals from an unselected population appears to be very low, although 401 

extracolonic features may occur. (Rocha, et al. 2019) Clinical Action: The NCCN 402 

guidelines for managing FAP patients is not appropriate since polyposis is unlikely. No 403 

guidelines exist for how to best manage this patient. Increased surveillance has not been 404 

demonstrated to be useful or cost-effective. Insurance coverage for increased surveillance 405 

may be challenged. 406 

● Result: Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), likely 407 

pathogenic variant in DSP. The prevalence is approximately 1/5000(Romero et al., 2013) 408 

and the PPV is estimated to be 17%. The penetrance in individuals from an unselected 409 
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population appears to be very low. (Haggerty et al., 2017)  Clinical Action: There is no 410 

definitive diagnostic standard. No guidelines exist for how to best manage or counsel this 411 

patient. Increased surveillance has not been demonstrated to be useful or cost-effective. 412 

Insurance coverage for increased surveillance may be challenged. In addition, one of the 413 

key risk management recommendations - limiting exercise - runs counter to physical 414 

activity recommendations known to be beneficial for a wide range of health conditions. 415 

● Familial Hypercholesterolemia (FH) likely pathogenic variant in LDLR. The 416 

prevalence of FH in an unselected population is approximately 1/220.(Khera et al., 2016; 417 

Abul-Husn et al., 2016; Akioyamen et al., 2017) The estimated PPV is approximately 418 

90%. Clinical Action: A functional study, such as LDL cholesterol level, can help 419 

adjudicate whether this is a true positive or a false positive. Since the penetrance of FH 420 

has been determined to be approximately the same in high risk and unselected cohorts, it 421 

is appropriate to manage confirmed cases according to FH guidelines. (Reiner, 2015) The 422 

presence of a positive genetic test result alone meets criteria for most commercial 423 

insurance coverage policies for the preventive management of FH. 424 

 425 

Despite the absence of guidance, genetic testing of low-risk individuals is occurring more 426 

frequently and is likely to increase significantly in the near future. In the absence of penetrance 427 

and prevalence data, with few confirmatory tests, and few clinical utility guidelines describing 428 

preventive interventions, some would argue that genetic testing of low-risk individuals should 429 

not be conducted or restricted to certain circumstances, such as opportunistic screening in the 430 

context of a genetically literate care team. However, due to consumer demand, genetic testing of 431 

low-risk individuals will likely proceed. Laboratories can mitigate the risk by modeling estimates 432 

of the missing data, by designing screening tests to minimize potential harms from false 433 

positives, and by providing consumers and physicians abundantly clear limitations to the clinical 434 

utility of the results.435 
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Figure 1. Intended Use or Purpose of the Test. The clinical implications of false results must 

be considered when determining the appropriate sensitivity and specificity for the intended use. 

Tests intended for higher risk populations (diagnostic testing) may tolerate more false positives 

than tests intended for low risk populations (screening). The false positive rate is reflected in the 

test’s clinical specificity. 

 

 

 Generic definitions Genetics example 

Analytical 

validity 

The test accurately detects the analyte when 

it is present (analytical sensitivity) and does 

not detect it when it is absent (analytical 

specificity). 

 

Confirm by orthogonal technology during 

development phase. 

The test accurately detects a sequence variant in 

BRCA1 when it is present and does not detect it 

when it is absent. 

 

Confirm by orthogonal technology until 

performance metrics are well-established. 

Clinical 

validity 

The test accurately detects the disease when 

it is known to be present and does not detect 

it when it is known to be absent. 

 

A “gold standard” or index test is used to 

identify samples from individuals known to 

have the condition and those known not to 

have the condition. During test development, 

these samples are processed using the new 

test. The results are compared to those of the 

index test to determine the test’s sensitivity 

and specificity. 

The test accurately identifies samples from 

individuals known to have HBOC Syndrome 

and it does not identify HBOC Syndrome in 

samples from individuals known not to have 

HBOC Syndrome. 

 

A “gold standard” test is not available to 

establish a truth set for use during development. 

Clinical 

Sensitivity 

The ability of the test to correctly identify 

those patients with the disease when present. 

 

(Note: This is different than diagnostic 

yield.) 

“I know this person has HBOC. What is the 

chance that the test will show that this person 

has it?”(Rao, 2004) 
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Clinical 

Specificity 

The ability of the test to correctly identify 

those patients without the disease when 

absent. 

“I know this person doesn’t have HBOC. What 

is the chance that the test will show that this 

person doesn’t have it?”(Rao, 2004) 

Positive 

Predictive 

Value 

The probability that a person with a positive 

result has the condition.  

  

Dependent on the prevalence of the disease 

in the test population. 

“I just received a positive HBOC test result for 

my patient. What is the chance that my patient 

actually has the disease?”(Rao, 2004) 

  

Dependent on the prevalence of the disease in 

the test population. 

Negative 

Predictive 

Value 

The probability that a person with a negative 

result does not have the condition.  

  

Dependent on the prevalence of the disease 

in the test population. 

“I just received a negative HBOC test result for 

my patient. What is the chance that my patient 

actually doesn’t have the disease?”(Rao, 2004) 

(Assume 100% analytical sensitivity) 

  

Dependent on the prevalence of the disease in 

the test population. 

Penetrance Not applicable.  The proportion of individuals with an inherited 

genetic syndrome (eg, HBOC) who exhibit 

clinical symptoms (eg, breast cancer) over time 

(eg, lifetime). 

Classification Evidence-based scoring system for 

determining likelihood of disease. Example 

Pap Smear: Cancer, Cervical Intraepithelial 

Neoplasia (3 levels), Atypical Squamous 

Cells of Uncertain Significance, Benign 

Evidence-based scoring system for determining 

whether a variant is likely to cause disease. 

Example DNA Sequencing: Pathogenic, Likely 

pathogenic, Variant of uncertain significance, 

Likely Benign, Benign 

Interpretation Positive/Negative (Positive results are 

clinically actionable) 

Positive/Negative (Positive results are clinically 

actionable) 

Table 1. Generic test development definitions and examples of their application to genetic 

testing.  
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Figure 2. Impact of prevalence on PPV. When the disease prevalence is low in the test 

population, small changes in the specificity can have a large impact on the positive predictive 

value of the test. PPV as a function of prevalence for two tests: Test A (blue), with a sensitivity 

of 99% and a specificity of 99%; and Test B (red), with a sensitivity of 99% and a specificity of 

96%. a) Full range of possible PPV and prevalence, from 0 to 1. b) Magnified region of 

prevalence <0.1, a gray line to show an example prevalence of 0.02. A decrease of only 3% in 

specificity can mean a 50% decrease in PPV: from 0.33 to 0.66. Adapted with permission from 

Romero-Brufau, et al. (Romero-Brufau et al., 2015) The prevalence of the disease is equal to the 

a priori probability that a subject selected at random from the test population has the condition.  

 

 

Table 2: Estimating the Test Specificity 

Example 

Overall 

Positive rate 

LP 

rate Specificity Prevalence 

PPV 

Range 

CDC Tier 1 1.50% 0.50% 99.95% 1/200-1/500 80% - 91% 

ACMG59TM 3.00% 1.00% 99.90% 1/200-1/10,000* 9% - 83% 

ACMG59TM (at 6% overall 

positive rate) 6.00% 2.00% 99.79% 1/200-1/10,000* 5% - 72% 

Table 2. Estimating the Test Specificity. Test specificity is estimated by assuming ⅓ of the 
overall positive rate is due to likely pathogenic variants (LP) and then calculating the specificity 

as described in Supplemental Figure 2 (Specificity = TN/(TN+FP) = (1 - Positive Rate)/(1 - 

29/30 x Positive Rate). Note how specificity changes with overall positive rate (orange). *Some 

conditions on ACMG59TM have a prevalence less than 1/10,000.  
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Table 3: Computing the PPV (post-test probability) from prevalence and specificity 

Specificity 

 

Disease Prevalence (pre-test probability) 

1/10,000 1/1,000 1/500 1/200 1/50 

99.00% 0.99% 9.10% 16.69% 33.44% 67.11% 

99.50% 1.96% 16.68% 28.61% 50.13% 80.32% 

99.80% 4.76% 33.36% 50.05% 71.53% 91.07% 

99.90% 9.09% 50.03% 66.71% 83.40% 95.33% 

99.95% 16.66% 66.68% 80.03% 90.95% 97.60% 

99.995% 66.67% 95.24% 97.57% 99.01% 99.76% 

Table 3. Computing the PPV from prevalence and specificity. Small decreases in specificity 

can have a significant impact on the PPV of likely pathogenic variants over a range of 

prevalences representative of monogenic inherited diseases. The PPV calculations for CDC Tier 

1 (yellow) and ACMG59 (orange) conditions are as follows: PPV = sensitivity x prevalence / 

[sensitivity x prevalence + (1 - specificity) x (1 - prevalence)].(Tenny & Hoffman, 2019) The 

specificity estimates for CDC Tier 1 (yellow) and ACMG59TM (orange) conditions are from 

Table 2. The model is intended to provide estimates and show trends. In practice, each condition 

should be considered individually. 

 

Supplemental Content 

 

Supplemental Figure 1. The sensitivity and specificity of a test can be adjusted during the test 

development phase to allow for more or less false positives or false negatives, as appropriate for 

the test’s intended use. The graphs show the results obtained by the new test when it tested a 

cohort of known positive samples and known negative samples, as determined by an existing 

diagnostic test. Ideally, the new test could perfectly discriminate between positive and negative 

samples. In practice this is rarely the case, so thoughtful trade-offs between desired sensitivity 

and specificity are necessary. FP = false positive, FN = false negative, PPV = positive predictive 

value, NPV = negative predictive value. 
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Screening test Confirmatory test 

Pap smear Colposcopy 

SickleDex or Thalassemia by genetic screen Hemoglobin electrophoresis 

HIV by ELISA HIV by Western blot 

Non-invasive prenatal testing (NIPT) Karyotype/FISH 

Genetic Factor XIII Deficiency or Glanzmann’s Mixing studies or Platelet Activation Test 

Newborn screening by MS/MS Genetic testing 

Supplemental Table 1. Screening test and confirmatory diagnostic test pairs. Examples of 

screening tests and confirmatory tests. Confirmatory tests can serve as the “gold standard” or 

index test comparator during test validation as well as a follow up test for positive screening 

results in practice. 

 

 

 

Supplemental Figure 2. Relationship between overall positive rate and specificity. In this 

example, the test has 100% analytical sensitivity and specificity, as determined during the test 

validation. After processing 3,000 samples, the lab determined that the positive rate in their 

setting is 5%. This means they have 150 positive results and 2850 negative results. The 

positive/negative cut off has been set to allow for 1/10 LP positives to be a false positive; thus 

1/30 positives are false positives. Therefore, 5 of the positive results are false positives. and test 

specificity = 2850/(2850+5) = 99.82%. This method is used to calculate specificities for Tables 2 

and 3 for varying positive test rates. 
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